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Abstract—To operate autonomously in forested 
environments, unmanned ground vehicles (UGVs) must be able 
to identify the load-bearing surface of the terrain (i.e. the 
ground). This paper presents a novel two-stage approach for 
identifying ground points from 3-D point clouds sensed using 
LIDAR. The first stage, a local height-based filter, discards 
most of the non-ground points. The second stage, based on a 
support vector machine (SVM) classifier, operates on a set of 
geometrically defined features to identify which of the 
remaining points belong to the ground. Experimental results 
from two forested environments demonstrate the effectiveness 
of this approach. 

I. INTRODUCTION AND RELATED WORK 
nmanned ground vehicles have demonstrated effective 
autonomous operation in a variety of scenarios, 

including cross-country and urban environments [1],[2]. 
Future applications for UGVs will require autonomous 
operation in forested environments. For UGVs to plan safe 
paths in forested environments, the systems will need to be 
able to identify contours of the load-bearing surface (i.e. the 
ground). This will enable the system to identify positive and 
negative obstacles, and assess the traversability of candidate 
paths. This paper addresses the problem of identification of 
the ground in 3-D point clouds sensed using LIDAR. 

Identification of the load-bearing surface from point 
clouds is straightforward in many 2 1/2-D environments (e.g. 
the surface of Mars) where most of the sensed points lie on 
the load-bearing surface, or in urban environments where the 
road surface is nearly flat. This problem becomes more 
challenging in forested environments, where tree trunks and 
shrubs occlude distant terrain and the surface of the ground 
is uneven. 

Previous work on 3-D ground plane estimation can be 
grouped into techniques designed for airborne LIDAR (e.g. 
[3],[4]) and techniques developed for LIDAR mounted on 
ground vehicles (e.g. [5]-[10]). Due to the difference in 
perspective, algorithms targeted towards airborne LIDAR 
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may not be appropriate for implementation on ground-
vehicle-mounted LIDAR. Some of the concepts, however, 
may have utility in both problem domains. For example, in 
[3], a method is described for defining a digital elevation 
model. The method first creates a surface below all of the 
LIDAR points, then deforms that surface upwards so that it 
coincides with points suspected to be ground. Fig. 1 shows 
an illustration of such a deformed surface.  

 
Other work has addressed ground plane estimation from 

UGV-mounted LIDAR data. In [5], ground plane estimation 
was accomplished through application of the RANSAC 
algorithm [11]. An approach to ground plane estimation 
based on Markov random fields ([8] and [9]) has been 
applied in environments with flat ground partially covered by 
vegetation. It is unclear whether such techniques would be 
effective in 3D forested environments. 

The approach to ground plane estimation presented in [10] 
uses an octree framework to find best fit planes in each 
region in which the LIDAR point density exceeds a pre-
defined threshold. A merging process is then used to connect 
neighboring planes which have similar normal vectors. 

A work that is closely related to the method described in 
this paper is the ground filtering approach presented as part 
of a 3-D object classifier in [7]. This approach operates on 
the assumption that the ground will be less steep than a pre-
defined slope. Following this assumption, for a candidate 
LIDAR data point to belong to the ground, a downward-
oriented cone with vertex at the candidate point (with an 
included angle proportional to the pre-defined maximum 
ground slope) must be empty of other points. The approach 
proposed in this paper adopts a similar approach as part of a 
larger ground plane estimation framework. 

This paper presents a two-stage approach for ground plane 
identification. The first stage is a local height-based filter, 
inspired by [3], which eliminated from further consideration 
most points that lie above the ground plane. The second 
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Fig. 1. Connecting lower surface to possible ground points (from [7]). 
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stage employs eight geometrically derived features in a SVM 
classifier to classify the remaining points as ground or non-
ground. 

This paper is divided into five sections. Section II presents 
the proposed approach for ground identification based on the 
local height-based filter. Section III presents details of the 
experimental studies used to validate the proposed approach. 
Section IV presents numerical results, and Section V 
presents conclusions. 

