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Abstract— An evolutionary predecessor to observational im-
itation may have been self-imitation. Self-imitation is where an
agent is able to learn and replicate actions it has experienced
through the manipulation of its body by another. This form
of imitative learning has the advantage of avoiding some of
the complexities encountered in observational learning such as
the correspondence problem. We investigate how a system using
self-imitation can be constructed with reference to psychological
models of motor control including ideomotor theory and ideas
from social scaffolding seen in animals to allow us to construct
a robotic control system. The system allows a human trainer to
teach a robot new skills and modify existing skills. Additionally
the system allows the robot to notify the trainer when it is
being taught skills it already possesses. We argue that this
mechanism may be the first step towards the transformation
from self-imitation to observational imitation. We demonstrate
the system on a physical Pioneer robot with a 5-DOF arm and
pan/tilt camera which is taught using self-imitation to track
and point to coloured objects.

I. INTRODUCTION

Social or observational learning is difficult to replicate

in artificial systems. Two reasons, among others, for this

difficulty is firstly, that to learn from observing the actions

of others a mechanism is needed which transforms the

others’ actions into the same action frame as oneself. Thus

a mapping needs to be created between the imitator and the

entity being imitated (the model). Secondly, in the making of

this mapping it is necessary to know which parts of the body

of the imitator are supposed to match those of the model. For

humans this matching process can be based on the similar

morphology of each person. However, between agents with

differing embodiements the matching process is less obvious.

Both of these issues are examined in the “Correspondence

Problem” [18] and are dealt with in differing ways by

different practitioners. However, one simple way to avoid

the correspondence problem entirely is to learn from internal

observation rather than external observation. This process

of internal observation is called self-imitation and involves

learning from actions made by oneself or made by another on

oneself through the process of putting through. For example,

when teaching children to write the fingers of the child are

often physically placed by the teacher around the pencil.

This physical process is called putting through and allows

the child to experience the correct way to hold the pencil, a

task that would be difficult to learn from observation alone.

In order to use the pencil again the child must replicate the
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motor actions it experienced when being taught and thus

self-imitate his or her own physical actions.

In this paper we first report on how self-imitation could be

an evolutionary precursor [17] to the more complex stages

of imitation and cross-modal imitation. We then review how

the social aspects of teaching, learning and self-imitation

are used by some social animals to expand their repertoire

of skills and define the developmental concepts of putting
through and self-imitation as mechanisms which may prove

useful for system teaching. The realisation and validation of

our architecture based on these insights and implemented on

physical Khepera [1] miniature robots has been described

in [25] where we demonstrated how the careful construction

of the teaching environment could augment the algorithmic

selection of appropriate sensory states experienced in the

self-imitation process. Here we describe a further application

which has been enhanced to allow the system to notify

the trainer of its existing competencies. The system is able

to notify the trainer by making predictions of a possible

next action based on the set of previously taught behaviours

and given the current sensory state. We discuss how this

prediction mechanism could prove useful for observational

learning given the necessary mappings between imitator and

model.

The system is realised on a Pioneer P3-DX [2] robotic

platform using a pan/tilt camera and a robotic arm. We firstly

teach the robot to track a coloured object using the pan/tilt

camera. We then teach the robot to touch the object when the

object comes within range of the robotic arm. We describe

the scaffolding steps used in building the hierarchy needed

to accomplish this and demonstrate how the robot can aid

the trainer by indicating when it already knows how to carry

out a particular task.

Finally we describe issues that we have recognised during

these studies and discuss the possible directions for further

research based on these issues and the framework described.

II. EVOLUTIONARY ASPECTS OF SELF-IMITATION

In his proposal on the differing evolutionary paths of im-

itative learning in primates and psittacine birds, Moore [17]

outlines a six-step hypotheses. The process starts with

Thorndikian conditioning where existing motor actions are

associated and reinforced based on particular environmen-

tal conditions. This step is later enhanced by operant (or

Skinnerian) conditioning where novel motor responses are

formed based on combinations of existing actions. The next

evolutionary step is an implicit reinforcement cycle leading

to “skills” where the animal is able to perfect the novel
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act. The fourth stage introduces the teacher. The teacher

essentially guides the pupil by physically putting through the

actions of the pupil given particular environmental stimuli.

