Secondary Action in Robot Motion

Michael J. Gielniak, C. Karen Liu, and Andrea L. Thomaz

Abstract— Secondary action, a concept borrowed from char-
acter animation, improves the animation realism by augmenting
natural, passive motion to primary action. We use dynamic
simulation to induce three techniques of secondary motion for
robot hardware, which exploit actuation passivity to overcome
hardware constraints and change the dynamic perception of
the robot and its motion characteristics. Results of secondary
motion due to internal and external forces are presented
including discussion on how to choose the appropriate technique
for a particular application.

I. INTRODUCTION

Our work is in the realm of social robots, which interact
with people as part of their functional goal (e.g., service
robots in homes, schools, or hospitals). We believe that
machines designed to interact with everyday people should
utilize behaviors and conventions that are socially relevant
to the humans with whom they interact. This is supported
by Nass’ findings that effectiveness and engagement in
an interaction increase when a machine exhibits human-
like traits [1]. Work in conversational agents also supports
the notion that natural motion of the character improves
the signal-to-noise ratio in communication with a human
[2]. Thus, our goal is to develop principles for generating
robot motion for human-robot interaction that is “natural”,
“believable”, or “life-like.”

The fields of traditional and computer animation offer
insight on producing natural motion for robots. For decades,
traditional animation at Walt Disney Studios has been derived
from twelve principles widely accepted to endow characters
with natural behaviors, reactions, timing, and qualities [3].
These twelve principles transcend the medium of application.
In 1987, John Lasseter introduced the twelve principles of 2-
D animation to 3-D animation, which have since been whole-
heartedly accepted by the computer animation community to
achieve better looking motion [4].

The larger goal of our research is to uncover methods
for applying the principles of animation to improve the
appearance of robot motion. Since it is widely accepted in
animation that these principles imbue a character with “life”
or “naturalness,”’ it is a reasonable assumption that they can
bring the same qualities to robot motion.

In this paper we focus on applying one of the twelve prin-
ciples to robot motion generation: secondary action, which

M.J. Gielniak is with Department of Electrical & Computer Engineering,
Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, GA, 30332
USA (mgielniak3@mail.gatech.edu)

C.K. Liu and A. L. Thomaz are with the School of Interactive Computing,
Georgia Institute of Technology, 85 5th St. NE, TSRB 317, Atlanta, GA,
30308 USA ((karenliu,athomaz)@cc.gatech.edu)

is loosely defined as the direct result of the primary, or task-
oriented, action. Sometimes secondary action is considered
to be the subtle details of a motion that go unnoticed if they
exist, but become noticeable when they are lacking [3]. From
the standpoint of Newtonian physics, secondary action results
when forces on any two connected, articulated segments of
a body are unequal in magnitude and/or direction. Then,
motion of one body affects all other connected bodies to
varying degrees and magnitudes. Secondary motion can be
produced by both internal and external forces, and the effect
is most noticeable when the magnitude of the force difference
between two connected bodies is large.

We present three techniques that create natural, compliant,
secondary action for humanoid robots by overcoming the
hardware and software constraints that normally damp or
mask secondary motion. Our approach exploits simulation
methods and passivity in actuation to create virtual secondary
motion from both internal and external forces to be used as
robot input command, while keeping all real-world hardware
fully actuated. Our method provides two key advantages.
First, by simulating secondary action virtually, we can ma-
nipulate the visual perception of physical properties of a
robot, such as making a heavy robot appear light-weight or
a highly actuated robot appear compliant to perturbations.
Second, our method produces secondary motion ‘on-the-
fly’ based on the dynamic state of the robot in real-world,
removing the need of authoring and storing a large database
of pre-scripted motion clips.

II. SECONDARY MOTION IN ROBOTICS

Since secondary motion is a product of the laws of
physics, in theory, robot movement should inherently exhibit
perceptible secondary motion. If that were true, only the
joints required for a particular primary motion would need to
be actuated, and the others would passively exhibit secondary
effects of the motion.

