
 

 

 

  

Abstract—Most of industrial robots are still programmed 

using the typical teaching process, through the use of the robot 

teach pendant. In this paper is proposed an accelerometer-based 

system to control an industrial robot using two low-cost and 

small 3-axis wireless accelerometers. These accelerometers are 

attached to the human arms, capturing its behavior (gestures 

and postures). An Artificial Neural Network (ANN) trained 

with a back-propagation algorithm was used to recognize arm 

gestures and postures, which then will be used as input in the 

control of the robot. The aim is that the robot starts the 

movement almost at the same time as the user starts to perform 

a gesture or posture (low response time). The results show that 

the system allows the control of an industrial robot in an 

intuitive way. However, the achieved recognition rate of 

gestures and postures (92%) should be improved in future, 

keeping the compromise with the system response time (160 

milliseconds). Finally, the results of some tests performed with 

an industrial robot are presented and discussed. 

I. INTRODUCTION 

ROGRAMMING  and control an industrial robot 

through the use of the robot teach pendant is still a 

tedious and time-consuming task that requires technical 

expertise. Therefore, new and more intuitive ways for robot 

programming and control are required. The goal is to 

develop methodologies that help users to control and 

program a robot, with a high-level of abstraction from the 

robot specific language. Making a robotic demonstration in 

terms of high-level behaviors (using gestures, speech, 

manual/human guidance, from visual observation of human 

performance, etc.), the user can demonstrate to the robot 

what it should do [1]-[5].  

In the robotics field, several research efforts have been 

directed towards recognizing human gestures, recurring to 

vision-based systems [6], [7], motion capture sensors [2], 

[4], or using finger gesture recognition systems based on 
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active tracking mechanisms [8]. Accelerometer-based 

gesture recognition has become increasingly popular over the 

last decade. The low-moderate cost and relative small size of 

the accelerometers make it an effective tool to detect and 

recognize human body gestures. Several studies have been 

conducted on the recognition of gestures from acceleration 

data using Artificial Neural Networks (ANNs) [9], [10], 

[11]. However, the specific characteristics of an industrial 

environment (colors, non-controlled sources of light,  

infrared radiation, etc.), the safety and reliability 

requirements, and the high price of some equipment has 

hampered the deployment of such systems in industry. 

Given the above, the teach pendant continues to be the 

common robot input device that gives access to all 

functionalities provided by the robot (jog the manipulator, 

produce and edit programs, etc.). In the last few years the 

robot manufacturers have made great efforts to make user-

friendly teach pendants, implementing intuitive user 

interfaces such as icon-based programming [12], color touch 

screens, a 3D joystick (ABB Robotics), a 6D mouse (KUKA 

Robot Group) [13], or developing a wireless teach pendant 

(COMAU Robotics). Nevertheless, it remains difficult and 

tedious to operate with a robot teach pendant, especially for 

non-expert users.  

In this paper is proposed an accelerometer-based gesture 

recognition system to control an industrial robot in a natural 

way. Two 3-axis wireless accelerometers are attached to the 

human arms, capturing its behavior (gestures and postures). 

An ANN system trained with a back-propagation algorithm 

was used to recognize gestures and postures. Finally, several 

tests are done to evaluate the proposed system. The results of 

the performed tests are presented and discussed.  

II. SYSTEM OVERVIEW 

A. System Description 

The demonstration cell (Fig. 1) is composed of an 

industrial robot MOTOMAN HP6 equipped with the NX100 

controller, two 3-axis wireless accelerometers to capture 

human hand behaviors, and a computer running the 

application that manages the cell.  

The 3-axis accelerometers (ADXL330, Analog Devices) 

are physically rated to measure accelerations over a range of 

at least +/- 3g, with a sensitivity of 300 mV/g and sensitivity 

accuracy of 10%. The accelerometers communicate with the 

computer via Bluetooth wireless link, reporting back data at 

100 Hz (Fig. 2). 
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B. Methodology 

The 3-axis accelerometer attached to the right arm is used 

to recognize gestures (dynamic arm positions) and postures 

(static arm positions), whereas the accelerometer attached to 

the left arm recognizes the postures used to activate and 

deactivate the system (only two postures). In practice, the 

user should make a gesture with the right arm and at the 

same time use the left arm to activate or deactivate the 

system. When activated, the system acquires data from the 

accelerometer attached to the right arm, recognizes the 

gesture or posture and starts the robot movement. Performing 

a specific posture with the left arm, the robot stops. If the 

user never stops the robot, the robot continues the movement 

up to the limit of its field of operation.  

An ANN system trained with a back-propagation 

algorithm was used to recognize gestures and postures. The 

ANN system has as input the motion data (extracted from the 

accelerometer attached to the right arm) and as output the 

recognized gestures and postures. 