This can be considered as self-imitation by the animal as it

repeats the actions that it has experienced. Visual imitation of

others is the next evolutionary stage. In this case the animal

now only has to see an act to be able to repeat it. The final

process is called cross-modal imitation where an animal is

able to match features of its body with corresponding features

of another animal. All of the subsequent stages are built and

re-inforced on the previous stages. Moore states:

“...these three processes (skill learning, putting through

and visual imitation) are linked in many ways: their possible

controlling stimuli are nested as just described: both putting

through and imitation incorporate and set the stage for

skill learning. Putting through is like self-imitation. And all

three processes involve novel responses and possibly implicit

reinforcement” [17, p.258].

The study presented in this paper bases its mechanisms

for system teaching on the self-imitation stage. In our current

research we do not use any form of implicit reinforcement.

Rather, we use explicit reinforcement through teaching of

a system by a human. The teaching is carried out using

two mechanisms. Firstly the physical act of putting through,

where the system’s actions in a given environmental state

are moulded by the teacher. Secondly, by the process of

scaffolding where the teacher ensures that the appropriate

environmental conditions exist to amplify the learning expe-

rience.

III. SELF-IMITATION, PUTTING THROUGH AND

SCAFFOLDING IN ANIMALS

Evidence for self-imitation from teaching using putting

through and scaffolding in the animal kingdom come mainly

from studies of primates [8]. However there is also evidence

from carnivores including domestic cats, tigers, cheetahs,

otters, dolphins, orca whales and some bird species [26].

For example Fouts et al. report on the chimpanzees

Washoe and Loulis, Loulis being the adopted infant chimp

of the mother Washoe. Washoe had previously been taught

American Sign Language (ASL) however the human carers

made no attempt to teach Loulis ASL and did not use ASL

in Loulis’ presence. However Washoe succeeded in teaching

Loulis ASL both by demonstration and by putting through
of Loulis’ hands [22]. This technique had also been used by

the human carers to originally teach Washoe. Animals have

also been observed modifying the environmental conditions

experienced by a learner. This process, called scaffolding, is

used typically by the mother, to make it much easier for her

child to complete the task when the child is at a developmen-

tal stage where it could not perform the appropriate acts or

sequence its actions correctly. Scaffolding of tasks together

with observational learning and putting through have been

observed in wild chimpanzees [8]. For example, cracking

nuts with a hammerstone is an especially difficult task for a

chimpanzee to learn, taking up to 14 years to perfect in some

cases. A number of observations have been recorded where

the mother will clean the anvil, reposition the nut or re-orient

the hammerstone to favourable orientations for the infant.

Additionally mothers will often leave their hammers and a

supply of nuts in favourable positions for their young to use

when normally adult chimpanzees would eat the available

nuts and retain their hammers.

Scaffolding is also a familiar concept in human develop-

ment and is emphasised in Vygotysky’s idea of the “zone

of proximal development” in his theory of the child in

society [28]. Vygotsky emphasised the idea that teaching

and social interaction allow higher competence levels to be

achieved through staged learning and building upon existing

skills. Vygotsky (and also Piaget) both argue that the learner

learns based on their own sensorimotor experiences, their

own activity is at the centre of the learning process.

We take inspiration from these examples in social animals

to study how self imitation via putting through and scaffold-
ing can be used to good effect in teaching robots to learn

new skills and modify existing skills.

IV. IMITATION PERSPECTIVE

Approaches to imitative learning can be classified into

specialist and generalist theories [7]. The generalist theories,

such as ideomotor theory (IM) [20] and associative sequence

learning (ASL) [13], assume that imitation is mediated by

learning and motor control. This is in contrast to the special-

ist theories, such as active intermodal matching (AIM) [15],

which proposes special purpose mechanisms for imitation.

