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Abstract— Achieving natural and intuitive interaction is one
of the main challenges in physical human-robot interaction.
We approach this challenge by modeling haptic human-human
interaction with the final goal of transferring found relation-
ships to human-robot interaction. The focus of this paper is on
two human operators performing collaboratively a joint object
manipulation, i.e. a pursuit tracking task. McRuer’s crossover
model is a well established method to describe the behavior of
one human operator performing such a task. In this paper, we
extent McRuer’s approach to two human operators performing
the task collaboratively. Results based on experimetally gained
data show that the interacting partners adapt their behavior
to each other and to the task in such a way that the crossover
model can still be applied to the interacting dyad. It is also
shown that the individual’s behavior changes when interacting
with a partner in contrast to performing the task alone.

I. I NTRODUCTION

While the analysis of human-robot interaction via speech
and gestures is rather advanced, the topic of haptic human-
robot interaction is still largely underrepresented. Haptic
interaction describes the bidirectional exchange of force
and position signals between two physically connected part-
ners. Interaction can hereby occur either directly, e.g. when
holding hands, or indirectly via an object. Depending on
the involved partners we distinguish between human-human
interaction (HHI) and human-robot interaction (HRI).

There are several scenarios of HRI which are recently en-
hanced by physical interaction: In the field of service robotics
direct contact of humans and robots is often desirable. Also
in virtual reality applications the haptic modality is added,
which makes physical interaction with an avatar possible.
Both applications require the implementation of appropriate
robotic partners that are able to interact with a human in
a natural manner. On the other hand, in multi-user tele-
operation scenarios haptic interaction between two human
operators is of interest if the task exceeds the capabilities
of a single person. In this context, the interaction with an
assistance function that is implemented to simplify the task
execution might also be considered.

Early attempts to realize physical HRI were focused on
passively moving robots whereby the human acted as leader
and the robot as follower [1], [2]. Another approach is
based on capturing human behavior in a HHI task and
replaying recorded signals [3]. Both approaches have in
common that no real interaction takes place. As found by
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[4], such unilateral information exchange is not suitable
for haptic interaction. Therefore, the challenge in haptic
HRI interaction is to construct more intuitively behaving,
interactive robotic partners. For this undertaking modelsof
interacting partners have to be derived, which act as human-
like as possible.

In social sciences, dynamic interaction models in form
of differential equations are formulated to describe the
influence of one partner’s behavior on the other [5], [6].
Furthermore, in [7] an information-theoretic model of three-
way relationship is presented. It describes the dependen-
cies between human, robot and their environment and the
knowledge of each party by evaluating entropy and mutual
information. Probabilistic approaches like Hidden Markov
Models (HMM) are widely used in robotics to recognize
and generate motions, gestures etc. Interconnected HMMs
are hereby used to model interacting systems [8]. In the
context of a (haptic) hand-shaking scenario [9] introduces
a HMM approach that allows to adapt the parameters of
a robot to the behavior of its human partner. [10] presents
control laws to enable haptic human-robot interaction. Both
of these approaches aim for interactive robotic partners, but
their motivation is not to understand HHI and transferring the
results to HRI. In [11] a control-theoretic feedback structure
to model the interaction between a human operator and an
extender that assists the human in a manipulation task is
introduced. In contrast, the focus of our work is not on
implementing an assistance function, but on modeling natural
HHI.