The application that manages the cell receives data from 

the accelerometers, interprets the received data and acts in 

the robot, using for this purpose the MotomanLib, a Data 

Link Library created in our laboratory to control and manage 

the robot remotely via Ethernet (Fig. 3). Given that the 

accelerometers communicate with the computer via 

Bluetooth, it is important to take into account the reliability 

of this type of communication and use it with care. The 

system here presented is continuously receiving data from 

the accelerometer attached to the left arm and if the 

communication fails, the robot immediately stops. 

III. CONTROL STRATEGY 

A. Robot Control 

The robot is controlled remotely via the Ethernet using a 

command that moves the robot linearly according to a 

specified pose increment [ ]T654321 iiiiiii = . The 

first three components represent the robot translation along 

the X, Y and Z axes, respectively, whereas the last three 

components represent the robot rotation about the X, Y and 

Z axes, respectively. These components i  have the necessary 

information to control the robot. It is therefore necessary to 

identify them by examining the behavior of the user right 

arm. 

In this system it is completely unnecessary to extract 

precise displacements or rotations, being only required to 

know which of the pose increment components must be 

activated. In a first approach, the robot control strategy was 

to identify translation movements and rotations of the user 

hand and, depending on these inputs, small pose increments 

were continuously sent to the robot. However, it was quickly 

concluded that this approach was not viable because the 

robot was constantly halting, presenting a high-level of 

vibration. The achieved solution was to send to the robot 

only one pose increment that will move the robot to the limit 

of the field of operation. 

B. Increment calculation 

According to the user right arm behavior, the robot is 

moved from the current pose to the limit of its field of 

operation, or more specifically, for a pose close to the limit 

of the robot field of operation. The field of operation of a 6-

DOF robot manipulator is approximately a volume region 

bounded by two spherical surfaces. This way, it can be 

considered that the field of operation of the robot is bounded 

by two spherical surfaces (1), both with the centre coincident 

with the zero reference point of the robot, and where 

extR and intR are respectively the radius of the external and 

internal spherical surface. 

 

 
Fig. 2.  3-axis accelerometer coupled to the transmitter system. The 

dimensions of the device are 60x30x20 millimeters and weights 90 

grams (including the battery weight). To facilitate their use, the 

device is placed inside a bag (right side of the image). 

 

 
Fig. 1.  Industrial robot MOTOMAN HP6 controlled by arm gestures 

and postures. 

 

 
Fig. 3.  A schematic representation of the platform, in terms of 

communication technology. The accelerometers transmit data without 

wires (via Bluetooth), giving a greater freedom to the user. 
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Before starting any robot movement, the “current” robot 

position ( )rrr z,y,x  is acquired. In order to calculate the 

pose increment i , firstly it is necessary to achieve the 

increment components which must be activated. This is done 

by referring to the acceleration values ( )1a,a,a zyx −  that will 

define the robot movement direction d . This vector d in 

conjugation with the “current” robot position point 

( )rrr z,y,x  will be used to achieve a straight line (2) that will 

intersect the external spherical surface at two points (Fig. 4). 

In a first approach, it is considered that only the external 

spherical surface limits the robot field of operation. 

 

( ) ( ) ( ) ℜ∈⋅+= k,d,d,dkz,y,xz,y,x 321rrr
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From (1) and (2) 
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Extracting k from (3), and considering only the positive 

value of k (vector d  direction), the distance from the 

“current” robot position to the external spherical surface 

point (robot increment) is  

 

( ) ( ) ( ) .k,d,d,dki,i,iz,y,x 321321
+

ℜ∈⋅==                                  (4) 

 

Thus, in terms of robot translation movements, the pose 

increment is [ ]T321 000iiii = . For example, if it is 

found that the robot should be moved along the Y axis in the 

negative direction, the vector d  becomes ( )0,1,0 − , and then 

[ ]T2 0000i0i = . An analog approach was employed 

to obtain i  when the robot field of operation is limited by the 

internal spherical surface. In this case, if k  has no value 

(impossible to calculate), it means that the straight line does 

not intercept the internal spherical surface and it is the 

external spherical surface that limits the robot field of 

operation.    

In terms of rotation increments, since it is known the robot 

rotation limit values and the “current” robot pose, it is easy 

to obtain the increments.  

IV. GESTURE AND POSTURE RECOGNITION 

A. Mode of operation 

The robot moves along the X, Y and Z axes separately 

(robot translations). The rotation around each of the three 

axes is also done separately, an axis at a time. 

When the accelerometer is operating in a dynamic way, 

the gravity components will appear mixed with the inertial 

components of acceleration. In order to prevent this 

situation, when the user makes gestures, the accelerometer 

must be kept horizontal (Fig. 5). Thus, it is known that the 

force of gravity acts along the Z axis. For example, to move 

the robot in the X direction, the user should move the 

accelerometer along the X axis, keeping it in the horizontal. 