Our approach is closest to that of extended ideomotor the-

ory [20] where the defining feature of the imitation attempt

is the idea that the similarity between an event perceived by

the imitator and an event learned from the imitator’s own

actions will induce that action. This idea of similarity is

central to imitation and we use it in the learning algorithms

implemented on our systems. Previous learning is what gives

rise to matching actions and we match perceived internal and

external perceptions with motor actions in a single form of

memory representation.

V. APPROACH AND RELATED WORK

As noted above imitative learning faces two difficult prob-

lems. Firstly, that by observation alone the proprioceptive

feedback that the teacher experiences cannot be directly

experienced by the pupil [24] and secondly, there may be

a mismatch between the external and internal sensorimotor

spaces of the teacher and pupil - the correspondence prob-

lem [18]. Our approach is to use supervised learning to learn

a control policy directly. The correspondence issue is avoided

by having the pupil experience the same set of actions and

sensory states as the teacher simply by the process of putting

through. Thus there is no need for observational matching

and similarly there is no correspondence problem as the

system is corresponding directly with itself. The system

learns to associate the actions moulded on its body against

perceived environmental state. Currently our systems have

no mechanism for proprioceptive feedback, therefore we
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Fig. 1. The environment showing the Pioneer robot with pan/tilt camera
and 5-DOF arm.

control the movements of the system directly using tele-

operation. This form of tele-operation being a proxy for

the more direct form of putting through where the human

would directly manipulate the system’s actuators. During the

process of putting through the human trainer has no access

to the system’s internal state or perceptions and in fact may

not be aware of the form of sensorimotor feedback that the

system is experiencing.

For learning we use an approach described by Bentivenga

et al. [5] where a framework is constructed using a mem-

ory based k-Nearest Neighbour machine learning technique.

This technique is also related to loose-perceptual matching

methods described in [3]. The concept behind using memory

based approaches is that intelligent behaviour is obtainable

from analogical reasoning i.e. that we can extrapolate be-

haviour to new situations based on the similarity of stored

representations of previous behaviour. A fundamental ad-

vantage of this approach is that errors made during the

training process can be corrected simply by providing further

additional and correct training experiences. This is in contrast

to behavioural cloning [23], [27] and production rule ap-

proaches [11] to learning by demonstration where both good

and bad training experiences are stored with equal weight and

are not easily corrected. Early work using the ideas of direct

manipulation via putting through can be found in [4] where

hybrid control programs are generated from teaching data

supplied from a human manipulating a robotic end-effector.

Our approach is detailed in [25] and parts are repeated

here for clarity. We extend this work by allowing the system

to predict forthcoming actions and inform the trainer if it

already knows how to carry out a particular task.

VI. FRAMEWORK

For this study our experiments are based on training a

system to point to coloured objects. The system comprises

a Canon VCC4 Video camera with a pan/tilt unit mounted

on a Pioneer P3-DX robotic platform [2] with a 5-DOF

arm. The sensory feedback to the learning mechanism is

the centre point and area or the region of interest of a

chosen object togther with the current modality of the pan/tilt

unit and the robotic arm. We pre-train the system to detect

coloured objects before applying our framework. The object

is detected and tracked in the camera frame using the

CAMSHIFT [6] algorithm, part of the Intel OpenCV image

processing library [19].

In the following sections we describe:

A. how the robot uses similarity measures to learn.

B. how putting through is used in matching robot states

and trainer directed actions.

C. how relevant attributes in the robot state are selected

and amplified by scaffolding.

D. how the robot is able to learn new tasks and modify

existing tasks.

E. how the robot uses a mechanism of action prediction to

inform the trainer when it has an existing competence.

