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Abstract— Natural language interaction between humans and
robots is a very challenging topic, especially when it refers to
motion descriptions in a certain environment. This problem is
particularly relevant during physical human-robot interaction,
e.g. in cooperative transportation tasks, where the partners
physical coupling requires an agreement on the way to follow.
Understanding in depth the link between sentences, words,
environmental properties and motions can deeply enhance the
interaction between humans and robots. In this work, we
propose a novel approach for learning relations and depen-
dencies between motion, natural language and environmental
properties using parameterized left-to-right time-based Hidden
Markov Models. A natural language model represents the
link between language and motion symbols while the HMMs
parameterization corresponds to the explicit influence on mo-
tions of both words and environmental features. The proposed
PHMM approach parameterizes the output and the transition
probabilities using a non-linear dependency estimation. The
method is validated by learning and generating navigation
primitives in a 2 Degrees-Of-Freedom (DoF) virtual scenario.

|. INTRODUCTION

One of the major challenges is the combination of natural
language with motor action in terms of haptic primitives
with consideration for environmental and task constraints
Understanding the link between signifiers and their corre-
sponding significants is a very challenging topic [5], [6],
especially considering motions [7]. This problem usually
implies, on one side, modeling sentence structures and word
relations in a natural language model and, on the other
side, considering the association between sentences and
motion symbols [8], [9]. Still, this representation does no
express the quality of behaviors in an explicit way. Many
adverbs and adverbials specify how to parametrize and/or
change motions or haptic primitives. As an example take the
sentence “Turn slowly” where “turn” stands for a motion
symbol and “slowly” expresses the quality of the motion
primitive. Extracting such word models can deepen robots’
comprehensive capabilities when using natural languade an
improve their inference performance. Furthermore, mation
as well as their natural language descriptions, are usually

In order for robots t_o interact with h‘%mans intuitively theyinﬂuenced by environmental characteristics and conggain
must understand their partners on different levels of CorTConsidering these extrinsic dependencies in conjunctitm w

munication - verbally and non-verbally. This is particljar

important for the cooperation of robots with humans und

uncertainty where interactive planning, decision makaryj

egualitative natural language descriptions will signifitan

xpand robots understanding capabilities and will poadiiti
shrink the gap towards seamless HRI.

control play a crucial role as e.g. in [1]. Desirably a robot " o (o esentation of time-series is a well-know issue in

understands a verbal “command”

by'the human mteracﬂcme fields of learning by demonstration or speech recognitio
partner and executes the corresponding motor action. As

#fldden Markov Models (HMMs) are widely used in the

example let us consider a human-robot joint transportatiflg oy e as a compact spatio-temporal representatidreof

task. Due to the physical coupling, both partners mu

Haviors [10]. Adding explicit time information to the steard

agree on the path to fOHOYV as they navigate through tI"r_TodeI, generalized motions can be represented by smooth
environment. In case of dlsagrgement, humans can €aSpdiectories using time-based HMMs (tHMMs) [11]. When
communlcate with each other using ne}tural language in Or,dBEhaviors are characterized by external variables, a alatur
to find a consensus and proceed with the task executiofyionsion of standard HMMs are Parametric HMMs (PH-
Synthesizing similar interactive behavior for robotic tpars MMs), which include dependencies of the standard model

IS hr(])weverba very challenging proItIJIemfas the 'nformat'oﬁ?jrameters w.r.t external parameters [12]. PHMMs have been
exchange between partners usually refers to evironmenial, q 14 enrich motions representation by parameterizing it

properties. output densities [12] or by linearly interpolating exempla

Humanszeasgy |r||\':eract|w||th each ot_her using mOtIOI’]T) al' rameters of the different states [13]. However, a full
gestures.[ ],' [3]. Natura hanguageh IS a u_r(;lque syrr]n 'Ohl arameterization of all HMM parameters in a non-linear
communication system to humans that provides much richgfoi i still an open issue.