In reality, robots must overcome two main hardware and
software constraints to produce noticeable secondary motion.
First, actuator design and robot mass severely damp any
secondary action that can noticeably result from natural
physics. Mechanical limitations, such as large mass, damp
transients of motion [5]. And in reality, motor rotor in-
ertia and frictional inefficiencies reduce secondary motion.
Switching motors on and off during operation to attempt to
emulate a more passive, unactuated response is often infea-
sible for safety considerations, especially in close proximity
to humans. Thus, secondary motion must be induced while
maintaining a finite, non-zero level of active control.

Second, the purpose of control systems is to modulate
actuator response, thereby providing the internal forces nec-
essary for motion. However, robots use control schemes
that typically eliminate the nonlinear dynamics that humans
advantageously exploit [6]. If hardware and control are fixed,
then to overcome this challenge, we must adapt the hardware
motion to minimize exhibition of the artificial control system
response (e.g. by using input command shaping) or obviate
the constraint of constant control gains.

In this paper, we exploit simulation to create virtual
secondary action. Additionally, by coupling a robot to an
accurate, real-time simulation, the robot is used as both an in-
put and output device in real-time, the direction, magnitude,
point of application of an external force can be calculated,
and the perceived hardware response to an external force
can be altered by changing simulated characteristics such as
mass, gravity, inertia tensors, or external input force mag-
nitudes. Through a vision system, the simulation responds
to virtual objects with characteristics different from the real
world to produce different hardware responses. For example,
a light box in the world can be simulated to appear heavy, and
when the robot hardware lifts the box, the secondary motion
non-verbally communicates different information about the
world, objects in the world, or robot capabilities.

III. RELATED WORK

We are not aware of prior work which integrates the
specific principle of secondary action into robot motion. The
bulk of similar work exists in the field of computer animation
where dynamic simulations are pervasive, such as producing
responsive motion to external forces [7], [8], [9].

The most closely related work in computer animation is
presented by Ye and Liu, which uses constrained optimiza-
tion to satisfy equations of motion for “near-unactuated”
degrees-of-freedom (DOFs) to create stylistic responsive
motion from upper-body external perturbations [10]. Since
both near-unactuated DOFs and the DOFs which are most
influenced by secondary action are the less controlled DOFs
for the agent, we adapt Ye and Liu’s technique to identify
near-unactuated DOFs. However, our algorithm calculates
secondary action for internal and external forces via simu-
lated control forces without the complexity of a constrained
optimization framework.

Other robotics researchers realize the importance of bridg-
ing the gap between animation and robotics. The vast soft-
ware repertoire generated by the animation community can
be re-used to assist in producing natural-looking robot action
[11]. End-effector velocity and jerk (the time derivative
of acceleration) can act as quantitative metrics to com-
pare motions produced by animation-inspired control to a
recorded human to establish naturalness [12]. Our technique
similarly borrows insights from the computer animation
community. Unlike previous methods, we introduce a novel
technique that integrates physics-based character animation
with robotic control in an online fashion.

Existing methods for creating natural motion with sec-
ondary action are expensive and time consuming. These

methods tend to rely on using databases of natural motion
trajectories either from human motion capture data [13], [14]
or created by a professional animator [15]. Our goal on the
other hand, is to develop mechanisms to automatically gen-
erate natural motion for a robot. In this case any algorithm
or animator can generate a primary or functional action for
the robot to perform, and our techniques can automatically
generate secondary motion for that action.

IV. SECONDARY MOTION TECHNIQUES

Secondary motion typically results from redundancy in a
system where a subset of DOFs are unactuated or under-
actuated. Consequently, a technique to produce secondary
motion must reduce actuation either in magnitude or dimen-
sion. The three proposed methods achieve this goal.