II. PROPOSED APPROACH 

A. Overview of proposed approach 
The approach proposed here divides the task of ground 

plane identification into two stages. The first stage is a local 
height-based filter, which encodes the fact that, in any 
vertical column, only the lowest point may belong to the 
ground. In practice this eliminates a large percentage of non-
ground points from further consideration. (In the test data 
sets presented here, approximately 98.7% of the data points 
were eliminated through this method.) The second stage is a 
SVM classifier, which combines eight heuristically inspired 
features to determine which of the remaining points belong 
to the ground plane. 

B. Detailed description of proposed approach 
Given a set of range data points in Cartesian space, the 

goal of ground plane detection is to identify which of those 
points belong to the ground. In this work, candidate points 
are represented in an inertial frame with coordinates (x,y,z). 

In the first stage, the points are divided into 0.5-m by 0.5-
m columns based on their x and y values. These columns are 
identified by indices (i,j), where i=⎣x/0.5⎦ and j=⎣y/0.5⎦. 
Thus, a point located at (2.9m, 4.1m, 1.7m) will be located in 
column (5,8). In each of these columns, only the lowest point 
(i.e. the point with minimum z) is retained as a possible 
ground point. For simplicity, the lowest point in column (i,j) 
is hereafter denoted Pi,j, and its coordinates are referred to as 
(xi,j, yi,j, zi,j).  

In the second stage, a variety of features are used to 
represent attributes of each point Pi,j and the lowest points in 
each of the eight neighboring columns (i.e. Pi -1,j -1, Pi -1,j, 

Pi -1,j+1, Pi,j -1, Pi,j+1, Pi+1,j -1, Pi+1,j, and Pi+1,j+1), as shown in 
Fig. 2. A set of eight features was selected from a larger set 
of possible features based on their usefulness in 
discriminating ground from non-ground. These features, 
denoted f1,…,f8 are combined into a feature vector 
Fi,j = (f1,…,f8) for each point, which is used by a classifier to 
identify whether that point belongs to the ground. These 
features include: 

• f1: Number of occupied columns in the neighborhood 
of column (i,j) 

• f2: Minimum z of all neighbors minus zi,j 
• f3: Value of zi,j 
• f4: Average of all z values in neighborhood 
• f5: Normal to best fit plane of points in neighborhood 
• f6: Residual sum of squares (RSS) of best fit plane of 

points in neighborhood 
• f7: Pyramid filter 
• f8: Ray tracing score 
 These features are described in detail below. 
 

f1: Number of occupied columns in neighborhood 
The first feature, f1, is used to quantify the density of 

points around column (i,j). This feature encodes the fact that 
bushes, shrubs and tree trunks typically cast “shadows” in 
LIDAR data, thus reducing the number of occupied 
neighbors. As such, not every column (i,j) will contain data 
points, so there will be no minimum in these columns. To 
represent this, feature f1 is the number of occupied columns, 
N, in the neighborhood of column (i,j): 

 
f1 = N (1) 

 
f2, f3, f4: Features using z height values 

Feature f2 encodes the smoothness of the terrain around 
column (i,j). Intuitively, ground is expected to have a 
relatively smooth surface compared to the edges of trees or 
shrubs, which are expected to display larger jumps in height. 
To describe this, feature f2 takes the difference between zi,j 
and the minimum z of all neighboring columns: 
 

( ) jijijijijijijijiji zzzzzzzzzf ,1,1,11,11,1,1,1,11,12 ,,,,,,,min −= +++−++−+−−−−  (2) 
 
Features f3 and f4 utilize the raw z value in each column, 

enforcing the assumption that the ground will not be located 
significantly higher than the LIDAR sensor (i.e. the ground 
probably won’t be located at tree canopy height). This 
assumption is expected to be true except for cases with 
highly sloped terrain. Feature f3 is taken as the value of zi,j, 
and f4 is defined as the average of all z values in the 
neighborhood of zi,j: 

 
jizf ,3 =  (3) 

 
( ) Nzzzzzzzzzf jijijijijijijijiji /1,1,11,11,,1,1,1,11,14 +++−++−+−−−− ++++++++=  (4)  