descriptions even when referring to motions. More recently | = . paper we address the probem of leaming and

also the interaction through ha_pt|c S|g_nals_ as in phySIC%Ixecuting motion primitives including quality descrig@nd
human-robot cooperation is of increasing interest [1], [4lyironmental constraints. To this end we propose a novel
approach for learning relations and dependencies between
motion symbols, natural language and environmental prop-
erties using parameterized left-to-right tHMMs. A natural
language model together with a motion language model
infers the link between sentences and motion symbols while
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Fig. 2. Proposed architecture for motion generation. Givejuery, the
) ) ) ) natural language model together with the motion language mededcts
Fig. 1.  PHMM representation. Each motion symbol is represeie  the most likely motion symbol from the database. With the pararset

a PHMM trained with parametric observations. The paramete&sgen  given by the words from the sentence in conjuntion with theeobed
by the yvords used in the description of the motion and the enmiental  gnvironmental properties, the most likely motion is generated
properties.

o . this work, for simplicity of illustration we avoid this stegnd
the tHMMS parameterization repres ents the explicit "?f‘me” represent the word parameters as a vector with the size of the
on motions of both words and environmental properties. Th

proposed PHMM approach directly adapts both the outplﬁcuonary' where the words used in the motion description

o . - ave valuel and the other§. The environmental parameters
and the transition probabilities of tHMMs providing a full a(ge a set of features of the environment such as an object size

Eor;;;re]?r: daerﬁ)gnde?]necrztﬁmsnrrrl]z;l\::ogﬁc-)rnher?n?'[tir\]/gg ilr? ;/azl'%a;e its position. With this problem setting, shown in Fig. 1,
y gandg 9 9 P the training process is carried out as described in Section |
virtual scenario. ; . )
Th ind f thi is structured follows: _Furthermore, in order to extract a generalized representat
€ remainder of this paper 1S structured as Tolows: 1R g,y parameters affect motions, the set of primitives

Section Il the general approach is presented. The proposg& b : : o .
; . . ) X e trained sharing the same parameterization function
PHMM learning method is explained in Section Il and the g P

) . : X acquiring ageneralized parameter modehs explained in
natural language model used is described in Section IV. E d g a9 P d P

rimental results and di o are presented in Seeti n’é‘ection I1I-B.
pe ental results al SCusslion are presente 0 For the second prOblem’ once the motion SymbOIS e

learned, amotion generatiorprocedure produces the motion

primitive given a natural language query and a specific
The work presented in this paper consists of two problemenvironmental situation, as depicted in Fig. Il. A natural

On one side, learning explicit dependencies between wordanguage model together with a motion language model

environmental properties and motion primitives and, on thgelect the most likely motion symbol from the set of motion

other side, generating the expected motion given a naturglimitives, as described in Section IV. The words used

language query and a specific environmental situation.  in the query together with the perceived environmental
For the first problem, we consider a set of motion primifeatures are then used to parameterize the selected motion

tives where each motion is represented by a PHMM trainesymbol and generate the expected behavior, as explained in

with a set of parametric motior@y = {O, 6}, consisting Section IlI-C.

of the motion itselfO and its corresponding parametéts

In this work we represent motion primitives in task space. |ll. PARAMETRIC TIME-BASED HIDDEN MARKOV

Depending on the reference frame, motions representing the MODELS

same primitive might vary significantly if represented in ) _ )

classical task coordinates. In order to avoid this we chaose A Standard left-to-right time-based HMM is composed

invariant representation of motions [14]. Each invariamt-m Of NV states where each state has continuous observation

tion O is associated with a set of parametérs= {6, 0.} dgnsmes represented py a Ga_u55|an Mixture Model (GMM)

given by the word parameter§;, and the environmental with K components. is described by a set of parameters

parametersd,. The word parameters are determined byi™ @ w,k, X}, where:
the natural language description of the motion. In order to « @ = {m;} is the initial state probabilities vector, for

