Human-like Action Segmentation for Option Learning

Jaeeun Shim and Andrea L. Thomaz

Abstract— Robots learning interactively with a human part-
ner has several open questions, one of which is increasing the
efficiency of learning. One approach to this problem in the
Reinforcement Learning domain is to use options, temporally
extended actions, instead of primitive actions. In this paper, we
aim to develop a robot system that can discriminate meaningful
options from observations of human use of low-level primitive
actions. Our approach is inspired by psychological findings
about human action parsing, which posits that we attend to
low-level statistical regularities to determine action boundary
choices. We implement a human-like action segmentation sys-
tem for automatic option discovery and evaluate our approach
and show that option-based learning converges to the optimal
solutions faster compared with primitive-action-based learning.

I. INTRODUCTION

Our work is in the realm of social robotics. In particular,
we focus on the problem of how robots can learn new tasks
and skills from human demonstration. Considerable prior
work on interactive robot learning from a human partner has
been based on reinforcement learning (RL) [15].

The standard RL framework is a Markov decision process
(MDP). Recent work has shown that temporally extended ac-
tions, known as options, can speed up learning and planning.
Options are related to the actions of a semi-Markov decision
process (SMDP) [13]. Thus, in Learning by Demonstration
(LbD), agents can use the SMDP framework to make RL
more efficient. To realize this goal, we need to ascertain how
robots can automatically extract options from demonstra-
tions. Robots could get option descriptions explicitly from
a human, but our goal is for robots to automatically detect
the high-level action boundaries of a task.

Inspired by mechanisms of human action perception, we
propose a mechanism for robots to discover options. When
humans parse actions, they certainly bring their experience
to bear in a top-down manner. However, recent work shows
that low-level features play an important role [4]. In their
intentional action studies of infants, Baldwin et al. have
shown evidence suggesting this role. In addition, their studies
of adults suggest that humans can determine high-level
action boundaries from the statistical regularities of low-level
primitive actions.

In this work we show that robots can find options au-
tomatically from human-like action segmentation, and that
these options enable them to more efficiently learn from
demonstration. Our approach is as follows:

J. Shim is with the Department of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, GA 30308, USA
jaeeun.shim@gatech.edu

A. Thomaz is with School of Interactive Computing, Georgia Institute of
Technology, Atlanta, GA 30308, USA athomaz@cc.gatech.edu

This work is supported by NSF grant IIS-0960979.

1) Human-like Action Segmentation: We solve the op-
tion discovery problem inspired by human statistical
learning from low-level primitive actions (detailed in
Sec. [II-A). The assumption is that it will be easier
to predefine a low-level primitive action set than high-
level actions or possible action sequences.

2) Efficiency of the Learned Options: Given the set
of options learned in the previous step, we evaluate
their effectiveness in speeding up the learning process.
We show these options provide efficiency gains with
respect to learning an optimal policy with just prim-
itive actions. We also show that our option discovery
method shows better performance than a state-of-the-
art option discovery approach.

II. RELATED WORK

There is much prior work in LbD, with examples of robots
learning tasks from human partners with several different
interaction techniques and learning methods (see [1] for a
review). Several have used the RL framework for learning
from human input [15]. [13] suggests that options can make
RL more tractable, which is needed in LbD.

Once the option-based RL framework was proposed, many
researchers focused on how to find options automatically.
For example, [11] suggests that an agent learn options by
finding subgoals or bottleneck states within the RL domain.
In addition, several studies have described heuristics for
options based on the frequency of visits during successful
trajectories [10]. [16] and [6] also suggested algorithms of
automatic option learning by finding subgoals in human
trajectories. Most prior research on option learning has
focused on regularities in the state space. Alternatively, our
approach is based on regularities in the action space.

Option discovery is highly related to the action segmen-
tation problem. In robot LbD, a common approach to seg-
menting actions is based on hidden markov models (HMM).
For example, [5] discriminated hand-grasping gestures from
continuous actions. Using HMMs, [7] and [2] also identified
boundaries in action sequences. All of this work required
a prior knowledge of primitive actions such as Kulic’s tech-
nique [8]. After finding that primitive actions are constructed
by sampling the frames of action sequences, [14] used a seg-
mentation approach based on probabilistic correlation and the
mimesis model. To achieve a more autonomous system, [9]
developed robots that could learn primitive actions online
during the demonstration. Using this approach, the robot does
not need prior knowledge for action segmentation.