To simplify the complexity of haptic interaction, we in-
vestigate two humans carrying an object along a reference
trajectory. The trajectory tracking allows to study differences
between desired (= reference path) and actual (= object
position) behavior. This scenario of a pursuit tracking task
(definition with reference to [12]) is used widely in aviation
research to analyze pilot’s behavior [13], [14], [15]. The task
offers the advantage that models forsingle user behavior
are already well established. A survey of relevant control-
theoretic methods on this matter is provided in [12]. Therein,
human behavior is modeled as a combination of feedforward
and feedback control structures, whereby highly trained
operators behave mainly like a feedforward controller. As
we focus on untrained persons with no task knowledge, we
concentrate on feedback structures in this paper. In [13] the
crossover model, a linear feedback model with the human
acting as controller is introduced. This approach is based
on the idea that the human adapts his behavior to the plant’s
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Fig. 1. Human behavior as feedback control in a pursuit tracking task

characteristics. Optimal control is also a way to model human
behavior in pursuit and compensatory tracking tasks [14].
However, only little is known about the optimization criteria
to be used. More complex, non-linear models are introduced
in [15], [16]. In this paper we try to gain control-theoretic
knowledge about haptically interacting partners by applying
the crossover model, which seems to be the best established
model in the context of tracking tasks.

The transfer to dyadic haptic interaction, however, pro-
vides challenges: Based on experimentally gained data and
descriptive measures, [4] has already showed that human
behavior differs in partner conditions compared to single
conditions. Thus, we assume, that models of individuals
acting alone or within a dyad are not exchangeable. However,
the motivation to find such a model is high as the usage of
an interactive model instead of pre-recorded signals allows
to realize an artificial partner with real bilateral information
exchange.

Based on experimentally gained data we aim for answering
the following research questions:

1) Can we verify that the crossover model explains the
behavior of asingleperson (control condition)? (RQ1)

2) Is the crossover model also appropriate to model the
behavior of a haptically interactingdyad? (RQ2)

3) Is there any difference between the individual behavior
of one partner within an interacting dyadand a single
person’s behavior? (RQ3)

In the following section II Mc Ruer’s crossover model
is introduced for a single person. Next, its extension to
haptically collaborating couples is presented and discussed.
A 1 DOF tracking task experiment was performed to ob-
tain measurement data for model identification, see section
IV. The model identification and validation procedure is
described in section V. Section VI presents the results
and discusses them in the context of the above mentioned
research questions. Finally, the main results are summarized
and directions for future research are formulated.

II. M CRUER’ S CROSSOVERMODEL

The crossover model [13] assumes a linear feedback
structure as shown in Fig. 1. The principle idea is that
the human operator adapts her/his behavior to the plant
characteristicsand behaves like a ‘good servo’ in the region
of the crossover frequencyωc. This results in aconstant
overall (open-loop) transfer functionof the system

G0(s ≈ jωc) = Gh(s) · Gp(s) =
Kce

−τcs

s
. (1)

where Gh(s) is the transfer function modeling the human
behavior as a linear feedback controller andGp(s) is the
plant transfer function, which is (supposed to be) known.
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Fig. 2. Block diagramm of two human operators in haptic interaction

This approach assumes that the human actions are only a
reaction on the current position errore = xref − xvo. In the
context of this paper the plant is a stiff object with a certain
massm. Thus, the plant dynamics are given by the following
second-order system (more details follow in section IV)

Gp(s) = Gvo(s) =
1

ms2
. (2)

According to [13] this leads to a human control model of

Gh(s) =
Fh(s)

E(s)
=

e−τs

(1 + Tps)
︸ ︷︷ ︸

perception-action loop

[K(1 + Tzs)] (3)

whereτ is the time-delay caused by the human perception-
action loop andTp is the lag due to the limited bandwidth
of the human motor control system.K and Tz are the
parameters of the actual human control actions.G0(s) in
the crossover region ((1)) is obtained by a low frequency
approximation assumingTzωc >> 1. In order to ensure
stability Tz > τc is a necessary condition, withτc = τ + Tp

(for more details please refer to [13]).

