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Abstract— In this paper we present an algorithm that allows
a human to naturally and easily teach a mobile robot how
to recognize objects in its environment. The human selects
the object by pointing at it using a laser pointer. The robot
recognizes the laser reflections with its cameras and uses this
data to generate an initial 2D segmentation of the object. The
3D position of SURF feature points are extracted from the
designated area using stereo vision. As the robot moves around
the object, new views of the object are obtained from which
feature points are extracted. These features are filtered using
active vision. The complete object representation consists of
feature points registered with 3D pose data. We describe the
method and show that it works well by performing experiments
on real world data collected with our robot. We use an extensive
dataset of 21 objects, differing in size, shape and texture.

I. INTRODUCTION

Objects are the foundation of how humans interpret and
reason about the world [1]. In order for robots to operate
successfully alongside humans in real-world environments,
robots too must be able to work with the objects that can
be found within such environments. Object representations
are often used in robotic systems as a basis of the world
description, for instance for human robot interaction [2]
or for acquiring the semantic structure of an environment
[3]. However, where humans are experts at distinguishing
individual objects regardless of pose or partial occlusion [1],
object segmentation remains a challenge in current computer-
vision and robotic systems. We wish to exploit this “expert
knowledge” of object segmentation possessed by humans
in order to create an effective human/robot interface which
can transfer this knowledge to a representation that can be
understood and exploited by a mobile robot.

Learning new objects that are appropriate for the tasks at
hands is something we think that any robot that interacts
with humans should be able to do. Teaching new objects
should be possible on-the-fly with a fast and unambiguous
interface that uses gestures or input methods that are natural
and intuitive for the user.

In this paper, we propose a human-robot collaborative
algorithm with which a human can refer to and teach
novel objects using a simple protocol and an off-the-shelf
laser pointing device. First we make sure that the robot
and human have joint visual attention [2] to an object.
After the human teacher designates the object, the robot
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actively explores it. The robot builds an object representation
consisting of multiple views by integrating 3D data from
stereo vision with interest points belonging to the object, this
data is pruned using active vision to optimize recognition.
The specific contributions of this work are the methods of
using human knowledge to perform object segmentation in a
natural fashion, methods to allow the robot to learn full 3D
object models in a real-world environment with high levels
of clutter. The system is shown to work well on an extensive
test set of objects in an office environment.

II. RELATED WORK

Referring to objects can be done in several ways in human-
robot communication: by speech [4], by using an interme-
diary representation on a screen [5], [6], by deictic gestures
[2] or by directly presenting the object to the robot [3], [7].
Combinations are also possible, such as the BIRON dialog
management system [8], [9] where gesture information is
used to resolve ambiguity of speech commands. When using
speech to refer to objects, the robot needs to have prior
knowledge about the object and the scene [5]. This is a
very restrictive assumption, as the robot would need a large
amount of prior knowledge about the world. We focus on
learning novel objects in unknown environments.

The range of human input is often limited or restricted
to make recognition computationally tractable. For speech,
one can make a limited set of verbal commands [10] and
to ease gesture recognition, limitations can be made on the
positions and types of gestures, as well as other factors in
the environment (such as the clothing of the human [9]).
A large limitation on current gesture recognition is that the
human needs to be in close proximity to the referred object
[9], [8]. Natural gesturing is also limited in that it is not
possible for the human to see whether the robot’s attention
is guided to the correct position. Research by [11] shows
that when gesture recognition systems misinterpret observed
gestures, there is no clear way to disambiguate or correct
the error. Specialized devices can be used to ease gesture
recognition, such as the Xwand [12]. However, the Xwand
requires that a 3D model of the room is created manually
ahead of time and the pointing device itself is a specialized
and complicated device. We propose to use a laser pointer,
inspired by [5]. The laser pointer is a readily available device
and our methods do not require models of the environment.
The added benefit of a laser pointer is that it provides clear
visual feedback to the human, making sure that the human
and robot share visual attention on the same point in space.



Fully automatic object segmentation is also possible, using
active exploration [13], [14]. There remain some constraints
on the objects and the environment: [13] is unsuitable for
large objects and for both [13], [14] the object needs to be
placed in front of the robot. Furthermore, an automatically
created segmentation may not necessarily correspond to how
a human perceives object segmentation. Like Kootstra et
al. [14] we feel that it is very important for robots to
have the ability to actively explore any environment and
dynamically update their models accordingly, and we have
therefor adopted their methods.