Il. GENERAL ARCHITECTURE

avoid computationally intractable parameter spaceseaust 1 <i < N.
of considering directly each word, a syntactic analysis se- ¢ a = {a;;} is the transition probabilities matrix for
lects potential adverbials constructions and verbal forms 1 < 4,57 < N.

drastically reducing the possible parameter candidatas. A « w = {wit},u = {1, 2 = {Zix} are the weight,
undestanding natural language syntax lies out of the scbpe 0 the mean and the covariance matrix of the GMMs for



both the spatial antemporaldata forl < i < N f(e)
andl < k < K. NG

A parameterized observatiof®y = {O, 0} is given by i
the observed spatial data sequeidiZzend its corresponding
parameter®). Note that the parameters are constant during
the whole observation, i.e., a static environment is assume

The parametric tHMM modifies the standard output den-
sities and the transition probabilities as a functiorfoi.e.

aij(0) = a5 + fa;(0) Motion symbols
1i(8) = T + fu,, (6) - | | |
Si(0) = 35 + fzuc( ), Fig. 3. Generalized Parameter model. The non-linear depend&(®) is

designed considering the parameterization of all possiblgomsymbols.

where a;;, @;, and ¥, are the standard transition prob-B. Generalized Parameter Model
abilities, means and covariances, calculated using the EM,,, . . .
While the influence of external parameters on a specific

algorithm [15] using only the spatial da@. Here we model is captured training a PHMM, a generalization of

assume that the initial state probabilities are equal for j{ljow those parameters affect motions can not be inferred

states and therefore no parameterization is needed, b fth the parameterization of different primitives. In orde
similar dependency could be easily added. The model’& P b i

parametric dependenc§(8) = {f...(8). f,.. (0), fx. (6)} to acquire ageneralized parameter modgile functionf ()

is estimated observing the variations of the standard tHMI\q1USt b_e learned maximizing the expecfced pgrametenzatlon

parameters with respect to the external ones. of aI_I different motion primitives, as deplcFed in Fig. 3.
Given a set oM PHMMs (m = 1...M) with D paramet-

A. Parametric Dependency Learning ric observationsd = 1...D) each, the generalized parameter

model f(0) considers al f,,(04),04} for1 < m < M

In order to extract a non-linear approximation of the Para3nq1 < g4 < D where £, (84) is the expected value

metric dependency, we model the joint probability denSi%f the parametric function for the m-th PHMM and the d-th
of f(0) and the external parameters, ife(f(6),6), using o ation

a GMM. This probabilistic model expresses the probability

distribution of the parameter8 in conjunction with the C. |nference and Motion Generation
expected values off(0). Given a set ofD parametric
observationsd = 1...D), the joint distribution is estimated
maximizing the likelihood of the GMM w.r.t the samples

Given a query with its corresponding parametggs gen-
erating the expected motion from a PHMM requires first the

L calculation of the expected values ${60). Using Gaussian
{£(8a),0a}, where f(8a) is given by Mixture Regression (GMR) [16], we tcazlculate the expected
Jai;(0a) = a;j(0a) — az5 parameterization as the posterior mean estimate givedh, by
Fu, (04) = p,.(0a) — Tigg @) i.e. P(f(0)|64). Applying then (1), the expected motion is
" ! _ generated calculating the generalized output of the iiagult
[2.:(0a) = Zix(0a) — iy, tHMM as explained in [11].

