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Abstract— We are currently investigating the use of rhythm
and synchrony in human-robot interaction. Specifically, we are
developing techniques for the perception and generation of
social rhythmic behaviors in nonverbal dance-oriented play
between children and a small creature-like robot. While our
goal is to develop and evaluate technological artifacts that
can participate in rhythmically coordinated social interactions,
it is first necessary to develop and evaluate appropriate
methodologies for the evaluation of such technology. In this
paper we present our experience in developing and revising
an experimental paradigm for the evaluation of dance-oriented
play with a robot. We propose that strictly controlled ex-
perimental paradigms for even such constrained interactions
preclude the full expression (and therefore observation) of
interactive behaviors that can be considered sufficiently rich
and natural for the study of the complex yet fundamental
rhythmic properties of social interaction.

I. INTRODUCTION

The success of face-to-face human-robot social interac-
tion depends strongly on the robot perceiving spatial and
temporal properties of the interaction and behaving in a
coordinated manner. Some easily observable aspects of this
coordination, such as turn-taking, gestures, and emotive
expression, are all important for effective communication
and are popular areas of research in human-robot interaction.
However, the comfort and “naturalness” of an interaction
may also depend on more subtle and fine-grained coordina-
tion between the sounds and movements of the two inter-
actors. Specifically, imitation and pattern are recognized in
anthropology and social science literature as the foundation
of a “dance” of coordinated sound and movement between
interactors.

What we actually call dancing, usually to the accompa-
niment of music, in general consists of more structured,
regular, and exaggerated behavioral rhythms than those
observed in social interactions. It may therefore be a fruitful
area in which to develop and test systems that would allow
social robots to perceive and exhibit rhythmic behaviors and
to participate in an interactive process of coordination and
synchrony. Dance can also be an engaging and interest-
ing component of playful interaction between robots and
children, which is already a popular focus of human-robot
interaction research for the purposes of pedagogy, cognitive
development, and therapy. We believe that investigating the
effects of rhythmic synchrony in dance-oriented human-
robot social interactions will be informative in designing
robots that can perceive and behave according to natural
rhythms in more open-ended interactions. However, while
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Fig. 1.

Keepon dancing with a child.

our goal is to develop and evaluate technological arti-
facts that can participate in rhythmically coordinated social
interactions, it is first necessary to consider appropriate
methodologies for the evaluation of such technology.

Modern psychological experiments, in order to minimize
the number of confounding factors, typically attempt to
control differences between participants’ experiences and
to clearly define these differences in terms of independent
or dependent variables. However, rhythmicity is a holistic
property of social interaction, and a reductionist approach
that attempts to cut this phenomenon into pieces (to see
the effects of changes in one set of parameters on another
set of parameters) looks only at the tip of an iceberg.
Furthermore, enforcing a scenario that emphasizes a small
number of piecewise relationships may actually stifle the
holistic emergence of a phenomenon like social rhythmicity.
While we started with an attempt to examine rhythmicity in
a controlled manner, our experience leads us to re-evaluate
our approach.

After reviewing background work in this area and describ-
ing the system we have designed, we present a description of
a pilot study on the effects of synchrony with environmental
and social rthythms on dance-oriented play between children
and a robot (fig. 1). This study was intended to evaluate and
improve our system, to observe a range of behaviors that
we might expect in social interactions with such a system,
and to develop an experimental paradigm appropriate for
research in this important area. We believe that a looser,
more naturalistic environment (and therefore a less strictly
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adhered-to experimental procedure) is necessary to promote
rich interactions that can yield useful and interesting data
for studying social rthythmic phenomena. Individual differ-
ences between children require that interactions under study
incorporate adequate facilitation and that they be allowed to
develop and unfold in a dynamic and flexible way.