Once an object is segmented, an appropriate object repre-
sentation must be created to allow for recognition on later
observations. Object representations can simply consist of
a set of images of the object, or a collection of features
extracted from the object [15]. In the first case, objects
can be recognized with techniques like normalized cross
correlation [16] or neural networks [17]. A disadvantage
of these matching techniques is that these techniques are
often not invariant to light conditions, viewpoint changes and
occlusions. To overcome such issues, object models based on
invariant features such as SIFT [18] and SURF [19] can be
used. In [14] SIFT is used in combination with active vision,
to create an object model which holds different views of
an object. In our approach, we use SURF feature points as
SURF is faster and more robust than SIFT [19], we also store
the 3D position of these points as computed by a stereo-
vision system. By using a human teacher we can loosen
the restraint placed on the environment in other works on
active vision [14], [13], while keeping the advantages, such
as recognizing objects from multiple poses.

III. METHODOLOGY

The process by which our robot learns an object represen-
tation starts with a person aiming a laser pointer at an object,
see also figure 1. The robot’s stereo camera identifies the
reflection of the laser point projected on the object and tracks
its position in 3D as the point moves around the object’s
surface (Step 1). After the human turns off the laser pointer,
the robot uses the recorded positions of the laser pointer and
the 3D information from the stereo camera of the object to
segment the object from the background (Step 2). The robot
then moves around the object and keeps its stereo camera
pointed at the object in order to view it from all sides. Interest
points and their position in 3D space are extracted from
all viewpoints, to create a complete object representation
(Step 3). By comparing different viewing angles, unstable
interest points are discarded. Our object representation then
is described as a set of multiple object-view pairs. These
object representations are used to recognize the object in a
later situation (Step 4).

A. Step 1 : Initial Segmentation of the Object from the Image

The detection of the laser pointers is based on algorithms
described by [5], [20] and consists of three steps: image
differencing, color thresholding, and blob detection. Sub-
tracting two subsequent images removes most of the image

Fig. 1. A human teacher shows an object to the robot.

Fig. 2. After a new laser reflection is detected, its 3D-position is estimated
using stereo vision and the detection is added to a cluster based on this
position. The bounding box around the cluster with the most detections
is overlaid on the original image on the left. The four boxes next to this
show a side view of this clustering process, three clusters can be seen: the
largest one representing the object. When the laser pointing stops, only the
cluster with the most detections is kept, discarding the clusters with false
detections. In this image four timesteps can be seen: from the first detection
(1) to the final segmentation (4). The robot is positioned on the left.

pixel data save for noise, reflections, and the projection of
the laser pointer itself. The color thresholding then removes
most of the noise and reflections. This thresholding process
is only done on the red channel (since we’re using a red
laser pointer) and removes all pixels that are below an
intensity value of 70. A morphological operation, dilation,
is performed to reconnect laser reflections that were severed
by the thresholding. Then a connected-components algorithm
is run to find contiguous blobs. The largest blob that is
smaller then 200 pixels (in a 320x240 image) is selected
as the position of the laser point. The location in 3D space



is calculated for each laser detection using a stereo vision
system and the detections are clustered based on their 3D-
position, taking co-variance into account. If the distance
to existing clusters is too large a new cluster is created.
Otherwise the new observation is added to an existing cluster.
Clustering is necessary to filter out erroneous detections due
to incorrect pointing, detection of reflections or incorrectly
ascribing a detection to noise. The distance measure is the
Mahalanobis distance in 3D space of the current detection to
the centroid of existing clusters. The limiting distance is set
to 0.05. The Mahalanobis distance is used due to the size
differences of the objects. Figure 2 shows how the largest
cluster of detections grows while new detections are added
to it.

After 30 or more frames without a detection, the largest
cluster is considered to be describing the object. During
experimentation we have seen that successful segmentation
is possible even if the path of the laser is not continuous. To
extract an object mask from the laser data, a bounding box
is created around the largest cluster of laser detections.

B. Step 2 : Initiation of the 3D Object Model

After the object has been segmented in the image space,
a 3D bounding volume is created which represents an initial
estimation of the volume of the object. Because the object
occludes parts of itself from the robot, the depth of the
bounding volume is unknown. We assume this to be equal to
the width of the bounding volume, as seen from the robot. All
dimensions of the bounding volume are grown by 20% of the
originally estimated size to account for errors in the stereo-
matching process and cases where the operator did not touch
the boundaries of the object with the laser pointer. For our
algorithm, it is more important to be conservative and create
a larger initial bounding volume than to potentially exclude
parts of the object, as interest points from the background
are likely to be discarded by active vision (Step 3).