Fig. 2.  A column and its neighbors. 
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f5, f6: Features using best fit plane 

For features f5 and f6 a best fit plane is calculated for all 
points in the neighborhood of column (i,j). The plane 
minimizes orthogonal distances using principal component 
analysis. Given the set of N points in the neighborhood, 
where {Pk}={[xi,j, yi,j, zi,j]}, and the mean value 

k
N
k PNP ∑ == 1)/1( , the normal vector n is calculated as 
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Feature f5 is the z-component of the normal vector, n: 
 

)1,0,0(5 ⋅= nf  (6) 
 

The z-component is expected to be large for flat ground. This 
assumes that the ground is relatively flat. In sloped terrain, 
this feature can still be useful in discriminating between 
sloped terrain and near-vertical structures, such as tree trunk 
and rock boundaries. 

As another means of measuring the smoothness of the 
terrain, feature f6 is the normalized orthogonal RSS of the 
best fit plane: 
 

( )( )∑
=

⋅−=
N

k
k nPP

N
f

1

2
6

1
. (7) 

 
f7: Pyramid filter 

A ground filter similar to the one in [7] was also 
implemented. To improve computational efficiency, this 
filter is discretized by forming a pyramid structure (instead 
of a cone as in [7]) of cubic voxels under each point, Pi,j. The 
number of other minimum z points that fall within the 
pyramid of Pi,j are counted, and this count is used as feature  
f7. A representative pyramid of voxels is shown in Fig. 3. 

 

f8: Ray Tracing Score 
The last feature is inspired by ray tracing. Intuitively, it is 

obvious that the ground (or any other structure) cannot lie 
directly between the LIDAR and any point it observes. 
Similarly, the ground cannot lie above the line segment 
formed between the LIDAR and the points it observes. 
Feature f8 quantifies this insight using a voxel-based 
approach. For each 0.5-m by 0.5-m by 0.5-m cubic voxel 
containing a point Pi,j, f8 is a count of the line segments 
passing directly under that voxel. Thus, points with lower ray 
tracing scores are more likely to be ground, and points with 
higher scores are less likely. This concept is illustrated in 
Fig. 4. 
 
Classifier Description 

Given the feature vectors Fi,j = (f1,…,f8) for all of the 
points in a training scene and the hand-identified labels of 
whether each point is ground, a SVM classifier is trained. 
Based on cross-validation within the training data, a set of 
appropriate kernel parameters can be found. (For this work, 
the SVM classifier was implemented using LIBSVM [12], 
and based on cross-validation, a linear kernel was used with 
SVM parameter C=100.) Using the trained classifier, points 
belonging to a previously unlabeled scene can be classified. 

III. EXPERIMENT DESCRIPTION 

A. Equipment 
For collection of LIDAR data, a nodding device was 

constructed using a camera tripod with a sensor platform 
mounted on top. The sensors include a small LIDAR sensor 
(Hokuyo UTM-30LX scanning range finder), and a 
MicroStrain 3DM-GX2 inertial measurement unit (IMU) 
which is used for inertially referencing the data. Fig. 5 shows 
a picture of this setup. 

B. Environment 
LIDAR data was acquired for different types of vegetated 

environments in the summer of 2009. The first set of data, 
sparse, was collected in Killian Court on the campus of MIT. 

 
Fig. 3.  A pyramid of voxels under a candidate data point. The voxel 
that contains the point is at the pyramid apex. 
 
 

 
Fig. 4.  Ray traced from data point back to LIDAR sensor source. 
Voxels above the traced line segment are red, and voxels along the 
line segment are blue.  (Image best viewed in color.) 
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This data is meant to be a relatively simple baseline which 
will be compared to the other more complex scenes. A 
panoramic photo of this scene is shown in Fig. 6(a). 

Two other data sets were collected from an arboretum 
located in the greater Boston area. Panoramic images of 
these environments are shown in Fig. 6(b) and Fig. 6(c). The 
moderate scene in Fig. 6(b) is relatively sparse. It contains 
several deciduous trees and shrubs, but is largely open. The 
dense scene, shown in Fig. 6(c), is more densely cluttered 
with numerous deciduous trees and shrubs. 