II. BACKGROUND

The past four decades have witnessed the emergence
and development of a line of research spanning disciplines
such as anthropology, psychology, and cognitive science
in understanding the organizing principles for interaction
between intelligent embodied agents. We now understand
interaction not as a sequential process of give-and-take,
but as a dynamic process of coordinated activity between
constantly adapting participants. Together with behavior
matching (or posture mirroring, the correspondence be-
tween positions or gestures assumed by two interactors
[19], [15]), interactional synchrony provides a foundation
for interpersonal coordination [2] and emotional contagion
[12]. Interactional synchrony is the temporal coordination of
communicative behaviors between interactors (often without
awareness or volition) in order to achieve a sort of “goodness
of fit” between them [3].

The rhythmic organization of social interaction is an
expression of the oscillatory neurobiological language of the
central nervous system through learned cultural patterns [4].
Two or more people coordinate their rhythms, achieving syn-
chrony, through a process known as entrainment [6], [14],
whereby multiple different rhythms converge on or capture
each other. Given the important role of rhythmicity and
synchrony in human interaction, it is clear that difficulties
in establishing interactional synchrony can make face-to-
face interpersonal communication and interaction difficult,
if not impossible; in fact, marked asynchronies within an
individual’s own behaviors [7], along with abnormal entrain-
ment in interpersonal interactions [5], are often characteristic
of pathologies such as autism and schizophrenia. Rhythm,
specifically in the forms of music and dance, is also an
important part of human education across cultures; it is
proposed that there is an inherent musicality in our social
drive [21]. Dance has, in turn, been identified and used in
therapies for a wide range of disorders [11], [9]. For our
purposes, we can consider interactive dance-oriented play
with a robot as an activity that can be used by clinicians to
study a child’s behavioral patterns and to identify rhythmic
abnormalities that might be useful in diagnosing and perhaps
even treating certain pathologies.

Attention to the rhythmic characteristics of nonverbal
interaction has not been widely adopted in social robotics
research. General ideas of turn-taking in conversation are
widely implemented, but fine-grained rhythmic perception
and synchrony by a robot has been difficult to develop.
Ogawa et al. [18] recognize the importance of rhythmic
entrainment to non-verbal cues such as nodding and gesture
in vocal communcation. In their InterRobot humanoids,
which are used in pairs for embodied telecommunication
between remote interactors, they use nonverbal rhythmic

cues such as facial expressions and bodily movements that
are automatically synchronized to the speech input of a
remote human interactor. Andry et al. [1], with the view
of interpersonal coordination as a method of learning, use
synchronized imitation as a way for robots to learn sensory-
motor correspondences and rhythmic motion sequences. The
humanoid robots Nico [8] and Haile [22] perform drumming
synchronized to another person or a conductor as an example
of the kind of rhythmic entrainment that might be applied to
other social tasks. In existing projects, rhythmic interaction
is generally based on auditory cues and limited perception
of embodied movement. However, robots should be able
to “tune in” to the bodily rhythms of their interaction
partners as well as to generate such nonverbal behaviors
(e.g., nodding, swaying, gesturing) themselves.

Tanaka et al. [20] created non-interactive and interactive
(posture mirroring) dance modes for a QRIO robot in a
playroom with children. They found a significant difference
between the two conditions with respect to the time children
spent with the robot, yet this experiment concerned contin-
gency rather than the type of rhythmic synchrony we are
developing. We have observed similar differences between
contingent and non-contingent behaviors in rhythmic inter-
action between children and a robot-like puppet [17], and
furthermore observed a higher incidence of rhythmic play
by children when the robot behaved contingently. Based on
exploratory observations of the herein described system [16],
we believe that the robot’s synchrony with environmental
and social rhythms has a strong effect on the quality of
resulting social interactions.

Since both self-synchrony (rhythmic matching of move-
ments and vocalizations) and interactional synchrony are
important for normal human-human interaction [13], [7],
these capabilities should be considered in designing any
robots that interact socially with humans, not only those that
are designed for therapeutic or educational interactions with
children. We now present our system and our development
and evaluation of an experimental paradigm for this line of
research.