Our object representation consists of a collection of in-
terest points generated by the SURF (Speeded Up Robust
Features) algorithm [19]. SURF is an improvement upon
the SIFT (Scale Invariant Feature Transform) [18] algorithm
with enhancements in computational speed and robustness
of the computed features. Such interest points are features
in an image that can be easily matched and that are robust
against rotation and lighting. The first set of interest points is
generated from the first view of the object, which is described
in step 3.

C. Step 3 : Iteratively Building the 3D Object Representation

After the initial object view is created and stored, the robot
moves around the object while keeping its camera pointed
at the object. The robot uses its odometry to update its
world model, using its starting point as the origin. As new
views of the object are captured, additional interest points are
extracted. Using stereo vision the interest points are assigned
a 3D location in the world model. Interest points that fall
within the bounding volume set in step 2, are then added to
the object representation as a new view. The use of odometry

introduces an average error of 21.47 cm. in the estimation of
the 3D position of interest points, but this error stays within
the boundaries set around the bounding volume of the object
[21]. Our algorithm is currently not responsible for directing
the robot’s motion and in our experiments the robot followed
a pre-set path around the object. However, the world model
is used to aim the robot’s camera at a predetermined center
of the object. It is fairly easy to let the robot adapt to the
object’s position and then do a predescribed circle.

An important challenge in this part of the algorithm is
identifying and discarding unstable features; interest points
that are only visible from one view or that are not robust
against changes in viewpoint. Features are discarded by an
algorithm described by [14] where interest points in a set Nn

from view n are compared with interest points in a set Nn−1

extracted from view n-1. We extended this method by also
“looking ahead” to view n+1, allowing for greater changes
in view point. Only those interest points that can be matched
in either the prior or the subsequent view are kept, resulting
in a set of filtered features Fn per view n.

Fn =
{i ∈ Nn| min

x∈Nn−1
(||x− i||) < 0.6

∨ min
x∈Nn+1

(||x− i||) < 0.6} (1)

Discarding unstable interest points has the advantage of
lowering recognition time, as fewer interest points need to
be matched. Recognition might even improve due to less
noisy interest points in the object representation [14]. The
angle between two subsequent viewpoints should not be too
large, as then the mapping of interest points would fail due to
the object obscuring itself partially and because SURF might
not be robust against such a large change in viewpoint. We
conducted a test was with 523 objects from the “Amsterdam
Library of Image Objects” [22], showing that at a viewpoint
change of 20◦ the SURF interest points can still be matched
as reliably as SIFT at 10◦ (see [21]). We use the same
algorithm as [14], but replace SIFT by SURF. In [14] a
viewpoint change of 10◦ angle is used reliably, by using
SURF this angle can be extended to up to 20◦, reducing the
computational burden.

D. Step 4 : Object Recognition

The recognition method is based on the activation model
of Kootstra et al. [14]. The representation for a given object
O is defined as a set of k views ω where k is a set of
filtered interest points. An object can thus be defined as a
set of object view pairs 〈O,ωk〉. Interest points detected in
a new image are used to assign an activation level to each
pair.

Let I be the collection of all SURF interest points ex-
tracted for a new image and D be the collection of all
interest points in all object view pairs. For each interest point
oi ∈ I the nearest neighbour interest point d〈O,ωk〉 ∈ D
is calculated, using the Euclidean distance in interest point
space. For this pair of interest points, an interest point
activation value ai is calculated as:



ai = e−||oi−d〈O,ωk〉|| (2)

The total activation for the appropriate 〈O,ωk〉 is then
updated according to the following formula:

A(〈O,ωk〉|I,D) =
∑

i(ai)√
|〈O,ωk〉|

(3)

With |〈O,ωk〉| the number of interest points ∈ 〈O,ωk〉.
This normalization step is done so that fewer matched
observations are needed for objects that have relatively few
interest points. This activation is summed over all views per
object and the activation level results are ordered such that
the higher total activation level reflects a higher certainty
that the object is in the image. The highest scoring object is
returned as the match. As suggested in [18] filtering of the
interest points can also be done during recognition. However,
this did not improve recognition scores in our case [21].

IV. EXPERIMENTAL RESULTS

In order to test the accuracy and effectiveness of our algo-
rithms, we performed two separate controlled experiments.
The first experiment analyzed the performance and accuracy
of object segmentation, the second experiment analyzed the
ability of our algorithm to recognize objects after training.