 

C. Data Processing 
To quantify the accuracy of ground classification, the 

LIDAR data collected for the scenes in Fig. 6 was hand-
labeled. Each data point was classified into one of the four 
following categories: ground, bushes/shrubs, tree trunks, or 
tree branches/leaves. 

Hand-labeling was done using Quick Terrain Modeler 
software from Applied Imagery [13]. Fig. 7 shows the 
classified LIDAR data projected into a global reference 
frame. Points are colored black, blue, red and green, 
representing ground, bushes/shrubs, tree trunks and tree 
branches/leaves, respectively. The LIDAR has 270 degree 
range with resolution of 0.25 degrees. The sparse scene only 
utilizes 180 degrees of this range, while the other sets use the 
full 270 degrees. Each scene has 200 scans, with LIDAR 
pitch angles ranging between –75 degrees and +55 degrees. 
So, the sparse scene has 144,400 data points and the other 
sets have 216,400 data points. In each scene, the axis of the 
nodding device was 0.55-m from the ground. Matlab was 
used for the computation of all feature values. 

IV. EXPERIMENTAL RESULTS 
The two-stage approach for identifying points on the 

ground plane was applied to the experimental data sets, and 
the results are presented in Tables I-III. For the results in 
Table I, the sparse scene was used as the classifier test set, 
and the moderate and dense scenes were used as the 
classifier training set. For the results in Table II, the 
moderate scene was used as the test set, and the other two 
scenes were used as the training sets. Finally, in Table III, 
the dense scene was used as the test set, and the other two 
were used as the training sets. 

The first two columns in each table show the results of 
stage 1, the local minimum z filter. Here it can be seen that 
this filter drastically reduces the number of points to be 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6.  Panoramic images of (a) sparse scene, (b) moderate scene, and (c) dense scene. 
 

 
Fig. 5.  Nodding device for collection of LIDAR data.
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analyzed. (Recall that a column might contain many ground 
points, but will contain at most one minimum z point.) It 
should be noted that the lower fraction of ground points that 
pass through the filter (as opposed to non-ground points) is 
due to the fact that the ground near the LIDAR is scanned 
much more densely than the trees and shrubs in the distance. 
In columns with both ground points and non-ground points, 
the first filtering stage selected ground points 100% of the 
time in the sparse data set and 98.4% of the time for the 
other two data sets. 

The second two columns in each table show the results of 
stage 2, the SVM classifier, which identifies each of the 
minimum z points as being ground or non-ground. (The 
ground truth is the result of the hand-labeling described in 
Section III.C.) Here, it can be seen that the classifier can 
effectively identify points likely to belong to the ground 
class. The classification accuracy of the sparse scene was 
91.12%. The classification accuracy for the moderate scene 
was 86.42%, and the accuracy for the dense scene was 
78.09%. Here, accuracy is calculated as the number of points 
correctly classified divided by the total number of points 
classified. Bushes, trunks, branches, and leaves classified as 

“non-ground” are considered to be classified correctly. 
Additionally, if a lower rate of false positives is desired 

(i.e. instances of bushes, trunks, branches, and leaves being 
incorrectly classified as ground), the threshold of the SVM 
classification can be adjusted. Fig. 8 shows the receiver 
operating characteristic (ROC) curves for the three data sets. 
For the solid line, the sparse scene was used as the classifier 
test set and the moderate and dense scenes were used as the 
classifier training sets. For the dashed line, the moderate 
scene was used as the test set, and the other two scenes were 
used as the training sets. Finally, for the dotted line, the 
dense scene was used as the test set, and the other two were 
used as the training sets. 