In previous work, primitive actions tend to be based on
motions of the human body. For example, in [8] and [9],

primitive actions consist of the joint angle vectors of the
human body. Alternatively, we focus on task-based primitive
actions of object motion in a robot’s workspace. In addition,
unlike most systems in prior work, which are evaluated with
expert users (usually the designers themselves), our system
is evaluated with untrained everyday humans.

III. BACKGROUND
A. Motivation from Human Psychology

People’s natural action sequences are generally continu-
ous. A person observing dynamic human action can find
meaningful boundaries between smaller action chunks, i.e.,
they do action segmentation. Baldwin et al. researched the
mechanisms by which humans parse intentional action and
found evidence that points to this skill being the result of
both top-down and bottom-up process [4], [3].

In one experiment, they showed that very young infants
were able to determine the boundaries of intentional action
(e.g., watching someone clean up in a kitchen) [4], which,
given that the babies had no experience with kitchen clean-
ing, points to a bottom-up process for intentional action
understanding based on low-level features.

In later work, they ran experiments with adults, testing
a hypothesis that people attend to statistical regularities in
low-level data, which are small-scale primitive actions, to
determine action boundary choices. In [3], Baldwin et al.
showed that statistical learning facilitates action segmenta-
tion. To show this, they took a set of random primitive actions
and arbitrarily created higher-level “actions” from sets of
low-level primitive actions. When they showed subjects a
continuous sequence of primitive actions, the subjects were
able to correctly identify the high-level action boundaries
even though the actions had no higher-level semantic mean-
ing. People used their experience with primitive actions to
inform action boundary selection. If the probability of a
transition between primitive actions is high, they are likely
to be continuous high-level actions. On the other hand, if
the probability of the transition from one primitive action
to the next is relatively low, then it is likely to be an
action boundary. Inspired by this human mechanism, our
work proposes an LbD system that segments human dynamic
actions in a similar fashion.

B. MDP and SMDP Preliminaries

RL enables an agent to learn an optimal policy of action.
An agent can model the RL problem based on either an
MDP or an SMDP [12], [13]. The MDP consists of a tuple
M =< S, A, P,R,v >, where S is a set of states, A is a set
of actions, P is a transition function, R is a reward function,
and + is a discount factor. The transition function P(s,a, s)
represents the probability distribution of changing state s to
s’ over action a. The purpose of the MDP is to find a way of
behaving, also known as policy, mapping states to actions,
m:S8 x A — [0,1]. The agent aims to identify a policy by
maximizing the total reward received over time.

A more compact framework is the SMDP, which is defined
over the MDP with a set of options O. An option o0 € O, a

GreenCircle

—
*Q

| BlueBlock3 [S\§

—

BlueBlock2

lorkplace
for Demo

BlueBlock1

(@ (b)

Fig. 1. (a) Domain Objects (b) Experimental Setting

Blue Objects Green Objects Pink Objects

BlueBlock1 Stacking(1)
BlueBlock2 Stacking(2)
BlueBlockl Unstacking(3)
BlueBlock2 Unstacking(4)
BlueBlockl Moving(5)
BlueBlock2 Moving(6)
BlueBlock3 Moving(7)

GreenSquare Hanging(8)
GreenCircle Hanging(9)
GreenSquare Unhanging(10)
GreenCircle Unhanging(11)
GreenSquare Moving(12)
GreenCircle Moving(13)

PinkButton Pushing(15)
PinkSqureUncovering(14)
PinkSquare Covering(16)
PinkgSquare Moving(17)

NonMotion(18)

TABLE I
OBJECTS AND SET OF PRIMITIVE ACTIONS (ACTION NUMBER)

generalization of actions that models a temporally extended
action, is composed of three components: 1) an initial set of
states S, 2) a termination set of states , and 3) a policy 7.
In the SMDP, the agent finds policy p : .S x O to determine
the option that should be taken in any state.