1) Simulation-In-The-Loop (SIL): The first technique de-
termines the secondary motion that would exist in passive
actuators by simulating frictionless motors unimpeded by
rotor inertia and commanding the hardware to the simulated
positions. SIL requires selection of the passive actuators, and
we find best results work with extremity DOFs.

2) Feedforward+Feedback Control (F&F): In feedfor-
ward control, the commands to achieve a trajectory are
pre-computed or read from sensors and applied open-loop
to produce system response. A well-known methodology
of control is F&F control, where feedforward control is
combined with very low gain state feedback to handle any
drift or perturbations to the system that cause deviation from
the desired state. Our technique simulates secondary action
using F&F control and commands the robot to track the
simulated trajectory. In our experience with PID control on
our robot hardware, simulated proportional motor feedback
gains should be reduced less than 0.5% of actual hardware
gains and noticeable secondary action will result.

3) Eigenphysics+Low Gain Feedback: Based on Ye and
Liu’s method for animating responsive motion [10], we
developed another new technique, denoted as “eigenphysics,”
to produce secondary motion on robots. Eigenphysics is
motivated by the observation that less actuated degrees-of-
freedom usually exhibit more pronounced secondary action.
Instead of determining these under-actuated components by
heuristics and hand-tuning their physical parameters, we
apply eigenanalysis on the primary motion to define a new
set of coordinates, ranked by the level of joint actuation in
the primary motion.

Since torque is the mechanism for actuation, secondary
action would logically occur in DOFs that have low variance
in actuation (i.e. near-unactuated coordinates). To identify
the actuation spectrum ordered by DOF for a given motion,
a singular-value-decomposition is performed on the covari-
ance matrix in equation 1 to obtain an M x M matrix of
eigenvectors.

SVD((r —)" (1 —) (1)

where,
M = number of DOFs
s = mean torque of DOF M for the entire trajectory

©1 = mean torque of DOF 1 for the entire trajectory

T = number of equidistant time samples in the original
trajectory

=M x T stacked matrix, where each column

is [pr-epung]”

7 =M x T column stacked matrix of command torques

for the original trajectory

The largest gap in the distribution of the eigenvalues
defines a threshold, which separates the corresponding eigen-
vectors into mostly actuated and near-unactuated eigenvec-
tors. For all eigenvalues smaller than the threshold, the
corresponding eigenvectors are considered part of the near-
unactuated set. Remaining DOFs are in the mostly actuated
set. For reference, typically less than ten eigenvectors were
kept in the mostly actuated set.

After projecting to the rotated space, back to the original
space, and the adding the mean for back for each correspond-
ing DOF as in equation 2, the command torque trajectory that
includes secondary action is known.

UTU(T = p) + o)

where,

P = number of eigenvectors in the mostly actuated set
U =P x M column stacked matrix of mostly actuated
eigenvectors

Since the dimensions of motion where active body con-
trol does not play an important role are represented by
principal components with lower eigenvalues, eigenphysics
can produce the secondary motion from internal forces and
torques without significantly modifying the primary motion
[10]. Then, eigenphysics is coupled with the very low gain
feedback to recover from drift and external forces.

Fig. 1. Hardware (left) and simulation (right) of SIMON.

V. RESEARCH PLATFORM

Our robot platform is an upper-torso humanoid robot we
call SIMON (Fig. 1). It has sixteen controllable DOFs on
the body. The hand and head DOFs remained unactuated
to produce the results in this paper. The robot operates
on a dedicated ethercat network coupled with a real-time
PC operating at a frequency of 1kHz. To maintain highly
accurate joint angle positions, the hardware is controlled
with PID gains of very high magnitude, providing rapid
transient response. However, in simulation the robot gains

vary according to the techniques discussed in Sec. IV. The
normal consequence of high gains is stiff robot response
to external perturbations, forcing the simulation to augment
motion in real-time for compliance and secondary response.