Here it can be seen that low false positive rates can be 
achieved while maintaining relatively high true positive 
rates. For the sparse scene, a 70% true positive rate can be 
achieved with less than a 0.5% false positive rate. For the 
moderate scene, a 70% true positive rate can be achieved 

TABLE I 
CLASSIFICATION RESULTS USING SPARSE SCENE AS TEST SET,  

WITH  MODERATE AND DENSE SCENES AS TRAINING SETS 

 Stage 1 
Minimum z filter 

Stage 2 
SVM Classifier 

Ground Truth Sensed 
points 

Min z 
points Ground Non-

Ground 
Ground 53488 677 598 79 
Bushes/ 
 Shrubs 0 0 0 0 

Tree Trunks 8324 26 4 22 
Tree Branches 
/Leaves 7786 232 0 232 

 
 

TABLE II 
CLASSIFICATION RESULTS USING MODERATE  SCENE AS TEST SET,  

WITH SPARSE AND DENSE SCENES AS TRAINING SETS 

 Stage 1 
Minimum z filter 

Stage 2 
SVM Classifier 

Ground Truth Sensed 
points 

Min z 
points Ground Non-

Ground 
Ground 74161 1131 928 203 
Bushes/ 
 Shrubs 30987 463 103 360 

Tree Trunks 4483 47 7 40 
Tree Branches 
/Leaves 32154 664 0 664 

 
 

TABLE III 
CLASSIFICATION RESULTS USING DENSE SCENE AS TEST SET,  

WITH SPARSE AND MODERATE SCENES AS TRAINING SETS 

 Stage 1 
Minimum z filter 

Stage 2 
SVM Classifier 

Ground Truth Sensed 
points 

Min z 
points Ground Non-

Ground 
Ground 65192 444 440 4 
Bushes/ 
 Shrubs 67403 752 340 412 

Tree Trunks 11494 50 11 39 
Tree Branches 
/Leaves 10314 379 1 378 

              
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7.  Hand-labeled point clouds of (a) sparse scene, (b) moderate 
scene, and (c) dense scene. Black points indicate ground, blue points 
indicate bushes/shrubs, red points indicate trunks, and green points 
indicate canopy. (Image best viewed in color.) 
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with less than a 7% false positive rate. For the dense scene, a 
70% true positive rate can be achieved with less than a 10% 
false positive rate. 
 All computations were performed using Matlab on a 
desktop computer with an Intel Core 2 Quad CPU at 
2.40GHz and 3.25GB of RAM. Table IV shows average 
processing times for various parts of the computation. It 
should be noted that this computation can be easily 
parallelized and implemented in a faster programming 
language (e.g. C) if faster classification rates are desired. 

 

 

V. CONCLUSION 
This paper has presented an approach for identifying 

ground points in 3-D LIDAR point clouds. This approach 
uses two stages. In the first stage, a local height-based filter 
eliminates a large percentage of the non-ground points. In 
the second stage, a classifier operating on eight 
geometrically defined features identifies which of the 
remaining points belong to the ground. The proposed 
approach was experimentally validated using LIDAR data 
collected from two forested environments. Results 
demonstrate that this approach can effectively discriminate 
between ground and non-ground points in such 
environments. 

Future work will include validation of this approach using 
experimental data from geographically diverse environments 
and sloped terrain, optimizations of the underlying 

algorithms to decrease computation time, and use of the 
ground plane estimation to inform classification of other 
features in the environment. Furthermore, this work can be 
extended for use on a moving vehicle. This ground plane 
estimation could be the first step in the process of path 
planning for a UGV in a forested environment. Of course the 
accuracy of the final result would depend on the accuracy of 
mapping the data from the moving LIDAR into a stationary 
reference frame, which is a potential area for future research. 
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Fig. 8.  ROC curves for sparse (solid), moderate (dashed) and dense 
scene (dotted) 

TABLE IV 
AVERAGE COMPUTATION TIMES FOR FEATURE EXTRACTION AND 

CLASSIFICATION 

 Time/pt 
(s/pt) 

Time/voxel 
(s/voxel) 

f1 – f6 1.55 x 10-3 1.66 x 10-4 
f7 (cone filter) 3.86 x 10-3 4.38 x 10-4 
f8  (ray tracing) 1.22 x 10-4 2.09 x 10-5 
SVM 4.04 x 10-6 N/A 
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