Of course it is humanly impossible to keep the accelerometer 

exactly in the horizontal, but this is a way to have some 

control over the process. Thus it is relatively easier to control 

the acceleration due to gravity and recognize gestures. 

B. Recognition of gestures and postures 

When the arm is moved in the positive X direction (X+) 

(Fig. 6), initially the value of acceleration xa  increases 

because the arm begins to move and then, when the arm 

begins to slow the positive value of xa  is converted to a 

negative value. This point ( 0a x = ) marks the point of 

maximum speed. The acceleration ya  remains near to zero 

and za  remains near to one because the accelerometer is 

held horizontally (acceleration due to gravity). A similar 

reasoning can be done to the other gestures (X-, Y+, Y-, Z+ 

and Z-).  

 
Fig. 4.  The two spherical surfaces that define the robot field of 

operation. The “current” robot point and the acceleration vector 

components that will define the robot movement direction are shown 

in figure. 

 

 
Fig. 5. The system recognizes six different gestures, the necessary to 

represent the robot translations (X+, X-, Y+, Y-, Z+ and Z-). In both 

movements the accelerometer should remain horizontally. 

 



 

 

 

To interpret the acceleration values and recognize the 

right arm movements (X+, X-, Y+, Y-, Z+ and Z-), an ANN 

trained with a back-propagation algorithm was implemented 

into the system. In a first approach, the acceleration values 

(from the beginning of the movement to the first point of 

zero acceleration (maximum speed)) were used as input 

pattern for the ANN. However, under this approach, the 

robot begins to move after the user finishes the gesture, 

showing a significant delay from the beginning of the gesture 

to the moment when the robot starts to move. The aim is that 

the robot starts the movement almost at the same time as the 

user activates the robot movement (left arm) and makes a 

gesture with the right arm. To do this, immediately after the 

user activates the robot movement, the system extracts the 

acceleration values from the accelerometer attached to the 

right arm (only three measurements), identifies the gesture 

and sends a command to move the robot. These three 

measurements of acceleration will be used to recognize 

gestures, allowing a fast recognition. However, if the number 

of measured accelerations is reduced, it is more difficult to 

recognize a gesture and the recognition rate becomes low. 

Thus, these three measurements represent a compromise 

between the time delay and the achieved recognition rate. 

In addition to the robot translations, the robot control 

architecture needs also to have as input six different robot 

rotations (Rx+, Rx-, Ry+, Ry-, Rz+ and Rz-). If the 

accelerometer is in free fall, it will report zero acceleration. 

But if the accelerometer is held horizontally, it will report an 

acceleration along the Z axis, the acceleration due to gravity 

g . Thus, even when the user is not accelerating the arm, a 

static measurement can determine the rotation of the arm 

(posture recognition). Analyzing figure 7-A, when the 

accelerometer is held horizontally, it will report an 

acceleration g  along the Z axis; ga z ≈ , 0a x ≈ , 0a y ≈ . 

When the accelerometer is rotated around the Y axis (Fig. 7-

B); ga x −≈ , 0a y ≈ , 0a z ≈ . On the contrary, when the 

accelerometer is rotated around the Y axis in the reverse 

direction (Fig. 7-C); ga x ≈ , 0a y ≈ , 0a z ≈ . A similar 

approach detects rotations around the X axis (Fig. 7-D and 7-

E). In terms of rotation around the Z axis (Fig. 7-F, 7-G), 

nothing can be concluded as in both cases the gravity is 

along the Z axis. To solve this problem, an ANN was used to 

detect rotation movements around the Z axis. The ANNs 

were also used for recognition of postures (Rx+, Rx-, Ry+ 

and Ry-). 

In order to identify the posture of the left arm (start or stop 

robot movement), analyzing figure 8, when the 

accelerometer is held horizontally, it will report an 

acceleration g  along the Z axis in the positive direction, 

ga z ≈ , 0a x ≈ , 0a y ≈  (the robot stops). When the 

accelerometer is rotated around the Y axis, ga x −≈ , 0a y ≈ , 

0a z ≈  (the robot starts the movement). 

 
Fig. 6. Measured accelerations when the accelerometer is moved 

along the X axis in the positive direction (X+). 

 

 
Fig. 7. Postures and gestures performed by the user right arm. A - No 

rotation. B - Rotation around the Y axis in the negative direction (Ry-

), C - (Ry+), D - (Rx-), E - (Rx+), F - (Rz+), G - (Rz-). 



 

 

 

C. Artificial Neural Network 

ANNs are simple to use and present good learning 

capabilities. To recognize gestures and postures, an ANN 

trained with a backpropagation algorithm was implemented. 