Our dynamic model of the robot hardware, for simulation,
is shown in Fig. 1. This model is designed by importing 3-D
meshes of the same Solidworks! files from which the robot
parts were manufactured. Solidworks pre-calculates accurate
centers of mass and the constant part of inertia tensors for
all rigid bodies in the simulation. Motors are modeled in
the simulation with identical gains for identical response
between simulation and hardware.

The simulation environment that adds physics to the virtual
world uses Open Dynamics Engine (ODE), with a time-
step corresponding to the actual hardware update rate. With
lightweight software and low network delay, bi-directional
communication between hardware and software is possible
in real-time such that our robot or our simulation can act as
either input or output at any given time [16], [17].

The robot hardware is not equipped with force sensors
beyond the torque sensors at DOFs. Thus, under external
forces, we leverage simulation and hardware joint angle
position, velocity, and acceleration differences to calculate
the location, magnitude, and direction of the external force
imposed in the real-world and apply this to the simulation in
real-time. This results in a full simulation loop and hardware
read/write cycle in real-time, commonly called hardware-in-
the-loop.

VI. RESULTS

We use two primary motions to exemplify secondary
motion using the three techniques above. The first is a tennis
swing wherein the right arm is highly actuated over large
angle ranges and the left arm holds a static equilibrium
pose. Since secondary motion can be induced by internal
forces transmitted between body segments, a primary motion
with large acceleration in the joint space results in more
evident secondary motion. Therefore, we designed a rapid
swing motion with large disparity between the right and left
arm motion. Further, we leverage the other scalar product
in Newton’s second law, i.e. mass or moment of inertia,
to amplify the simulated secondary motion for hardware
command.

To exemplify secondary motion produced from external
forces, we push the robot during a common pick-and-place
task and generate responsive motion from each of the three
techniques. To emphasize the effect of external forces, the
velocity and acceleration in this primary motion is kept low
to minimize the secondary motion produced via internal
forces. We estimate the force magnitude of the push from
the robot joint angle sensors, amplify in simulation, and
augment the secondary response for the hardware in real-
time. Resultant responses may appear larger than expected
for such a small push, but this is intended to demonstrate

!'Solidworks is a registered trademark of Dassault Systems SolidWorks
Corp. All rights reserved.

Fig. 2.
up of left arm secondary action hardware capability without our techniques.

@

Fig. 3.

the techniques in an non-subtle manner without forcefully
pushing the robot hardware. Full trajectories with and with-
out secondary motion for both internal and external forces
can be viewed on the video accompanying this paper.

A. Secondary Motion from Internal Forces

For each technique we demonstrate the approach with
keyframes from the resulting trajectory. These keyframes are
not captured at the same time instants in the trajectories.
Instead, the photos show expressive moments to characterize
the full trajectory produced by each technique.

Fig. 2a shows keyframes of the primary action of a right-
armed tennis swing. The left arm in Fig. 2a demonstrates
the minute amount of secondary motion normally exhibited
when the left arm chain is holding a static zero position
during the tennis swing. In the closer view of baseline
trajectory (Fig. 2b), at the critical points in the motion,
where the right shoulder DOFs change direction of travel, the
expected response is a deflection of the torso, which should
subsequently cascade to the left arm. Actuator control and
the large mass of the robot diminish this response.

In simulation-in-the-loop, all DOFs in the left arm are
selected as unactuated in simulation because they do not
participate in the primary motion. The simulated response
commanded to hardware is shown in (Fig. 3a). Compared
to Fig. 2b, the shoulder, elbow, and wrist DOFs deflect
and move significantly. SIL produces the smallest noticeable
secondary motion of the three techniques, in terms of joint
angle ranges, because the torso remains under full virtual
gains, which restricts force transmission across the body.