III. SYSTEM DESIGN
A. Hardware

The creature-like robot Keepon is designed to perform
emotional and attentional communication with human in-
teractors, especially children. Keepon has a snowman-like
body (fig. 2). The upper part (the “head”) has two eyes
(each of which is a 120° wide-angle color CCD camera)
and a nose (which is a microphone). The lower part (the
“belly”) has a small gimbal and four wires by which the
body is manipulated like a marionette. Keepon sits atop
a black cylinder that contains four motors and two circuit
boards (a PID controller and a motor driver). Since Keepon’s
body is made of silicone rubber and is relatively hollow, the
head and belly deform whenever Keepon changes posture
or when someone touches it.

The simple body has four degrees of freedom (DOFs),
as shown in fig. 3: nodding/tilting +40°, shaking/panning
£180°, rocking side-to-side +25°, and bobbing/shrinking
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Fig. 3.
and bobbing).

Keepon’s four degrees of freedom (nodding, panning, rocking,

with a 15mm stroke. For each degree of freedom, the PID
controller can be given parameters for maximum velocity
and acceleration. Given a position command, the controller
generates a trapezoidal velocity profile that smoothly accel-
erates and decelerates the motor to the desired position.

B. Software

A number of low-level software modules on the con-
trolling computer are used for command generation and
serial communication with the robot. High-level control is
implemented in Max/MSP [10], a graphical programming
environment originally designed for controlling digital musi-
cal instruments. Max/MSP is well-suited to this application,
as it provides tools and components for creating clocks
and metronomes, performing audio signal processing, and
designing graphical user interfaces.

An interface built in Max/MSP allows a human teleop-
erator to see the view from Keepon’s eyes and to control
the robot’s pose or direction of attention. While it would be
possible to run the robot completely autonomously using,
for example, face recognition, having a human control the
robot’s high-level attentional state allows for more com-
pelling social interactions while focusing on the relationship
between the autonomous rhythmic behaviors of robot and
interactor.

A metronome in Max/MSP produces a succession of
beats separated by a given time interval to produce the
desired beats per minute (BPM). The frequency of the
master beat to which Keepon dances can be obtained from
multiple sensory modalities (in [16] we used visual sensing,
computing average optical flow in a region of interest; in
this work, we use an accelerometer, described below). The
Max/MSP sync”™ object receives a stream of beats and
produces an oscillator that is synchronized with the tempo.

Fig. 4. Keepon and the two toys used with the accelerometer: a stuffed
rabbit (169g, 290mm long) and a soft paddle (137g, 320mm long).

This oscillator drives a stream of commands that cyclically
move Keepon’s bobbing and rocking degrees of freedom;
nodding and panning are used by the teleoperator to focus
Keepon’s attention on a particular location. The dancing
mechanism is described in more detail in [16].

Finally, a sequencer is used to record aligned streams
of beats, sensor data, and motor commands (from the
music, the accelerometer, and Keepon, respectively) for later
playback and analysis.

C. Accelerometer

To overcome the difficulties of sensing human movement
through vision as in [16], we have been developing an
additional system for detecting rhythmic movement through
the use of a battery-powered three-axis accelerometer, with
wireless Bluetooth data transfer, implanted in a toy (fig. 4).
We expected the use of a toy to carry a number of benefits:

o It might encourage more exaggerated, regular, repeti-
tive movement, as seen in child’s play with dolls (e.g.
walking, talking);

o It might allow the child to use his or her imagination
to create a narrative involving the toy and Keepon as
characters; and

e The toy, being of similar size and form to Keepon,
might be seen as the robot’s “peer” through which the
child might develop a different type of relationship with
the robot.

The accelerometer provides force data for three axes of
movement. The magnitude of the overall acceleration is the
Euclidian norm of the vector defined by these three values.
We detect rhythmic movements of the toy by finding peaks
in this magnitude. Since the sensor data is rather noisy,
these peaks, or direction change points, are found from
zero-crossings in lowpass-filtered data. We can then treat
these direction change points as “beats” in the same way as
musical beats or visual movement direction changes were
described above.