A. Learning Mechanism

We use a memory based “lazy” learning method [16] to

allow the system to learn tasks. This is a k-nearest neighbour

(kNN) approach where the value of each feature in the

system’s state vector (see Scaffolding below) is regarded as

a point in n-dimensional space, where n is the number of

features in the state vector (see table 1). For each chosen

task we collect a set of training examples (as described in

Putting Through below) together with their target primitives,

each primitive being chosen by the human trainer when

moulding the system’s actions. We call this collection of

states a memory model. When the task is executed the

system continually computes its current state vector. It then

computes the distance from the current state to each of the

training examples held in the memory model. The distance

between the state vector and the training example being the

sum of the distances between the features in each, as follows:

distance(X ,S) =
n

∑
i=1

Wi |
xi − si

maxi −mini
|

Where X is an instance of the training examples and S an

instance of the system’s current sensory state. W is a non-

negative vector of real numbers used to weight each of the

dimensions. This weighting is discussed in the scaffolding
section below. Setting k to 1 will result in the nearest point in

the training examples being used and yield a single primitive

as its target function. Where k is greater than 1 the algorithm

will yield a set of primitives. We choose the most common

primitive from the set as the target function. Note that this

method will always result in a primitive being chosen. In

environmental situations not previously experienced by the

system, generalisation occurs as the primitive nearest to the

current state is chosen. Thus performance is based on the

similarity of new situations to those already experienced.

In work to date the k value has been set experimentally to

approximately correlate to the number of state vector entries

in each memory table. In forthcoming work we intend to

compute the k value using cross-validation. Currently, for a

small number of state vector entries k is set to 1. For larger

numbers of entries k has been set to higher values but to

date not exceeding 5. We make use of the Tilburg University

Memory Based Learner [9] to provide the kNN functionality.

246



TABLE I

STATE VECTOR.

State Description
Pan Current Pan Setting
Tilt Current Tilt Setting
X-value Location of object in camera X-direction
Y-value Location of object in camera Y-direction
Delta-X Change in object X-direction from last frame
Delta-Y Change in object Y-direction from last frame
Area Size of object tracking area
Sonar Values of the 5 front and 5 rear sonars
Bumpers Values of the 16 bump sensors
Arms Angles of 6 arm joints

TABLE II

PRE-DEFINED PRIMITIVES.

Primitive Description
Pan Left Pan Left 5◦ or continuously
Pan Right Pan Right 5◦ or continuously
Tilt Up Tilt Up 5◦ or continuously
Tilt Down Tilt Down 5◦ or continuously
Move Forwards* Move Forward 10cm or continuously
Move Backwards* Move Backwards 10cm or continuously
Turn Right* Turn Right by 5◦ or continuously
Turn Left* Left Left by 5◦ or continuously
Increase Joint Angle Increase a given joint angle by 5◦

Decrease Joint Angle Decrease a given joint angle by 5◦

* (=Not used in these experiments)

This system has the advantage of providing a very efficient

kd-tree based coding structure for the training examples so

as to speed up performance.

B. Putting Through

The concepts of scaffolding and putting through can play

an important part in animal learning. They support a form

of self-imitation that may be the natural precursor to more

complex forms of imitative learning. In our framework we

use the idea of putting through directly. The human has the

ability to control the system by remotely moving it through

a set of pre-defined basic primitives. This set of primitives

are basic actions available to the system (see table 2). The

human teacher has no access to the internal state of the

system. By manipulating the system in this manner we also

avoid both the problem of observation by the system of the

human actions and of the correspondence problem between

the system and human.

During the system moulding process a snapshot of the

systems proprioceptive and exterioceptive state (see table

1) is recorded together with the directed primitive on each

human command to the system. For each human defined task

we can therefore build a memory model of state/primitive

combinations.

C. Scaffolding

All of the states perceived by the system are recorded in

the state vector however particular attributes may have more

relevance to different tasks. For example, in this experiment

the values of the X-Y object tracking values are of more

relevance than the values of the bumpers (which remain

constant).