Compared to SIL, the F&F technique in Fig. 3b induces
more secondary motion in the torso. For F&F, the large
left arm swings pull the torso back and forth under low
simulated gains—the effect of Newton’s third law. However,
this impacts the left arm less than in SIL due to the low

(a) Key frames of tennis swing motion with entire left arm commanded to zero degrees to exemplify secondary motion in the left arm. (b) Close

Tennis swing motion with (a) simulation-in-the-loop, (b) feedforward & feedback, and (c) eigenphysics secondary action techniques.

gain feedback. In SIL, the torso is under high gains, and
exhibits less secondary motion, but that motion impacts the
left arm more due to complete passivity of the left arm in
simulation. The result is a tradeoff between passivity in the
left arm and torso. For SIL, the torso remains stiff and the
left arm passive, whereas in F&F both the torso and left arm
are at more median amounts of actuation. Also, using F&F,
induced secondary motion in the torso DOF that rotates the
vertical axis is largest. Since the torso supports the right arm,
it must remain actuated in SIL, and therefore cannot exhibit
secondary action.

Eigenphysics in Fig. 3c alters the trajectory of all DOFs
to create secondary motion everywhere, unlike SIL, which
is constrained to secondary motion in the DOFs selected
to be virtually unactuated. The projection that is performed
by eigenphysics preserves most but not all of the primary
motion, so even the primary trajectory is affected by the this
technique. In eigenphysics, actuation of the left arm does
not depend solely upon low gain feedback as in F&F. The
actuation command is calculated directly and the left arm
swings forward in a coordinated, controlled, but passive-
appearing way, synchronized to movement of the torso and
the right arm.

For the tennis swing motion, secondary action is dom-
inantly produced in three DOFs. Table I, which shows
variance induced by secondary action in these three left arm
DOF axes, illustrates the fundamental noticeable difference
in the eigenphysics motion: the left arm DOFs span a larger
range of joint angles with eigenphysics than with either SIL
or F&F.

B. Secondary Motion from External Forces

Fig. 4a shows key frames of the box moving trajectory
while the robot torso is pushed in the fore/aft direction in
the initial frame. While under complete control, without any

Fig. 4. Pushing the robot during a box-moving trajectory to demonstrate the response (a) without secondary augmentation and (b) using SIL.

TABLE I
VARIANCE IN POSITION FOR THREE DOMINANAT LEFT ARM DOFS vs.
TECHNIQUE FOR THE TENNIS-SWING MOTION

DOF SIL F&F Eigen
Shoulder X || 0.061 0.069 || 0.099
Elbow X 0.051 0.046 || 0.064
Wrist X 0.042 || 0.056 || 0.061

secondary action technique, the torso deflects a maximum of
four degrees when perturbed. The effect is very subtle and
damped after one oscillation. No other DOFs are noticeably
affected by the push without using one of the three secondary
action techniques.

For SIL, the elbows and two of the wrist DOFs were
chosen to be unactuated in simulation. In Fig. 4b, the
noticeable result of push to the torso for SIL is that the
elbows curl upward. Since the wrists remain unactuated in
the motion and yet are holding a box, the wrists limply clutch
the box, while the other arm DOFs supply the force necessary
to maintain grasp on the box. When the external push occurs
on the robot, the wrists deflect upward from the joint angle
limit of negative 40 degrees to close to zero, as can be seen
in the second and third keyframes of Fig. 4b.

In the F&F technique for the box-moving trajectory (Fig.
5), the push significantly deflects the torso which subse-
quently creates a force imbalance that cascades through both
arms, as the low gains compensate for external perturbations.
The effect is most noticeable as the box is lifted much
higher in the third frame. The push is performed in a nearly
symmetric location and both arms respond in similar ways,
yet a slight offset in joint angles exists between the two arms.
The difference is insufficient to cause the robot to drop the
box. Compared with SIL and no augmentation at all, the
secondary action is more pronounced in F&F because the
force applied to the torso is not resisted by high actuation
gains.