III. C ROSSOVERMODEL IN HAPTIC INTERACTION

The block diagram for the haptic interacting dyad in a
joint object manipulation task is introduced in Fig. 2. The
humans are assumed to be rigidly connected to the object.
Hence, their individual transfer functionsGh1 and Gh2

are in parallel and their outputs, i.e. their applied forces,
are summed.Gh12 = Gh1 + Gh2 describes the resulting
behavior of the two human partners. It is still an open
question if the interaction partners are capable to adapt their
behavior to the plant and, in addition, to each other in such
a way that the resulting behavior is consistent with the idea
of a constant overall transfer functionG0(s) as predicted by
the crossover model. To approach this question we examine
the resulting behavior of the overall interacting dyad as well
as the behavior of each of the interacting partners within
the dyad.

A. Model of Overall Interacting Dyad

If humans are able to adapt their behavior to each other
in such a way that the crossover model approach is not
only valid for one human performing a pursuit tracking task,
but also for two haptic interacting partners, their resulting
behavior could by described by

Gh12(s) =
Fh(s)

E(s)
=

e−τs

(1 + Tps)
[K(1 + Tzs)]. (4)
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Fig. 3. Block diagramm of two human operators in haptic interaction with
internal and external forces

The validation of this approach is a first, important step
towards the understanding and modeling of haptic human-
human interaction. A behavior model of the dyad would
provide information required to derive a model of the in-
dividual’s behavior.

B. Model of Interacting Partners

In haptic interaction, the forces applied by each partner
can be split up intoexternaland interactiveforcesfe, fi

fh = fe + fi. (5)

Therein, the external forces lead to a motion of the object

fh = fh1 + fh2 = fe1 + fe2 (6)

whereas the interactive forces

fi1 ≡ −fi2. (7)

describe the interaction between partners and indicate
whether they pull away from of push against each other.
These interactive forces are determined by

fi1 =







0 if sgn(fh1) = sgn(fh2)

fh1 if sgn(fh1) 6= sgn(fh2) ∧ |fh1| ≤ |fh2|

−fh2 if sgn(fh1) 6= sgn(fh2) ∧ |fh1| > |fh2|

(8)

and the external forces by inserting the internal forces in (5).
As the pursuit tracking task is the same for the single

person and the dyad, one could assume that the external
forces causing the object motion remain the same. Only
interactive forces would be added in the haptic interaction
condition (see Fig. 3).
The crossover model receives the tracking error as the
model’s input and the force to correct the error as the model’s
output. Its focus is on minimizing the tracking error and,
hence, on the object motion. For this reason, we do not apply
the crossover model on the applied operator forces but only
on the external forces.

Please note, if only one person performs the task, there are
no interactive forces (fi = 0) and the external force is the
same as the force applied by the person (fh2 = 0, fh = fh1).

IV. EXPERIMENT

A 1 DOF pursuit tracking experiment was conducted
to validate McRuer’s model approach in haptic human-
human interaction. The following section introduces details
on the task, the experimental setup and the experimental
description including participants, design and procedure. In
this experiment participants had to perform a pursuit tracking
task either on their own or as an interacting dyad. In the latter
case the two partners were linked by a virtual object and
exchanged haptic signals. The ‘alone’ trials serve as control
conditions to examine how well the crossover model fits our
scenario.

A. Experimental Setup

The experimental setup consists of two 1 DOF linear hap-
tic interfaces (Thrusttube) each equipped with force sensors
(burster tension-pressure load cell 8524-E), hand knobs and
linear actuators as shown in Fig. 4. Measurement data is
sampled with a frequency of1 kHz.
The graphical representation of the pursuit tracking task
is implemented in C++. In order to keep the overall path
length constant, the path is build of a random sequence
of predefined components (triangles, curves, straight lines,
jumps) which are repeated 3 times. The path is visualized
as a white line on a screen and participants are asked to
follow this path as accurately as possible with a red cursor
representing a virtual object (Gp(s)). There are no extra
avatars visualizing the interaction partners. But, participants
were instructed such that they know that they manipulate the
virtual object collaboratively.
The path is scrolling down the screen with a constant velocity
of vz = 15 mm/s. The haptic interfaces are moved along
the x-direction. Because of the z-motion of the path and its
amplitude in x-direction, velocities of up to80 mm/s are
required by the participants to sucessfully perform the task.
Only the current part of the reference track is visualized
to prevent a prediction of the path. This prediction would
enable the participants to plan their actions which could
have an impact on their behavior. Due to the structure of the
crossover model, with the current tracking error as input,
it is applicable only to describe human behavior without
prediction.