IV. IMPLEMENTATION
A. System Domain

We conduct our experiments with seven colored objects
distinguishable by the vision system of the robot based on
color and size (Fig. [[(a)). From these objects, we define 17
different action primitives and 36 states.

Table [I| shows the set of primitive actions A, which are
object-directed. For example, “Moving” actions are defined
for all objects except the button object. “Stacking” actions
correspond to the blue objects, and “Hanging/Unhanging”
actions are conducted with the two green objects. “Cover-
ing/Uncovering” actions are done with the pink objects, and
the pink button object has a “Pushing” action. The set of
states, S, is defined by the relation among the objects. For
example, three blue blocks can produce the four different
relations as shown in Table[[T} Green and pink objects include
three relations each. As a result, our experimental domain
contains 36 discrete states (i.e., 4 X 3 X 3).

In this work, we use an upper torso humanoid built from
Bioloid kits and a webcam, shown in Fig. [[(b)}

B. Detecting States and Primitive Actions

State and action detection consists of two modules: a
perceptual phase and a detection phase. The perceptual phase
receives the current vision data from the webcam. Our vision
system uses OpenCV and tracks predefined objects with
the blob-tracking algorithm based on colors and sizes. Each
object blob has several properties including the location,
orientation, size, and the number of blobs. The current vision

Possible States

Objects

Blue

Green

Pink

TABLE I
POSSIBLE STATES WITH EACH OBJECTS

input is compared with the previous vision input to determine
whether any objects have changed between the current and
previous frame. If so, the system goes to the detection
phase, in which the system identifies which primitive action
and state changes occurred. To determine this, the system
observes the properties of each blob and detects which blobs
have changed. Then, based on predefined property change
expectations, the system can determine primitive actions and
states. The action set also includes “NonMotion,” out-of-
vocabulary primitive actions are classified as “NonMotion.”

C. Human-Like Action Segmentation to Find Options

In our system, the robot identifies options using the
human-like action segmentation mechanism. During the hu-
man demonstration, the robot generates a statistical model of
the transition probabilities 7;; between the different primitive
actions detected. T;; indicates the probability of primitive
action j occurring after i. The robot uses this to discriminate
action boundaries using statistical regularities, as described
in Section [[II-A] Our system determines action boundaries
by identifying action transitions with lower probabilities
than threshold, which is learned from the transitions seen
across all users. For each primitive action 7, the system finds
the probability of the most frequently occurring transition,
MazProb;. The robot determines the threshold by:

threshold = average MazProb;

i€ Primitive Actions

With this, the robot discriminates action boundaries from
a sequence using the following:

true
false

The probability of a transition that is higher than the
threshold indicates that the transition of these primitive ac-
tions can represent a meaningful high-level action sequence.

With this action segmentation, the robot automatically
detects options, which are defined as a meaningful set of
primitive actions in a sequence. In other words, if a set of
primitive actions {aj,az2,a3} is determined to be a high-
level action, then an option is defined with the following
three components: 1) initial state s, the beginning state of
primitive action a1, 2) termination state s’, the end state of
primitive action as, and 3) policy m, defined by a set of
primitive actions {a1, as,as}.

if T;; <threshold

is Boundary(s, j)={ otherwise

V. EVALUATION

Our evaluation consists of two parts: the action-
segmentation session and the learning session. In the action-
segmentation session, the robot observes the demonstration
of real human subjects and discriminates high-level actions
to find options. In the learning session, we evaluate whether
the detected options are efficient for robot LbD.

A. Action Segmentation Session

In this experiment, participants sat in front of the robot and
had a bounded workplace with the objects to be used for the
demonstration. The experimenter and a video recorder were
situated next to the robot and the participant (Fig. [I(b)).

We recruited 18 participants (8 female) from the cam-
pus community for this action segmentation session (i.e.,
the training session). When the experiment began, we first
explained the 17 primitive actions (Table [[). For each par-
ticipant, we explained these primitive actions in a different
random order to control for any bias the instructions created
on one’s subsequent use of the primitive actions. Importantly,
we talked about only primitive actions and did not give any
information about high-level actions of the domain. After the
participants had learned and memorized the primitive actions
sufficiently, we gave instructions about the demonstration
session. Participants then demonstrated the primitive actions
in any order they chose for twenty minutes.