anda;;(0q), p;;,(0a) andX;;(64) are the transition proba-
bilities, means and variances maximizing the likelihootlyon
for the d-th observation. The connection between motions with natural language is
A direct comparison of the standard model parameterschieved integrating two components: The motion language
with the observation specific ones requires an alignment ofiodel and the natural language model. On one side, the
the states, i.e., a similar distribution of the responiibidf  natural language model represents stochastically allifpess
the states through all observations. In order to achiev& thiwords sequences. On the other side, the motion language
we follow [13] initializing the valuesy;;(04), 1;,(64) and model is a stochastic model that captures the link be-
31(0q) with the overall onesy;;, mr;;, and 3;, and then tween motion symbols and words. The combination of both
fixing the means after one iteration of the EM algorithm. Thisnethods provides a model that considers both the sentence
way, a similar distribution of the responsibility is extrad structure constraints and the expected words and motion
from the overall model validating the state comparisonsymbols links.
from (2). The proposed approach is indeed similar to [13]. The natural language model stochastically represents se-
However, the inclusion of the GMM in order to model thequences of words. A bigram model is used to represent links
parametric dependency provides better generalizion propdetween words, modeling the expected sequences. Words are
ties due to its non-linearity and its regression capaédiin  represented by nodes and transitions between two words,
the whole parameter space. i.e. a word is followed by another one, as edges. This way,
Given the set of sampldsf(04), 04}, the GMM is trained the observed sentence structures are expressed as o siti
using the EM algorithm. among words.

IV. MOTION AND NATURAL LANGUAGE MODEL
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The motion language model represents the relations be-
tween motion symbols and words in a stochastic way. The
model is structured in three different layers: motion sytapo
latent states and words. Two different probabilities catne
the motion symbols layer with the words layer. On one side
the the connection between motion symbols and latent states
and on the other side the link between latent states and
words. The first connection represents the probability éhat
motion symbol generates the corresponding latent statie whi
the second connection expresses the probability that atlate
state generates a word. With this structure, the laten¢stat
layer symbolizes the association between motion symbols
and words.

The motion language model and the natural language
model are integrated by performing a computational seard¢he input for an admittance control scheme. A virtual scene
of sentences given a motion or for motions given a sentendé. visually represented on a display placed on top of the
In this paper we focus only on the second direction. Furthefdterface showing a box in the middle.
more, the usage of a bigram structure for the natural larguag Using this setup, we generated samples 7odifferent
model ensures a simple and efficient search appropriate fofimitives: "go straight”, "turn right”, "turn left’, "go b
queries in both cases. the right of the box”, "go to the left of the box”, "go

A more detailed explanation about both the motion lanPehind the box left” and "go behind the box right”. For each
guage and the natural language model can be found in [LBfimitive we produced5 motions, combining the standard

description with the adverbs "fast” and "slow” as well as
V. EXPERIMENTS changing the size of the box displayed in the scene with

In order to test the potential applications of the proposethree different sizes, i.e. big3, middle= 2 and smak- 1.
approach we acquired simple motion primitives labeled witfeveral exemplary motions from the dataset for "go behind
adequate descriptions in a 2 DoF virtual scenario for #e box right”and "turn left” are shown in Fig. 5. The motion
cooperative joint transportation task. We trained allatéht data captured in task space was encoded in an invariant way,
primitives using a single parametric dependency modelvhich, in the case of pure translation without orientation i
except for one primitive, used to test the applicability of2 dimensions reduces to both the curvature and the velocity
the approach to unrelated motions. Using the descriptiof$ofile [14].
and the learned PHMMs, we built both the corresponding Given the description of the motions, the dictionary used
natural language model and the motion language model. THy this scenario contains3 different words. The parameters
presented results show the generalization properties eof tfor the observations are therefore determined by the word

Fig. 4. Experimental setup.

system and its validity. parameters®);, a vector of sizel3, and the environmental
_ onesf,, given by the size of the box displayed in the scene.
A. Experimental Setup Considering the 7 different motion symbols and the sentence

In a human-robot joint transportation task, due to thesed for the descriptions, the natural language and theomoti
physical coupling, both partners must agree on the path t@nguage model were built as explained in Section IV.
follow as they navigate through the environment. In case With these conditions, we trained all PHMMs sharing the
of disagreement, humans can easily communicate with easame dependency functigf(@) as explained in Section llI,
other using natural language in order to find a consensegcept for the one representing "go behind the box left”,
and proceed with the task execution. However, finding awhich was trained apart. Each PHMM was trained with
agreement implies the understanding of the description &f = 8 states withX' = 1 mixture components each.
motions through natural language. Such descriptions majhe GMM of generalized parameter function was trained
also refer to environmental constraints. In this scenavi®, Wwith 8 mixture components. The following results show the
designed a dataset in a simple environment in order to teaekpected motion for a query given to the system and using
a robotic partner motion primitives with their respectivethe generalized parameter model learnt for all primitives.
description and environmental constraints that typicalige = The resulting motion is then reconstructed from the invaria
during this kind of interaction. representation back to the task coordinates.