One trial takes161 s. Depending on the condition the
horizontal position of the red ball renders the position of
either a single or both haptic interfaces.

The control of the linear haptic interfaces is implemented
in Matlab/Simulink and executed on the Linux Real-Time
Application Interface RTAI. The graphical representationof
the path runs on another computer and communication is
realized by an UDP connection in a local area network.

The control takes into account the mechanical coupling
of the participants over a virtual rigid object. We assumed
indefinite stiffness and no friction for the virtual object.Thus,
the dynamics of the virtual object can be modelled according
to Newton’s law

fh(t) = fh1(t) + fh2(t) = mẍvo(t) (9)



Fig. 4. Experimental setup consisting of two linear haptic interfaces (linked
by the virtual object) and two screens with the graphical representation of
the tracking path

wherefh is the sum of the forces applied by the participant/s,
m is the virtual mass and̈xvo is the desired acceleration of
the virtual object and, hence, of the linear haptic interfaces.
The transfer function in the Laplace domain of the virtual
model

Gvo(s) =
Xvo(s)

Fh(s)
=

1

ms2
(10)

is realized by a position-based admittance control. Due to
the high-gain inner control loop we can further assume

xvo(t) = xh1(t) = xh2(t). (11)

For more details on this please refer to our previous work
[17], where a similar experiment was conducted.

In the alone condition participants performed the tracking
task on their own by interacting with a single haptic interface
(fh2 = 0).

B. Participants, Design & Procedure

In the presented experiment 12 participants (10 male, 2
female) took part. The participants were assigned randomly
to 6 independent pairs of 2.

We introduced three levels for the factor interaction:
1) condition ‘alone with half mass’ (ah),
2) condition ‘alone with full mass’ (af), and
3) condition ‘with partner’ (p)
where the full mass was chosen to bem = 20 kg and half
the massm = 10 kg. The two different masses in the single
trials were introduced for the following reason: Participants
in partner trials might perform better, because they share
the physical workload. Hence, an increased task performance
would be obtained due to a lower workload and not because
of haptic interaction. On the other hand, in terms of applied
forces the mass of the object plays an important role and
should be the same whether two or one person handle it, to
keep the conditions comparable.

For each participant two single trials (af and ah) and
one partner trial were recorded. We balanced the order of
conditions to control for sequence effects. To standardize
the test situation further we undertook the following arrange-
ments: participants not taking part in the on-going trial had
to wait outside the laboratory; a wall was placed between
the two participants so they gained visual information about
their partners’ movements only via the virtual reality; the
position (left or right seat) was randomized with the order
of experimental condition and participants; participantsused

their right hand to perform the task (all of the participantsare
right-handed); participants were not allowed to speak to each
other during the experiment; white noise was played on the
headphones worn by participants, so the noise of the moving
haptic interfaces would not distract. Due to the simplicity
of the task, there is no oral communication necessary in
order to accomplish the task successfully. Hence, we consider
it eligible to suppress any oral communication in order to
standardize our experiment.

Following general instructions, the participants had a test-
curve at the beginning of each trail. This curve was not part
of the analysis.

Using the measurement data obtained by this experiment
models of haptic interaction based on McRuer’s crossover
model are identified and validated.

V. M ODEL IDENTIFICATION AND

VALIDATION

First, we check if McRuer’s crossover model is applicable
to our experimental scenario at all. Therefore, we identify
the transfer functionGh according to (3) for both single
conditions (af, ah). Next, we identify and validate the model
of the overall interacting dyadGh12 (in (4)) based on
measurement data of the partner condition (p) to determine
if the crossover model approach can be applied to haptic
human-human interaction. Finally, a model of the behavior
of each of the interacting partners is identified.