In a separate experiment (i.e., the test session), we re-
cruited two more subjects and gathered a test dataset. Here,
we did not mention the primitive actions to the participants
but simply mentioned the name of the three high-level actions
that could be performed with the object set: Stack, Exchange,
and Button (detailed in Table [[T). We then requested that
the participants demonstrate these actions as they imagined,
performing each action twice in any order they chose.

B. Action Segmentation Results

In the experiment, each participant demonstrated an av-
erage of 210 primitive actions during the twenty minutes
(Max: 262; Min: 160; SD: 34.75). The aggregate set of all
demonstrations included 3,772 primitive actions observed
over 360 minutes. The observed data also include noise,
since our vision system is not entirely reliable. The system
builds an action transition model (Sec. [[V-C) from each of
the individual datasets and for the aggregate dataset, a total
of 19 models with the unfiltered noisy data.

Fig. 2] shows the results of action segmentation on the
test data, using these models. Fig. is the data from
test subject 1, and Fig. 2(b)|is the data from test subject 2.
The sequence of numbers in each row indicates the sequence
of recognized primitive actions demonstrated by each of
the two participants during the test session. These numbers
correspond to primitive actions shown in Table Il Given a
sequence of primitive actions, the robot inferred the action
boundaries based on each of the 19 trained models. The top
five rows show the action segmentation results using five
different individual models. (We show only 5 out of the
18 due to limited space). The sixth row shows the action

(1) User 1

(2) User 3 1|2|4 3|11|8|14 15|16|10 9|6|1|2|13 14 15|16|4
(3) User 5 1|2‘4 3|11|T|14|15|16l10|9IT|I|2313|14|15 16| 4
(4) User 10 1|2|4 3|11|8|14|15|16|10|9|6|1|2313|14|15|16|4
(5) User 16 1|2I4 3|11|B|14|15|16|10|9|6|1|2|13|14|15|16I4
(6) Overall 1 2[4 3|11 8|14 15|16|10 9|6|1 2|13|14 15
Cow o (me e (B (s (em
(a)

I : Action Segmentation Point : Expected Action {__ *

H
[~
-

=

-

=

e
=

=

5

5

5

©
E

|

&

I B
=
&

o
=

-

=

“ e

(1) User 2 11|<ll[) lllil4|3|1|il4|ill4ﬂ15
@ vsers nuw 9|1 2|4 |1i|'4i|‘14£|15
(3) User 8 I_I OlTll 2|4 1TI4 T'M 15 | 15
(4) User 12 11|8I0|9|1|2|4 |1|2I4 3'14'15'15
(5) User 15 11|e|10|9|1|2|4 3|1|2I4 3'14'15'15
(6 overal [1 8|10 9|1 2|4 | |4 0 2«] s

K) psT) sTK) psT [BTT)

(b)

J Unexpected but meaningful Action : Detected Primitive Actions

(*) STK : Stack action / EXC : Exchange action / BTT : Button action / DST : Destroy action

(#) Numbers represent the kind of low-level primitive action from Table |

Fig. 2. Action segmentation results in (a) test data 1 (b) test data 2: One can see that the results from individual data sets (1-5) cannot discriminate every
action boundary whereas the results from the overall dataset (6) shows that all actions are segmented accurately in both test cases.

‘ High-level action name ‘ Expected sequence of primitive actions

”Stack” stacking(BlueBlock1) - stacking(BlueBlock2)
“Exchange” Unhanging(GreenSquare) - Hanging(GreenCircle)
Unhanging(GreenCircle) - Hanging(GreenSquare)

”Button” Uncovering(PinkSquare) - Pushing(PinkButton)

TABLE III
EXPECTED OPTIONS

segmentation results using the aggregate model from the
entire training data.