We use two mechanisms to ensure that the appropriate

attributes are chosen. The first is based on computing infor-
mation gain to measure how well a given attribute separates

the set of recorded state vectors according to the target

primitive. This is defined as follows:

Gain(S,A) = Entropy(S) − ∑
vεValues(A)

| Sv |

| S |
Entropy(Sv)

where S is the collection of training examples, Entropy(x) is

a function returning the entropy of x in bits, Values(A) is the

set of all possible values for a particular state attribute A and

Sv is the subset of S for which attribute A has value v. Further

explanations of this metric can be found in [21], [16]. The

information gain measurement allows particular attributes in

the state vector to have greater relevance by using it to weight

the appropriate dimensional axes in the kNN algorithm (by

setting Wi above). This has the effect of either lengthening

or shortening the axes in Euclidean space thus reducing the

impact of irrelevant state attributes.

The second mechanism for attribute selection is the human

trainer. It is assumed that the trainer already understands

the task (from an external viewpoint) that the system must

carry out and therefore is able to construct the training

environment appropriately so as to ensure that irrelevant

features are removed. This idea allows the technical selection

of relevant state features to be enhanced as the other features

will now tend to have constant values and therefore a

low information gain. As discussed in section 3 above this

process of scaffolding or creating favourable conditions for

learning would seem a quite natural phenomenon in social

animals and is of course fundamental to all forms of human

teaching.

D. Learning New Tasks

The trainer directs the system (in this case the camera

pan/tilt unit and robotic arm) using a screen based interface

which provides a number of buttons used to set operation

modes such as “execute” and “start/stop learning” plus an

edit field to label actions and a list from which to choose

existing labelled actions and primitive operations.

The system can be in two modes. The first is execution
mode, which is its normal mode of operation where its

current behaviour is executed. Alternatively the system can

be in learning mode where the human trainer can put

through, scaffold and create new activities for the system

to eventually use in execution mode.

In “learning” mode the system can be taught new com-

petences: sequences, tasks or behaviours. All three learning

levels are started by pressing a “start learning” button and

terminated by pressing a “stop learning” button. For each

new competence (either a behaviour, task or sequence)

the trainer explicitly provides an appropriate label. When

training is complete the label is added to the set of actions

available to the trainer and thus can be used immediately for

further training sessions.

Existing labelled actions can also be modified (or entirely

deleted) with additional training episodes as required.
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The sequence level is where the system can be directed

through a given sequence of primitives which it records

without reference to its state i.e. sequences are entirely

independent of the internal or external environment. An

example of a sequence might be to move the arm to a par-

ticular position. This could, for example, be labelled as the

‘readyArm’ sequence. The readyArm sequence would then

become part of the available set of competences available for

the trainer to use. These new sequences could then be used

in combination with other primitives and other sequences to

create further sequences.

The goal-directed task level differs from a sequence in

that during training the actions taken by the system will

depend on the the robot’s internal and external state at that

time. The trainer now has the opportunity to select not only

basic primitives, but sequences and other goal-directed tasks.

The tasks are goal-directed because the trainer is able to

inform the system when the task has completed with the

resulting state being recorded as a target to achieve. This

goal condition is paired with the system state and becomes

a further training record in the memory model for that

particular task. As an example consider a tracking behaviour,

for which the goal state is to have the target centred in the

visual field. The trainer could pan the camera to the right,

choose the “goal-directed task” level, label it “pRight” and

press the “start learning” button. The system can then be

put through a right panning situation tracking an object.

The trainer would signal that the goal state was reached

when the camera lens was directly in front of him/her.

This training regime would be repeated for many panning

situations and thus many panning recognition states with

appropriate actions and goal states being recorded into the

‘pRight’ memory model. Note that the signalling by the

trainer to the robot of a goal-state does not automatically

imply that teaching has stopped, it simply signals that this

state is a goal-state. The trainer could continue training the

robot by placing it in situations that are not goal-states. The

“stop learning” button is only pressed once the trainer is

happy with the training regime. Similarly an existing training

episode can be enhanced with further training episodes by

choosing an existing task and pressing the “start learning”

button.