All models are identified and validated by adopting the
following procedure: Taking into account that the pursuit
tracking path was repeated 3 times by each participant, the
first trial was used for system identification and the two
repetitions for system validation.

A. Identification

The transfer functions of the single personGh(s), the
overall interacting dyadGh12(s), and the individuals within
the dyadGh1(s), Gh2(s) are assumed to have the same
crossover model structure defined by (3). Their (time-
constant) parametersK, Tz, Tp, and τ are determined by
using the respective measurement data. The parameter set is
estimated for each transfer function separately.

For the identification of the crossover models the horizon-
tal error betweenxref andxvo

e(t) = xref (t) − xvo(t) (12)

is the input and the forcefh(t) applied by the human/s is
the output (see Fig. 1).

Relatively high delay timesτ have to be expected, because
the human perception-action process takes approximately
100 ms− 200 ms [13]. As large time delays cause a high
computational load in the identification procedure we de-
termine τ first by heuristics. The best fitting results were
obtained for a time delay ofτ = 120 ms±10 ms. Hence, we
assumeτ to be constant for all identified models. Then, using
the Matlab Identification Toolbox an iterative prediction-
estimation algorithm (pem) is applied on the shifted mea-
surement data[e(t)f(t + τ)] to identify K, Tz andTp.



TABLE I

MEAN VALUES AND STANDARD DEVIATIONS OF THE PARAMETERS OF THE DIFFERENT CROSSOVER MODELING APPROACHES(LEFT HALF) AND

EVALUATION OF MODEL QUALITY (RIGHT HALF)

K σK T z σTz T p σTp NMSE σNMSE
[N/m] [N/m] [s] [s] [s] [s]

Gaf 31.68 27.10 3.47 4.73 0.165 0.053 0.61 0.08
Gah 18.88 13.00 4.75 5.71 0.12 0.030 0.65 0.08
Gh12 109.7 19.9 0.86 0.09 0.096 0.019 0.62 0.06
Gh1, Gh2 43.73 51.64 0.91 1.29 0.34 25.60 0.98 0.27

B. Validation

The quality of the identified models is evaluated by the
normalized mean square error

NMSE =

∑N

i=1
|fm,i − fh,i|

2

∑N

i=1
|fh,i|2

(13)

which is determined for each data set (N : length of measure-
ment vector). Therein, the index ”m” indicates model data
and the index ”h” human measurement data.

VI. RESULTS

A. Single Person

The models of the single personGaf and Gah are iden-
tified and validated according to the procedure introduced
in the previous section. The means of the estimated param-
eters and their standard deviationsσ, averaged over all 12
identified parameter sets, are presented in Table I. In the
af condition double the mass has to be moved compared
to the ah condition. For this reason, the forces that have to
be applied at a given tracking error are higher. This explains
the increasedK. Furthermore, the different masses have only
minor influence onTz andTp.
The high standard deviationσ within each condition can
be explained by the fact, that human behavior is modeled.
Human behavior is subject to high variability because of the
participant’s interpersonal perception, motor system, physical
state or concentration on the task.

The mean NMSE of all 12 data setsNMSE is reported in
Table I, too. The model describes the main characteristics of
the human behavior. Forces and positions generated by the
model (in simulation) are similar to the simulation resultsof
the interacting dyad, which are presented in the next section
and illustrated by Fig. 5. This validation shows, that the
model fits the data in theaf as good as in theah condition.
We conclude that the crossover model approach describes
the behavior of a single person in our scenario even if
different masses are presented to the participants. Hence,if
the individual’s behavior in haptic interaction was different
to a single person’s behavior, this would not be due to the
lower necessary forces each partner has to apply to move the
mass.