In the experiment, test subject 1 demonstrated their
six actions in the following order: Stack-Exchange-Button-
Exchange-Stack-Button. The robot observed this action se-
quence as the combination of primitive actions in Fig.
The action segmentation results from the 18 different indi-
vidual data indicate that the individual models were unable
to identify every expected action boundary, as shown in
Table For example, (2)-(5) in Fig. 2(a)] show that the
statistical models put an action boundary between ‘“Stack
blue block 17 and “Stack blue block 2” primitive actions,
which were expected to be detected as the “Stack” high-
level action. Many of them could not discriminate between
“Exchange” and “Button” high-level actions (e.g., (3)-(5) in
Fig. 2(a)). However, the results from the aggregate dataset
discriminates high-level actions exactly as we expected. The
segmented actions with the overall datasets match Table
(row (6) in Fig. 2(a)).

Subject 2 performed actions in the following order:
Exchange-Exchange-Stack-Stack-Button-Button. Again, we
observed that the statistical models from the individual
training data could not discriminate the high-level actions
entirely. However, with the overall data, the robot found the
expected high-level action boundaries (Figure [2(b)).

Thus, since the agent can successfully discriminate mean-
ingful high-level actions from the primitive actions, we

propose that these high-level actions can be used as options
in an SMDP framework.

C. Learning Session

In this part, our system evaluates the utility of the options
found in the segmentation process. These learning evalua-
tions are run in simulation only. To evaluate the learning
efficiency of our options, we build the MDP with the
primitive actions and the SMDP with the options from the
human-like action segmentation system.

For the MDP, state set .S and action set A are defined as
we explained in Section Based on the overall data of
the demonstration during the experiment, the robot builds a
statistical model of transition function P(s,a,s’) among the
detected states s, s’ and primitive action a. A reward function
R is defined by the goal state. If final state s’ of P(s,a,s’) is
the goal state, we assign 20 as the value of R(s’). Otherwise,
the reward R(s) is -1.

The robot also generates the SMDP framework, which is
defined over the MDP with the set of options O. Options are
the resulting set from the human-like action segmentation
mechanism. Our system discovers 6 options from “Stack,”
6 options from “Destroy,” 12 options from “Exchange,” and
12 options from “Button” actions. As a result, from the 368
possible transitions in the initial MDP framework, our system
discovers 36 meaningful options.

For both the MDP and the SMDP, we can determine
the learning efficiency by observing how fast the robot
finds the optimal policy from an initial state to the goal
state. For the learning session, initial states are selected
randomly in each episode. The goal state is arbitrarily fixed
as the state shown in Fig. In this evaluation, the robot
learns policies with the Q-learning algorithm [12]. As the
number of episodes increases, the policy converges to the
optimal policy. Furthermore, Q-learning guarantees that the

(@ (b)

Fig. 3. (a) Initial state (b) Goal state

optimal policy will be found. Therefore, we use the rate of
convergence to the optimal policy as an indication of learning
efficiency.

Some prior research has also proposed the automatic
option learning algorithms. To claim the contribution of our
approach, we need to show that our option learning algorithm
leads to the better performance than other computational
option learning algorithms. Thus, we also compare the
performance of our proposed method with the automated
method. From the various prior work, we select and simulate
Stolle and Precup’s option learning method [11]. In this
algorithm, an agent extracts options by computing the most-
often-visited states, namely bottleneck states, when the agent
repeats the relevant tasks. From the bottleneck states, the
agent specifies an initiation set and a termination condition,
and then the agent also learns the internal policies using
standard RL algorithms.

To simulate this algorithm in our specific domain, we
select the number of start states s; randomly and fix the
target states sy as the state shown in Fig[3(b)] For each pair
< 8;,sT >, the agent performs the Q-learning algorithm
N times, 1,000 in our system. Meanwhile, for all states,
the agent counts the total number of times n(s) that each
state is visited. Then, we can pick the bottleneck state by
finding s, = argmaxsn(s). After detecting the bottleneck
state, the agent computes the threshold, which is 7i(s, sp) =
avgsn(s, sp) where n(s, sp) is the number of times each state
s occurs on paths that go through s;. From this threshold, we
can determine the initiation set for the option by identifying
all the states s for which n(s, s,) > 7i(sp) and then determine
each internal policy using the Q-learning. To discover the
same number of options as we found in our proposed
approach, the agent repeats this algorithm until 36 options
are reached.