A. Robot Hardware and General Set-Up

The robot used in this work is a MobileRobots Pioneer
Peoplebot, equipped with an on-board 1.6GHz Pentium-M
single-board computer running Linux. The on-board com-
puter was responsible for controlling the motion of the robot.
The primary sensor used for this research was a Point Grey
Research Bumblebee2 stereo camera. The Bumblebee2 is
mounted on a Directed Perception pan-tilt unit model PTU-
46-17.5. A Thinkpad X61 laptop with a 2.4GHz Intel Core 2
Duo processor was added to the robot to provide additional
processing power for the stereo camera. The laser used by the
person to point at objects in these experiments was a standard
red laser pointer commonly used for slide presentations (class
IIIa laser device with wavelengths 630-680nm).

The choice of background and objects has a huge influence
on the performance of the stereo-vision calculations, as small
and texturally sparse objects are too hard to distinguish
using stereo vision. Care was taken to select differently
sized objects with different textures to see how the methods
are generalizable for the described datasets. The datasets
were all created with one person pointing the laser pointer.
Other research suggests no inter-subject differences when
designating an object this way [5].

B. Object Segmentation Experiment

With this experiment the segmentation method was tested.
The experimenter used the laser pointer to refer to a specific
object in space, by moving the laser reflection over it. The
object segmentation dataset consists of seven objects from an
office environment (red chair, table, dust bin, cabinet, box,
monitor and an arm chair see figure 4), with two different

(a) Empty background

(b) Complex background

Fig. 3. The two backgrounds used in the segmentation experiment

backgrounds: a simple and a complex one. The simple
background consists of a plain wall, while the complex
background has multiple other objects placed in it. All
objects were placed in the robot’s view in three different
locations, one at time. On each location the object was
recorded twice, changing the angle slightly for each run. The
recordings lasted thirty seconds, during which the object was
designated with the laser pointer.

Fig. 4. Objects in the segmentation set.

The accuracy of the segmentation method was tested
against a manually created ground truth. To measure the
results of the algorithms, we used the True Positive Rate
(TPR) and False Positive Rate (FPR), by comparing pixels



TABLE I
THE TPR AND FPR FOR THE TWO BACKGROUNDS. THE HIGH TPR FOR

THE SEGMENTATION METHOD SHOWS THAT OBJECTS ARE SEGMENTED

CORRECTLY USING HUMAN GUIDANCE.

Background TPR FPR
Simple µ = 0.943 µ = 0.033

σ = 0.138 σ = 0.028
Complex µ = 0.854 µ = 0.123

σ = 0.294 σ = 0.146

in the ground truth image against the automatic segmentation.
The results of the experiments were averaged over all objects,
poses and positions and can be found for both backgrounds
and segmentation methods in table I. The high TPR and low
FPR, shows that the segmentation method is working very
well for both backgrounds.

C. Object Learning Experiment

To test the creation of object representations and the recog-
nition method, 21 office-environment objects were used, of
which a selection is shown in figure 5 (for the complete
set, see [21]), these objects differ greatly in size and texture
complexity. The learning dataset was recorded with the robot,
for each object the robot started at a fixed location, three
meters from the object. Each trial started with the person
painting the object with the laser for thirty seconds to show
the robot what to learn. After segmenting the view of the
object from the background, the robot would drive forward
to a distance of 1 meter from the object and proceed to circle
the object, stopping to collect images at eighteen predefined
locations distributed evenly on this circle. A test set was
made in the same manner, only here the distance of the robot
to the object was varied slightly per location. For the scope
of this paper, we were interested only in the mechanism for
learning the object model and the robot base was driven
manually around the object by the experimenter. The robot
did automatically aim its camera at the predetermined center
of the object at all times. Each of the eighteen viewpoints
differs by up to 20 degrees with the previous one.

A representation was created for each object using the
method described in III-C, termed “Active Filtering”. To
evaluate the recognition performance of this representation,
two other types of representation were created. One without
active vision filtering (“No-Active Filtering”), to evaluate the
influence of this filtering technique. And one where only
one viewpoint was used to create an object model (single
view approach), as this type of object representation is often
used in other robotic systems. As one viewpoint might be
more representable of an object than another, each viewpoint
was used as an object representation in the single view
approach and the recognition performance was averaged over
all viewpoints.