A perfect comparison of the three techniques cannot
be performed because the external push from the human
does not occur at the exact same time instant or with the
exact same magnitude. However, the timing and point of
application of the external force is critical to determining
how each technique will respond. For example, comparison
of the torso in Figs. 4-6 shows that eigenphysics (Fig. 6)
causes the largest deviation from the box-moving trajectory
for the torso fore/aft DOF, but less secondary motion in the

Fig. 5. Pushing the robot during a box-moving trajectory to demonstrate
the response using feedforward & feedback for secondary action.

arm DOFs than F&F. Eigenphysics typically induces more
secondary motion in the “near-unactuated coordinates” than
in the “mostly actuated coordinates.” The force from the push
combines with the actuation inherent from the transformation
or from the feedforward term to impact the same DOF in
different ways for each of the different techniques.

We cannot claim that one technique produces secondary
motion that is the most visually pleasing. Instead, all three
techniques are useful. In the next section we discuss the
advantages and disadvantages of each technique, which sup-
ports identification of situations when each technique would
be the appropriate choice to create secondary action.

Fig. 6. Pushing the robot during a box-moving trajectory to demonstrate
secondary action from external forces using eigenphysics.

VII. DISCUSSION

Having presented three techniques for producing sec-
ondary motion, in this section we summarize the benefits

and drawbacks of each from an implementation perspective.

SIL has the advantages of being simple and intuitive; it
can be validated, easily amplified, and requires no a priori
specification of the trajectory to create secondary action from
internal forces.

If an accurate dynamic model of the robot does not exist,
then it is difficult to use SIL to generate secondary action.
Another consideration when using SIL is deciding which
DOFs to choose as unactuated in simulation, which depends
on the task. Generally, DOFs near the robot’s extremities
are best to select for secondary action. However, if for
example a wrist DOF is being used, then it is not ideal
to have it in the secondary action set. To appropriately
select these DOFs for SIL, it is important to understand
which ones play an essential role in the primary action.
The requirement of simulated passive DOF makes SIL an
unfavorable choice for producing secondary motion during
manipulation trajectories, for example.

There are many advantages to F&F in creating secondary
action. The feedforward torques greatly reduce the control
energy necessary to command a trajectory. Additionally, the
very low control gains make the system less stiff. F&F
requires a less strict model for the robot than that needed
for SIL. Only accurate models of the feedforward terms are
necessary to correctly control the robot and create secondary
action. These feedforward terms can also be read directly off
the robot, which further reduces modeling requirements.

Additionally, F&F can be used even when a trajectory is
unknown in advance because the feedforward torques are
often predicted through planning algorithms, which are per-
vasive in robotics. Even when there is no advance planning,
the feedforward torques to hold against gravity for the current
time step are a decent estimate for one time step in the
future, thereby reducing the amount of actuation dependently
supplied by low gain feedback.

One of the main drawbacks to the F&F technique is
creating a new set of stable gains for the low gain feedback
portion. Often gain tuning can be considered an art form,
despite the many developed techniques to assist (e.g. bode,
root locus, Ziegler-Nichols).

Eigenphysics is the most computationally costly of the
three techniques, but we recommend this technique over the
others when trajectories are known in advance. The presented
results prove it can produce secondary motion similar to
the other techniques without the complexity of determining
unactuated DOFs as in SIL. And, the computation cost is
moved offline when the trajectories are known in advance,
instead of being calculated in real-time. Eigenphysics pro-
duces secondary action in all DOF, which makes it an optimal
choice for motions such as manipulation where the primary
trajectory requires minimal interruption!

VIII. FUTURE WORK

Our literature survey uncovered no widely accepted metric
for motion quality. Thus, we are currently investigating a

quantitative metric to evaluate motion quality. Such a metric
would be useful to measure amount of improvement for robot
motion with respect to the desired criteria of naturalness.
We hypothesize that spatiotemporal correspondence of dis-
tributed actuators (i.e. motor coordination) is a metric for
natural motion. Research experiments are ongoing to prove
our metric.