For all frameworks (i.e., the MDP with primitive actions,
the SMDP with our options, and the SMDP with bottleneck-
based options), the robot runs the learning algorithm sep-
arately and finds the optional policy. After finishing each
episode, the robot finds the set of behaviors from state 1
(Fig. B(a)) to the target goal state (Fig. 3(b)) and calculates
the accumulated reward.

D. Learning Results

To evaluate the performance of our algorithm, we com-
pared the convergence rates of Q-learning based on our

MDP SMDP

£0=ewweb

=ewwed

TotalReward
8 3
[
S0

5
1
g'0=ewwed

P

| | | | | | | | | |
100 200 300 400 500 100 200 300 400 500

EpisodeNumber

Fig. 4. Simulation Resultl: 1) total rewards of planning to the goal state
with Q-learning (black points) and 2) estimated graph (red lines) (y = 0.3)

| [MDP [SMDP |
v=0.3 | 42.0168 (c=0.0238) | 12.6743 (c=0.0789)
v =0.5 | 389105 (c=0.0257) | 12.7877 (c=0.0782)
v = 0.8 | 34.2466 (c=0.0292) | 13.2275 (c=0.0756)
Average 38.3913 12.8964
TABLE IV

CONVERGENCE RATE

options (SMDP) with primitive actions (MDP) and also with
bottleneck-based options.

1) Comparison with Primitive Actions: Figure [4] depicts
the simulation results of convergence with the SMDP and the
MDP. The z-axis indicates the number of episodes performed
in Q-learning, and the y-axis shows the total reward gained
during planning from the initial to the goal state. The robot
plans a way of behaving in each state based on the policies
found from the Q-learning algorithm. Fig. @] shows that
both Q-learning results, based on the MDP and the SMDP,
converge to the optimal policy. By comparing the graphs
in the MDP with those in the SMDP, we can observe that
the SMDP-based learning agent converges to the optimal
policy faster than the MDP-based learning agent. To evaluate
the convergence rates clearly, we estimate each total-reward
distribution with the exponential graph, which is over-laid
as the red line in each figure. We formulate each graph with
the following equation, y = —a + bexp(—c), by observing
all plots. For the estimation, we use the non-linear least-
squared regression method. In the exponential distribution,
the convergence rate depends on the exponentiation, param-
eter ¢. Simply, 1/c can determine the rate of convergence.
The smaller value of the convergence rate indicates a faster
convergence speed. Table [IV] shows parameter ¢ and its cor-
responding convergence rates. SMDP-based learning clearly
shows a smaller average convergence rate than MDP-based

TotalReward

T
Computational Options
- = Options w/ Human Inputs

TotalReward

Primitive Actions

EpisodeNumber

EpisodeNumber

(a) (b)

Fig. 5. Simulation Result2: (a) total rewards of Q-learning planning
to the goal state with bottleneck-based options; (b) a comparison of the
performance of MDP with primitive actions, SMDP with computational
options, and SMDP with our options (v = 0.3)

learning. This result indicates that the system shows better
learning efficiency with the human-derived options than with
primitive actions. Therefore, our proposed way of detecting
the options with the human-like action segmentation system
is a viable way to learn options automatically.

2) Comparison with Other Automated Options: We com-
pare the performance of our proposed method with the auto-
mated method. Fig. [5(a)| illustrates the result of convergence
using the bottleneck options. As shown in this figure, this
algorithm also converges to the optimal policy. To compare
the convergence rates, we calculate the estimated exponential
graph, depicted in Fig. This figure shows that our
approach enables an agent to converge to the optimal policy
faster than the other two methods. The bottleneck options
from [11] converge to the optimal policy faster than the
primitive-action-based algorithm, but they are slower than
our human-derived options. Therefore, we can show that our
approach can increase learning efficiency compared with not
only the primitive-action-based MDP but also automated-
option-based SMDP.

VI. CONCLUSION AND FUTURE WORK

This work is inspired by psychological findings related
to human action parsing [3]. Based on this work, we im-
plemented an LbD system that builds a statistical model of
demonstrated primitive actions and then uses this to infer
high-level actions for the domain. We show that these high-
level actions can be used as temporally extended actions
in an RL framework, i.e., options. To evaluate the system,
we compared the learning efficiency of general learning
framework with primitive actions (MDP) with that of our
learning framework with options (SMDP). This system,
trained with data from naive human subjects, finds that the
robot cannot discriminate every expected high-level action
with the individual training data, but can find all expected
high-level actions successfully when using the aggregate data
across all 18 people.