The behaviour level allows the trainer to construct the

complete behaviour for the system from the component set

of tasks, sequences and primitives. The construction of a

behaviour is the same as for a task except that no goal state

is required. The behaviour will run continually in execute

mode and base its decision of what task, sub-task, sequence

or primitive to use based on the current environmental state.

With careful training the trainer can now build a hierarchy

of tasks, sequences and primitives as required (see figure 2).

E. Task Prediction

Both the goal directed tasks and the overall behaviour

depends on the robot state. When the teacher is training the

robot each action is associated with the scaffolded state at

that time and for each trained component a memory model

Fig. 2. An example of a trained hierarchy of primitives, primitive
sequences, learned goal-directed tasks and behaviour.
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Fig. 3. Recognition of previously learned behaviour using Task Prediction.
The graph shows how well each task or behaviour matches the current
training sequence. As each training step is taken the task/behaviour most
similar to that being trained increases in confidence. The first training
step achieves 100% confidence as each task in this step matches the goal
condition. However as more training episodes are added the pLeft task
maintains a higher confidence level as predicted actions match trained
actions. The peaks in the confidence level is due to the trainer using a
slightly different training regime.

is created. As well as being used to control overall behaviour

these memory models can be employed to predict whether

the trainer is teaching tasks already known to the robot.

Based on the current state each memory model is polled

using the kNN algorithm above. This polling will yield a

set of possible actions, one for each memory model in the

system. If the trainer directs (puts through) the robot to take

one of these actions, a weight attached to each memory

model that proposed this action is incremented. As each

training step is taken this cycle is repeated. Once the weight

of any of the memory models exceeds a threshold the trainer

is informed by the robot that it may already have knowledge

of this task. An example of this process is shown in figure

3. This process is in some ways similar to the prediction

capabilities of imitation systems using forward models [10],

[14]. In these systems a set of forward models predict a

set of possible forthcoming states which are weighted by

matching against current observed (and transformed) states.

This eventually leads to the appropriate inverse model (which

is paired with a forward model) being selected as the
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imitative action. In this study we instead match predicted

actions against actions put through by the trainer and weight

the single memory representation for each task accordingly.

The process differs in that the observation is internal rather

than external, that actions rather than states are matched and

that each task model is represented in one structure in line

with the ideas of ideomotor theory outlined above.

VII. EXPERIMENTAL VALIDATION

We illustrate the successful functioning of the architecture

in a tracking and pointing task. The trainer is required to

teach the robot to track a coloured object held in the trainer’s

hand using the camera pan/tilt unit. If the object comes

within range of the extent of the robot arm, the arm is trained

to move and point to the object. When out of range the arm

is held in a “ready” or “home” position. Prior to training the

robot has no abilities other than the pre-defined primitives

shown in table 2. The final training hierarchy that results

from the training exercise is shown in figure 4. Note that for

reasons of clarity figure 4 shows only each unique sequence,

task or primitive per memory model. In reality each memory

model may have a great many instances of different states

in each sequence, task or primitive.

The first step in the teaching process is to amplify the se-

lection of appropriate sensorimotor experiences by correctly

scaffolding the environment. In this case this means ensuring

that extraneous effects which might affect the sensorimotor

space are avoided by placing the robot in a space unaffected

by other robots or people. We then construct the learning

experience in a series of stages. Firstly a series of enhanced

primitives are created using the sequencing system. For

example, we want to keep the arm in the same orientation as

the camera pan-tilt unit. To achieve this a new primitive is

created called ArmPanTiltRight which comprises of a right

arm movement on the first joint angle and a right move of the

pan/tilt unit. We create a similar ArmPanTiltLeft. Note that

as the actuators are independent the primitive commands,

although issued sequentially, are activated by the motors in

parallel. Secondly, for each direction (up,down,left,right) we

train a separate goal-oriented task. This separation of direc-

tions is to further scaffold the training experience because,

if combined, the selection of appropriate attributes (the pixel

X-Y location of the object) would be difficult as the X

attribute is important for left-right but it is the Y attribute

that is important for up-down (also see the Discussion section

below). We use the newly created sequences to do this and

create tasks such as pLeft or pRight. Thirdly, we create two

sequences which move the arm to a pointing position and one

which moves the arm to a resting position. These sequences

are activated by the high level behaviour by training it to

execute the pointing primitive if the object is held close to

the camera but otherwise use the resting arm movement. The

high level behaviour is also trained to execute the panning

tasks when the object is in each quarter portion of the XY

plane.