The ANN input signals (acceleration data) are represented 

by a vector ( )n1 x,...,xx =  and the output from a neuron i  

is given by (5), where jx  is the output of neuron j , ijw  is 

the weight of the link from neuron j  to neuron i , iθ  is the 

bias of neuron i  and F  is the activation function. 
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The backpropagation algorithm is used as a learning 

algorithm to determine the weights of the network. During 

the process, the weights are adjusted in order to minimize the 

error. The error is achieved comparing the desired output 

(obtained in the training phase) with the “actual” output.  

A specific gesture or posture is recognized by a three-

layer feed-forward ANN. The number of neurons was nine 

for the input layer, ten for the hidden layer and twelve for the 

output layer. Nine neurons in the input layer encode each 

gesture, three measurements of acceleration (each with three 

components of acceleration). Ten neurons were used in the 

hidden layer because after several experiments it was 

concluded that this solution presents a compromise between 

the computational time required to train the system and an 

acceptable recognition rate (over 90%). Finally, the twelve 

neurons in the output layer correspond to each different 

gesture and posture. Each neuron of the output layer outputs 

the recognition result, a numerical value between 0 and 1 

(sigmoid function). If the output value is larger than or equal 

to 0.5, it means that the neuron detected the gesture or 

posture. 

Finally, to define the robot increment, the recognized 

gestures are then transformed in the vector d , for example, 

if is detected the movement (Y+), ( )0,1,0d = .    

D. Results 

After training the system, several tests were conducted to 

achieve the recognition rate for each gesture and posture. 

The tests were conducted with two participants, and each one 

performed each gesture/posture 100 times. The participants 

were two users (P1 and P2) that trained the system before 

performing the tests. The results are presented in Table I. 

The recognition rate of postures is much higher than that 

of gestures. This discrepancy is due to the acceleration 

readings that provide information where the gravity 

components appear mixed with the inertial components of 

acceleration, making it harder to recognize gestures. Another 

problem that hinders the recognition of gestures is the 

necessary coordination between the arms that some users 

may be difficult to assimilate. Nevertheless, the experience 

shows that in 30 minutes any user is able to operate the 

system (Fig. 9). 

The recognition rate depends on the samples provided 

during the training phase. The results presented were 

obtained using 30 patterns taught to the network. If the 

number of learning patterns is increased, the recognition rate 

is improved but not significantly. These 30 patterns represent 

a compromise between the required training time and the 

recognition rate. This is achieved with the ANN parameters 

and computer characteristics presented in Table II, where the 

user takes 9 minutes to train the system and 30 minutes of 

computational time. The recognition rate obtained by this 

system is in accordance with other approaches that use 

ANNs to recognize gestures.  

 
Fig. 8. Postures performed by the user left arm. A - Robot stopped. B 

- The robot starts the movement. 

 

TABLE I 

RECOGNITION RATE (%) 

Gesture or Posture User P1 User P2 

X+ 94 91 

X- 90 92 

Y+ 89 88 

Y- 87 88 

Z+ 92 90 

Z- 89 92 

RX+ 100 100 

RX- 100 99 

RY+ 100 100 

RY- 99 100 

RZ+ 85 82 

RZ- 84 84 

Mean 92 92 

 

 

TABLE II 

ANN PARAMETERS AND COMPUTER CHARACTERISTICS  

Parameters  

Activation function Sigmoid function 

Training cycles 100000 

Number of hidden neurons 10 

Learning rate 0.25 

Computer processor Intel® Core™2 Duo T5600  

Computer RAM 1 GB 

 

 



 

 

 

The system response time from the begining of the gesture 

to when the robot starts to move is 160 milliseconds.  

V. CONCLUSION AND FUTURE WORK 

Due to the growing demand for natural Human Machine 

Interfaces and robot intuitive programming platforms, a 

robotic system that allows users to control an industrial robot 

using arm gestures and postures was proposed. Two 3-axis 

accelerometers were selected to be the input devices of this 

system, capturing the human arms behaviors. When 

compared with other common input devices, especially the 

teach pendant, this approach using accelerometers is more 

intuitive and easy to work, besides offering the possibility to 

control a robot by wireless means. Using this system, a non-

expert robot programmer can control a robot quickly and in a 

natural way. The low price and short set-up time are other 

advantages of the system. Nevertheless, the reliability of the 

system is an important limitation to consider. 

The ANN’s shown to be a good choice to recognize 

gestures and postures, presenting an average of 92% of 

correctly recognized gestures and postures. The system 

response time (160 milliseconds) is another important factor. 

Future work will build upon the improvement of the 

average of correctly recognized gestures. One approach 

might be the implementation of a gyroscope into the system, 

in order to separate the acceleration due to gravity from the 

inertial acceleration. The use of more accelerometers 

attached to the arms is another possibility. 
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Fig. 9. The user makes a gesture and immediately, the robot starts to 

move in the same direction of his/her right arm. 

 