In the learning session, we showed that the learning
efficiency with the options that the robot extracts using
the human-like action segmentation system is higher than
when using just the primitive actions. We also show that

our human-derived options are more efficient than those
found with a typical automatic option algorithm based on
bottleneck states. Thus, we conclude that a robot can auto-
matically find meaningful options from a human-like action
segmentation system if the statistical models are learned in
an aggregate fashion with a variety of human subjects.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey
of robot learning from demonstration. Robot. Auton. Syst., 57(5):469—
483, 2009.

[2] T. Asfour, F. Gyarfas, P. Azad, and R. Dillmann. Imitation learning
of dual-arm manipulation tasks in humanoid robots. In Humanoid
Robots, 2006 6th IEEE-RAS International Conference on, pages 40
—47, dec. 2006.

[3] D. Baldwin, A. Andersson, J. Saffran, and M. Meyer. Segmenting dy-
namic human action via statistical structure. Cognition, 106(3):1382—
1407, March 2008.

[4] D. A. Baldwin and J. A. Baird. Discerning intentions in dynamic

human action. Trends in Cognitive Sciences, 5(4):171-178, 2001.

K. Bernardin, K. Ogawara, K. Ikeuchi, and R. Dillmann. A sensor

fusion approach for recognizing continuous human grasping sequences

using hidden markov models. Robotics, IEEE Transactions on,

21(1):47 — 57, feb. 2005.

[6] G. Comanici and D. Precup. Optimal policy switching algorithms

for reinforcement learning. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems: volume

1 - Volume 1, AAMAS 10, pages 709-714, Richland, SC, 2010.

International Foundation for Autonomous Agents and Multiagent

Systems.

T. Inamura, I. Toshima, and H. Tanie. Embodied symbol emergence

based on mimesis theory. International Journal of Robotics Research,

23:4-5, 2004.

[8] D. Kuli¢, W. Takano, and Y. Nakamura. Incremental learning,

clustering and hierarchy formation of whole body motion patterns

using adaptive hidden markov chains. Int. J. Rob. Res., 27(7):761-

784, 2008.

D. Kuli¢, W. Takano, and Y. Nakamura. Online segmentation and

clustering from continuous observation of whole body motions. Trans.

Rob., 25(5):1158-1166, 2009.

[10] A. McGovern and A. G. Barto. Automatic discovery of subgoals in
reinforcement learning using diverse density. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML 01,
pages 361-368, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[11] M. Stolle and D. Precup. Learning options in reinforcement learning.
In Proceedings of the 5th International Symposium on Abstraction, Re-
formulation and Approximation, pages 212-223, London, UK, 2002.
Springer-Verlag.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[13] R.S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps:
a framework for temporal abstraction in reinforcement learning. Artif.
Intell., 112:181-211, August 1999.

[14] W. Takano and Y. Nakamura. Humanoid robot’s autonomous acqui-
sition of proto-symbols through motion segmentation. In Humanoid
Robots, 2006 6th IEEE-RAS International Conference on, pages 425
—431, dec. 2006.

[15] A. L. Thomaz and C. Breazeal. Teachable robots: Understanding
human teaching behavior to build more effective robot learners. Artif.
Intell., 172:716-737, April 2008.

[16] P. Zang, P. Zhou, D. Minnen, and C. Isbell. Discovering options from
example trajectories. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages 1217-1224, New
York, NY, USA, 2009. ACM.

[5

=

[7

—

[9

—

	Introduction
	Related Work
	Background
	Motivation from Human Psychology
	MDP and SMDP Preliminaries

	Implementation
	System Domain
	Detecting States and Primitive Actions
	Human-Like Action Segmentation to Find Options

	Evaluation
	Action Segmentation Session
	Action Segmentation Results
	Learning Session
	Learning Results
	Comparison with Primitive Actions
	Comparison with Other Automated Options

	Conclusion and Future Work
	References