IV. PROPOSED EXPERIMENTAL DESIGN

Our initial conception of the experimental procedure was
designed to examine, in a controlled manner, the active
or passive roles that a child and a robot might take in
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a rhythmic social interaction. We designed the described
control architecture for such an experiment in order to allow
the robot Keepon to synchronize its dancing behaviors to
music or to the movement of a toy, to present stimuli in
a controlled manner, and to record sensor data for later
analysis and comparison with the rhythms of the musical
stimuli and the robot’s movements.

Our procedure was as follows: A facilitator brings the
child and caregiver into a play area (1.9m by 3.12m, wall
height 1.5m) with Keepon on the floor about 50cm from
the middle of one of the shorter walls. The facilitator
retrieves a stuffed rabbit toy (equipped with a wireless
accelerometer) from behind a wall of the play area, and
Keepon establishes gaze following (with the guidance of
a teleoperator) toward the toy. The facilitator demonstrates
Keepon’s contingency and maintenance of attention to the
movement of the toy. The facilitator places the rabbit next
to Keepon and Keepon gazes at it. As soon as the child
picks up the toy, music begins to play and Keepon begins
to dance. Keepon dances only when the child is holding and
moving the toy (automatically sensed by the accelerometer).
Meanwhile, the teleoperator maintains Keepon’s attention
toward the toy. The only difference between conditions is
that, in the first condition, the rhythm of Keepon’s dance is
synchronized with that of the music; in the second condition,
the rhythm is derived from the detection of direction change
points in the movement of the accelerometer. After two
songs (approximately 4 min.), an indefinite period of free
play is allowed, with rhythmic synchrony to the movement
of the toy (for all children).

There are a few important points to note about this
procedure:

« A teleoperator maintains Keepon’s attention toward the

toy for the duration of the experiment.

o During the presentation of musical stimuli, and during
free play, Keepon’s expression of rhythmic dancing
behavior is in both conditions contingent on movement
of the toy.

e There are (at least) three important rhythms in ef-
fect during this type of interaction: the environmental
rhythm of the music, the rhythm of Keepon’s dancing,
and the rhythm of the child’s movement of the toy. All
three rhythms are recorded for later comparison and
analysis.

Fig. 5 illustrates the proposed relationship between rhythms
in the two conditions.

The recorded rhythm of the child’s movement of the toy
may be analyzed for quantitative information about three
variables: first, the number of movements made by the child
(i.e., in fig. 5, the child changes the toy’s direction seven
times); second, the duration of movement by the child (i.e.,
in fig. 5, the total number of seconds in the three periods
of movement); third, the degree of synchrony between the
child’s movements and the music (i.e., the correspondence
between tempos in the two rhythms). These values, in
addition to the qualitative analysis of recorded video, can
provide a numerical indication of the difference between
experimental conditions.

Fig. 5. The proposed “flow” of rhythmic influence between the music,
the robot, and the child in the two experimental conditions: Keepon
synchronizing to the music (top) and to the toy (bottom).

In the first condition, Keepon is synchronized with the
music’s thythm; we might say that Keepon is following
the environmental rhythm and trying to lead the child’s
rhythms. In the second condition, Keepon should follow
or be synchronized with the child’s rhythm. The goal of
this experiment is to determine which condition results in
a closer coordination between the three rhythms. If it is
the first condition, it may suggest that Keepon’s physical
expression (and reinforcement) of audible environmental
rhythms is salient and encourages the child to follow this
rhythm as well. If it is the second condition, it may suggest
that the child’s perception of Keepon’s rhythmic contingency
to his or her own will encourage the child to more clearly
and actively follow the environmental rhythms and to lead
Keepon’s rhythm so that the two may dance to the music
together.

V. CONDUCTING (AND REVISING) THE EXPERIMENT

We recruited eight volunteer parents to bring their 3-
year-old children (34.69 £ 0.736 months) to a child study
laboratory at Kyushu University in Japan in February 2007.
As the experiment was explained to parents and consent
forms filled out, children played in a staging area with
young lab assistants to make them feel comfortable. Next,
the experimental sessions lasted about twenty minutes each.
Finally, a debriefing session in the staging area was used to
explain the system and the reasons for the study.