Each object in the testset was recorded from multiple
viewpoints, and for each of these views the recognizer was
run three times, for each of the types of object represen-
tations. The recognizer scored 1 for a correct recognition

Fig. 5. A selection of the 21 objects in the object-learning and -validation
set, the objects are all part of a normal office environment and are diverse
in size and texture
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Fig. 6. The recognition results for each type of object representation

and 0 for incorrect. For the single-view approach, the scores
were averaged over all views. Figure 6 show the average
recognition performance per type of object representation.
As can be seen, active filtering delivers the best recognition
performance and the results were found to be border-line
significant compared to no active filtering using a Student’s
t-test (p = 0.05, α = 0.05). The main advantage of active
filtering is that a large amount of useless data can be
scrapped by filtering using active vision. The total amount of
interest points for representations that were actively filtered
is 82.87% that of the total amount of interest points in
representations that were not filtered, resulting in faster
recognition times.

To test the learned object models in real-world situations,
we generated seven different office scenes using the objects
that were learned. The lighting differs per scene and objects
can be partially occluded, making recognition a challenge.
From each scene multiple observations were made called
trials, each from a different angle. For each trial t the objects
in the scene were transcribed in a set Tt. Examples of such
scenes can be found in figure 7. We ran our recognizer
on each t with object representations with and without



Scene 1 Scene 2 Scene 3

Scene 4 Scene 5 Scene 6

Scene 7 Scene 7 (different trial) Scene 6 (different trial)

Fig. 7. Nine examples of different scenes and trials of objects in a natural setting. These objects come from the ’object-learning and validation-’-set, a
subset of which is shown in figure 5

active filtering and on single view object representations. The
recognizer returns a list Lt of matching objects ordered by
activation. The number of correct objects per trial t is then
#((O1 · · ·On ∈ Lt) ∩ Tt), with n = #Tt.

Over all trials there are 92 objects. When object rep-
resentations created without active filtering were used, the
recognizer correctly recognized 53 objects, with filtering 52
objects and in the single view approach 28 objects. Again
there is an obvious advantage for using a multiple views
object model. The difference between the active and passive
filtering is not significant. Overall, only a little over half of
the objects are recognized, but these include objects that are
only partially visible or that are observed from a completely
different viewpoint than in which they where learnt. Several
trials include oversaturation of the CCD-sensors due to
artificial lighting. Examples of this can be seen in figure
7, scene 2 trial 1 and scene 6 trial 4. Here the phone object,
as well as other parts of the image, is partially oversaturated.
For these white pixels it is impossible to calculate meaningful
keypoints. This is a limitation of the camera and especially

of its gain selection algorithm. The problem is considerably
worsened due to the bright uniform fluorescent lighting of
the robot lab. A solution for this would be to perform the
recognition on multiple images per location, using a different
gain setting for each image.

V. DISCUSSION

In this paper we presented a human-robot cooperative
method for object learning, consisting of two parts: human
segmentation and object learning with active vision. We have
shown that by extending method of [5], a laser pointer can be
used to successfully designate and segment objects in three-
dimensional space. Our method performs very well, having
a high positive rate and very low negative rate. By using a
laser pointer the segmentation is accurate over a distance of
three meters, unlike natural gesturing which has to be done
in close proximity [9], [8]. Our method does not require
an extensive world model, as is needed for speech [10]
or other assisted gesturing methods [12]. The laser pointer
also provides clear visual feedback to the user, which is



not present in speech or natural gestures. We show that our
segmentation method provides an accurate starting point for
successful object learning.

We compared our active method with two typically used
types of object representations (a single view and a non-
filtered representation) in situations within which our robot
should be able to operate. With the proposed methods it is
possible for a robot to build robust object representations,
and recognize an extensive set of 21 objects in 72.22% of the
cases in an environment similar to the learning environment.
Compared to our baseline single-view approach, the use of
multiple views significantly increases recognition rate and
compared to the passive approach the amount of data in our
representations is considerably less, while the recognition
rate does not decrease. Even in challenging complex scenes,
more than half of the objects were recognized. It is difficult
to compare our results with results from similar research due
to differences in robot-platform, environment and dataset.

For our future work, we plan to improve our system in
several ways. Currently we store interest points per view,
making it possible to detect objects from multiple viewpoints
and to perform pose recognition. As of yet, we do not use
the configuration of the interest points in 3D space, while
this can be used to gain more accurate pose recognition
and increase the overall recognition rate [18], [23]. We also
expect to drastically improve recognition rates by using ac-
tive exploration [14], [24]. Our object representations already
contain the necessary information for these extensions.

We have presented a complete system with which a human
teacher can easily and reliably segment objects varying in
size and structure from a complex background, to teach new
objects to a mobile robot. We implemented this system on
a mobile robot and have shown with experiments on real-
word data that our system is indeed successful at segmenting,
learning and recognizing objects.
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