During the the training process the prediction mechanism

is always on. Thus if the trainer were to attempt to train

Fig. 4. The hierarchy built through the teaching process. The top level
behaviour uses the robots sensorimotor state to choose the most similar
state and execute the appropriate trained function. This process is iterated
down the hierarchy until a primitive is executed. For clarity only the first
two levels of the behaviour are expanded, the hatched area has not been
expanded.

the robot to pan left in response to the object (i.e. create a

new version of pLeft), the system would respond with a high

similarity measure as further actions are introduced. This is

shown in figure 3 where a new version of pLeft is trained.

Initially four behaviours achieve 100% confidence as they

all match the goal condition. However as more training steps

are taken only the pLeft task remains at a higher confidence

level. The robot informs the trainer of a high match via

messages sent to a display box on the control system.

Following training, which is carried out in an iterative

manner, both correcting errors and testing tasks throughout,

the robot successfully tracks and points to particular coloured

objects when presented to it by the trainer.

VIII. DISCUSSION

We have demonstrated how a robotic social learning

system can be constructed which uses the concepts of self-

imitation and task and environmental scaffolding. The system

has been implemented and successfully demonstrated on

two different physical robot architectures, the first described

in [25] and second discussed here. The latter architecture

has been extended with a predictive capability which aids

the teacher in understanding the robot’s current capabilities.

During our experiments we have recognised issues that

require further research. Firstly, the system has no mecha-

nism for recording historical states i.e. has no form of long or

short term memory. This limits its use in that previous events

that the teacher may wish to use to inform current actions

is not possible as they are not part of the similarity state

space of the robot. Secondly, although we have made efforts

to use unmodified sensory information wherever possible

there are instances when this form of sensory capture would

overwhelm and may be inappropriate for the learning model,

for example, the capture of unadulterated camera images.

We therefore use some prior knowledge of the expected
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applications to modify the sensory stream when necessary.

Thirdly, we are limited in our hardware in having to use

tele-operation as a proxy for direct manipulation of the

robot due to the lack of proprioceptive feedback from the

robot’s actuators. This means that training steps tends to be

discrete and small in number as the interface cannot replicate

continuous movements. The result is that the level of detail

available to us in this system is ‘coarse’ rather than ‘fine’ and

as such much useful information may be missing. Finally, in

the current model each sensor stream is recorded as a unique

attribute in the kNN classification algorithm. However, when

weighting the attributes using the information gain criteria,

relevant attributes may be underweighted as they are only

partly relevant to the classification at a given time. These

and other issues form part of our ongoing research.

A feature of the system is that the robot predicts which

task is most similar to the one that the trainer is currently

teaching by matching proprioceptive actions against pre-

dicted actions given the current sensorimotor states. This

predictive facility based on similarity may be a precursor

to observational imitation if the idea is extended to associate

learned state and action pairs against actual effects (although

the thorny problem of correspondence remains). This exten-

sion would allow for a predictive similarity measure between

perception of an event and the learned action-event pair

in a single form of memory representation. Thus there is

no distinction between either perception and action, and

therefore perception can be used as the similarity measure

leading to motor actions. As Prinz puts it “to select a certain

act, given an intention to achieve certain effect” [20, p.143].

The inverse is the similarity of motor actions informing

perception and therefore “one is to expect certain effects

given certain acts” [20, p.143]. This idea follows directly

from the extended definition of ideomotor theory and is

also closely related to the perspectives used in control

engineering for forward and inverse models [12], [10]. We

intend to pursue this extension in further research using this

architectural model.
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