After three sessions, we found that our choice of toy
had an impact on the sensor data we obtained. The shape
and weight distribution of the toy was such that children
tended to hold the rabbit by the neck and spin it rapidly
back and forth by rotating their wrists. This movement was
both difficult to sense (being rotation rather than translation
around the center of the accelerometer) and too rapid to
provide meaningful rhythmic input to the system. For the
remaining sessions, we selected a different toy: a foam
paddle with a plastic handle and the face of a yellow
“chick”; this could plausibly be called Keepon’s “mother”
and provided an affordance for holding and waving rather
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than spinning. For four of the remaining five children, the
difference with this toy was indeed the elicitation of a
different quality of movement, and sensor data that reflected
the clearer rhythmicity of this movement.

We also closely followed the experimental procedure
described above for the first three sessions (Keepon syn-
chronized to the toy for the first two sessions, and to
the music for the third) and noted a common shyness or
reluctance to engage with the robot, which is typically a
very interesting artifact for children in the classroom settings
in which we normally observe it. We suspected that the
facilitator’s limited introductory behaviors with the robot,
and his subsequent withdrawal from the interaction (all
intended for controllability), resulted in the lack of a scaffold
or context for the children to begin their exploratory play.
The short demonstration of Keepon’s contingency to the
location of the toy was hindered by a competition between
the robot and the toy for the child’s attention; since the
robot was moving under its own power, children focused
on it as a novel sort of artifact. This novelty meant nearly
no engagement during the music, and generally only an
exploration of contingency after some time during the post-
music free play period.

Therefore, we decided to introduce an introductory free
play period before the music, with only attentional con-
tingency, to remove some of the element of novelty and
surprise during the music. For the fourth and fifth partic-
ipants, the change appeared to result in a higher degree
of comfort and uninhibited play during the musical period.
However, we found that the introduction of music itself
seemed to be a novel enough stimulus that it continued to
elicit an initial period of uncertainty or renewed observation
for any difference in the robot’s reaction with the music,
not necessarily providing the active movement of the toy
necessary to contingently trigger Keepon’s dancing. We
also saw the fourth and fifth participants rhythmically hit
Keepon’s head with the paddle, and this was sufficiently
reinforced by Keepon’s responsive rhythmic behavior that
it was repeated. However, this behavior was not performed
with music or for sufficient duration to provide meaningful
quantitative rhythmic data.

Therefore, we further modified the procedure to add music
in the hopes that this exploratory behavior would, with more
time, lead to desired rhythmic behavior with the music.
After the introductory attention-contingent free play, a song
was added in which the robot’s rhythm was synchronized
with that of the toy for all children. Following a thirty-
second pause, two songs played in which the robot danced
in synchrony with the music. Following another pause, a
fourth song played with toy-synchronized dancing once
again. For the limited number of children, we decided that
any differences between conditions were overwhelmed by
individual differences between participants.

The sixth participant was extremely shy and unresponsive
to almost any of the robot’s behaviors or the facilita-
tor’s encouragement. The seventh and eighth participants,
however, performed a high amount of rhythmic behavior,
particularly after becoming comfortable with the robot’s

attentional contingency and the presence of music. For
these last two participants, we further deviated from the
procedure in making Keepon much more social, in the sense
of frequently shifting attention between the child and the
toy, and this seemed to be a powerful cue for motivating
use of the toy. In the case of the eighth participant, a
five-year-old brother was permitted to participate in the
interaction, and we found that his company and facilitation
encouraged exactly the kind of rhythmic behavior we had
hoped to see, without seeming to bias or detract from the
free expression of these behaviors or their synchrony with
the robot or the music. Running around Keepon was seen
by this final pair as the most interesting way of eliciting
movement and attentional contingency. During one period,
when the final participant actively moved the paddle for
Keepon, we observed a mixture of attention-directing and
rhythmic stimuli from the child: she made large movements
of the paddle and held it in particular locations for Keepon
to gaze at, interspersed with rapid repetitive waving of the
paddle to elicit dancing. It is our opinion that she recognized
that these were qualitatively different types of stimuli that
elicited qualitatively different behaviors from the robot.