B. Interacting Dyad

The results of the parameter identification ofGh12 (mean
and standard deviation) are presented in Table I. To illustrate
the quality of the models Fig. 5 shows exemplarily one
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Fig. 5. Comparison of one dyad’s measurement data and the respective
model simulation (Gh12)

dyad’s measurement data in comparison to data generated by
the respective modelGh12. The model data is obtained by a
closed-loop simulation according to Fig. 2. The parameters
K, Tz and Tp of Gh12 differ from those of the single
conditions (Gaf , Gah). In particular, the higherK shows,
that higher external forces are applied by the interacting
couple than by the single person to compensate for the same
tracking error. This indicates that haptic interaction hasan
effect on the behavior of the interacting partners.

The model evaluation reveals that theNMSE of all 6 dyads
Gh12 is the same as in the single conditions. Hence,the
application of the crossover model approach to the overall
transfer function of haptic interacting humans (i.e. their
resulting behavior) is as appropriate as for a single human.
More insight in the individual’s behavior within the dyad is
gained by the identification of the respective modelsGh1,
Gh2.

C. Individual Person in Dyad

The results of the individual models within a dyad are
presented in Table I. As the order of the participants was
randomly assigned, the parameters ofGh1 and Gh2 are
exchangeable and, for this reason, merged. Based the high
NMSE it is obvious that haptic interaction has a high impact
on the individuals’ external forces and that the behavior of
each of the interaction partners cannot be described by (3).
These results show thatin haptic human-human interaction
not only interactive forces are added but the individual’s



behavior changes also with respect to the external forces.
Please note: In this paper we analyze only external forces;
interested readers are referred to our preceding work [18] for
details on interactive forces. There, we show, that interactive
forces occur in the haptic condition and that their magnitude
is even larger than the magnitude of the external forces.

VII. C ONCLUSION

This paper extends McRuer’s crossover model approach,
originally describing the behavior of a single person in a
pursuit tracking task to haptic interaction of two partners. A
1 DOF pursuit tracking experiment was conducted to gain
experimental data. Based on this measurement data, first, the
crossover model was identified and validated for a single
person performing the task as control condition. Results
show that the main characteristics of the measured forces are
reproduced by the model. We conclude that the crossover
model approach is applicable to our pursuit tracking task
scenario (RQ1).

Next, the identification and validation of the transfer
functionGh12 for the behavior of the overall interacting dyad
revealed thatthe crossover approach is as appropriate for the
resulting behavior of the interacting dyad as for the behavior
of a single person. In haptic interaction, the partners adapt
their behavior to each other and to the plant in such a way
that the overall behavior, i.e. the overall transfer function
remains constant as formulated by McRuer [13] (RQ2). Due
to this, robotic partners have to be enabled to support this
adaptation in HRI. In future, key features of this adaptation
process have to be found.

The identification of the individual’s model within a dyad
revealed that in haptic interaction not only interactive forces
are added but that human behavior changes also with respect
to the external forces (RQ3). Furthermore, the difference
in behavior is not caused by the fact that lower individual
physical workload is required in the interaction condition
as the comparison with the ‘halved-mass’-condition (ah)
showed.Hence, with respect to the crossover model it is
not sufficient to model a single person’s behavior and apply
the obtained model in haptic interaction.Instead, haptic
interaction has to be incorporated explicitely in the process
of modeling human interaction. By adopting this procedure,
the results obtained in HHI can be finally transfered to HRI.

In this paper, time-constant model parameters were defined
for one specific task (constant path velocity, mass of the
virtual object). If the task parameters are changed, new
model parameters have to be identified. Although the here-
presented model with time-constant parameters describes
human behavior well, we assume that models with time-
variant models are an appropriate way to achieve more
realistic and feasible interaction models. In our future work,
we will particularly focus on time-variant parameters of
human behavior models. Furthermore, we aim at defining
models of each of the interaction partners within a dyad.
Thus, we approach different strategies in human behavior
with the final goal of defining new models that are based on
them.
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