IX. CONCLUSION

We have explored the concept of secondary action because
we believe the same principles used to generate life-like
and natural motion in animation can apply to robots. We
presented three techniques for producing secondary motion
for robot hardware: simulation-in-the-loop, feedforward &
feedback, and eigenphysics. We demonstrated resulting mo-
tions for internal and external forces, and illustrated the
trade-offs between the three techniques.

REFERENCES

[1] C. Nass, J. Steuer, and E.R. Tauber, "Computers are social actors,” in
1994 Proc. SIGCHI Conf. on Human Factors in Computing Systems,
Boston, MA, pp. 72-78, Apr. 1994.

[2] J. Cassell, "Embodied Conversational Interface Agents,” Communica-
tions of the ACM, vol. 43, no. 4, pp. 70-78, Apr. 2000.

[3] F. Thomas, and O. Johnston, Disney Animation: The Illusion of Life,
New York: Abbeville Press, 1981.

[4] J. Lasseter, "Principles of traditional animation applied to 3D computer
animation,” Computer Graphics, vol. 21, no. 4, pp. 35-44, July 1987.

[5] N.S. Pollard, J.K. Hodgins, M.J. Riley, and C.G. Atkeson, ”Adapting
human motion for the control of a humanoid robot,” Proc. Intl. Conf.
Robotics and Automation, pp.1390-1397, May 2002.

[6] M.T. Rosenstein. “Learning to exploit dynamics for robot motor
coordination,” Ph.D. thesis, Univ. of Mass. Amherst, May 2003.

[71 V.B. Zordan, and J.K. Hodgins, "Motion capture-driven simulations
that hit and react,” Eurographics/SIGGRAPH Symposium on Computer
Animation, pp. 89-96, 2002.

[8] T. Komura, E.S.L. Ho, and R.-W.H. Ho, ”Animating reactive motions
using momentum-based inverse kinematics,” Journal Computer Ani-
mation and Virtual Worlds, vol. 16, no. 3-4, pp. 213-223, 2005.

[9] K. Yin, M.B. Cline, and D.K. Pai, "Motion perturbation based on
simple neuromotor control models,” Proc. Pacific Graphics, pp. 445-
449, 2003.

[10] Y. Ye, and C.K. Liu, ”Animating responsive characters with dynamic
constraints in near-unactuated coordinates,” ACM Trans. On Graphics,
vol. 27, no. 5, article 112 , Dec. 2008.

[11] X. Shusong, and Z. Huanyun, "From character animation to robot
motion,” Sixth Intl. Conf. on Industrial Informatics INDIN 2008, pp.
57-62, Daejeon, July 2008.

[12] M.J. Mataric, V.B. Zordan, and M.M. Williamson, "Making complex
articulated agents dance,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 2, no.1, pp. 23-43, Mar.1999.

[13] L. Kovar, M. Gleicher, and F. Pighin, “Motion Graphs” Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 473-482, July 2002.

[14] O. Arikan, and D.A. Forsyth, “Interactive motion generation from
examples” it ACM Trans. Graph vol. 21, no. 3, pp. 483-490, 2002.

[15] C. Rose, B. Bodenheimer, and M.F. Cohen, “Verbs and Adverbs:
Multidimensional Motion Interpolation Using Radial Basis Functions”
it IEEE Computer Graphics and Applications vol. 18, no. 5, pp. 32-40,
September 1998.

[16] J.K. Hahn, Realistic animation of rigid bodies,” Proc. SIGGRAPH
’88 in Computer Graphics, vol. 22, no 4, pp. 299-208, Aug. 1988.

[17] D. Baraff, ”Analytical methods for dynamic simulation of non-
penetrating rigid bodies,” Proc. SIGGRAPH ’89 in Computer Graph-
ics, vol. 23, no. 3, Boston, MA, July 1989.