While we did not observe as much rhythmic behavior
from most of the children as we had hoped, we are closer to
an understanding of the types of scenarios that are conducive
to such behavior.

VI. DISCUSSION

A number of problems were responsible for the low rate
of rhythmic engagement, and we believe that identifying
these problems is valuable for human-robot interaction re-
search involving children.

The first problem we face is a technical one: that of
perceiving rhythmic behavior. We have been investigating
the use of vision, sound, and an accelerometer in detecting
social thythms. Our system is designed to be amodal, such
that a number of additional modalities are possible, e.g.,
placing the accelerometer on the body of the child, using
motion capture systems, installing pressure pads in the
floor for detecting gross vertical movement, etc. Meanwhile,
the problem of building rhythmic synchrony goes beyond
perception and behavior to the way in which social rhythms
should be represented and acted upon. For example, we have
observed that correspondence in tempo is not as effective
or engaging as a matching of phase (or the co-occurence
of beats). A purely reactive system cannot, theoretically,
be synchronous in this way, due to delays in sensing,
processing, and acting. It may be argued that one of the
reasons for the rhythmic organization of social behavior
is that it enables synchrony and simultaneous movement
through anticipation. Interacting partners might be seen
to have a responsibility to anticipate the behaviors of the
other and to “respect” the other’s anticipation of one’s own
behavior. While our system is still not anticipatory in this
way, it will be possible to account for inherent delays and
to compensate for them.

A second problem, specifically in the evaluation of our
technology, is the wide range of possible interactive modes
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that children might exhibit. These differences might stem
from prior exposure or pre-existing ideas about robots, styles
of play at home, comfort around strangers, and so on. This
unpredictability and variability make it difficult to create
well-defined procedures and consistent scenarios between
participants in such a study. The facilitator, as we have
observed, should establish a sufficient context for social
interaction between the child and the robot. To do this
effectively, he or she must be allowed to revise or even craft
(in real time, based on his or her observations) a customized
procedure that accounts for the individual personality and
disposition of the child.

A third problem is that the novelty of the robot, and
the explorative behavior induced by this novelty (especially
combined with the unfamiliar, sterile, anxiety-inducing set-
ting of a typical laboratory and the artificial scenario), seem
to overwhelm the free and natural expression of rhythmic
behavior. For example, children are usually testing the
robot’s contingency or watching to see what it will do
next, rather than assuming the basic social contingency they
would expect in another human or in a pet. We expect that
children familiar with Keepon would act very differently,
and in a rhythmically more interesting manner, than did the
children in this study. Although this prior exposure might be
considered a bias, we believe that familiarity and comfort
with the robot are actually necessary for the expression and
observation of the behaviors in which we are interested.

Over the course of our observations, we have come
to believe that children’s motivation to explore is related
to their perception of controllability or reactivity in the
robot. The most basic form of this controllability is the
recognition of contingency. In our experience, contingency
in attention to a spatial location is the most salient form
of contingency because it occurs instantaneously. On the
other hand, rhythmic synchrony has temporal duration and
requires sustained observation. Even when rhythmic contin-
gency was recognized by children, it was usually recognized
as contingency in the onset of oscillatory movement (and,
to a lesser extent, as a general correlation in frequency)
rather than in the establishment or maintenance of rhythmic
synchrony. Therefore, it may be necessary to saturate the
interest in instantaneous contingency in order to encourage
children’s attention to continuous behaviors. A flexible and
accommodating interactive scenario, in addition to the pro-
motion of familiarity with the social responsiveness of the
robot, should allow us to observe and rigorously analyze the
subtle properties of social rhythmic synchrony such as we
were finally able to observe.
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