The training set used in the experiments is extracted with .

a haptic interface where the human applies forces in order t EXPerimental Results

move the object along a desired trajectory, see Fig. V-A. The In order to show the general parametric model's general-
haptic interface consists of a two degrees-of-freedonatine ization capabilities, the following queries given to thetgym
actuated deviceThrustTubg having a free-spinning handle are always referring to the primitive learned apart, "goibeh

at the grasping point. Attached to the handle, a force/®rquhe box left”, which was not considered jf(0).

sensor JR3 measures the human force input that serves as The resulting motions for the queries "go behind the box



y[m]
é
[ ]

—0.25 —0.25 —0.25
0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
z[m] z[m] x[m]
(@)
0.5 i 0.5 0.5
——motion
o 0.25s
0.25 0.25 0.25
E o 0 0
=
—0.25 —0.25 —0.25
—0.5 —0.5 —0.5
—0.5 —0.25 0 0.25 0.5 —0.5 —0.25 0 0.25 0.5 —0.5 —0.25 0 0.25 0.5
z[m] z[m] z[m]

Fig. 5. Generated dataset for the primitives "go behind the rght” for box sizesl, 2 and3 on top. On the bottom, generated motions for "turn left”
performed in three different speeds: slow, normal and fast.

this case, the queries consider parameter values which were
even not in range of the training set and a motion that was not
normal(3.92s) fast(3.765) included in the generalized parameter model. However, the
) resulting motions show the intuitive response of the system
which can even model the influence of the box in an abstract
manner for a primitive not considered previously. While this
result might be initially surprising, it is mainly due to the
inclusion of the primitive "go to the left of the box” in the
generalized parameter model which was trained for differen
box sizes. As both motion descriptions share many words
slow(4.14s) ("go”, "the”, "box”, "left”), the parameterization tendsot
extract most of the non-linear dependency from that model,
‘ ‘ ‘ whose motion profile is indeed similar to "go behind the box
0 0.25 0.5 left”, except for the end of the motion.

«[m] While the previous experiments show a proper response of
Fig. 6. Resulting motions for the queries "go behind the bdk,égo the system to fully specified queries, the marginal influence
behind the box left slow” and "go behind the box fast”. of some parameters can also be extracted generating the
expected mean posterior of their marginal distribution. In
left”, "go behind the box left slow” and "go behind the order to test the influence of the words like "fast” and
box fast” all considering a middle box size are shown irfislow”, we can calculate the parameterization of the model a
Fig. 6. The motion language model selected the motiothe marginal distributionsP(f(0)|"fast” = 1,"slow” = 0),
symbol representing the primitive "go behind the box left’P(f(6)|"fast” = 0,"slow” = 0) and P(f(6)|"fast” =0,
for all three cases. As shown by the execution times, tHslow” = 1). The results for thes8 queries applied to the
three resulting motions, while having very similar curvatu primitive "go behind the box left” are shown in Fig. 8. As
profiles differ mainly on the execution time, even when theshown in the execution times, the essence of the adverbs
parameterization of "fast” or "slow” for this primitive was is present as the fast motion is the fastest and the slow
not included in the generalized parameter model. motion the slowest. However, it is also remarkable thatis th
For the queries "go behind the box left” with box sizescase the motion profiles slightly differ showing an undesire
0.8, 1, 2, 3 and4, the resulting motions are shown in Fig. 7.response. This effect might be produced by the small amount
As with the previous queries, the motion language modé&f primitives considered in this scenario.
selected always the primitive "go behind the box left”. In In summary, the proposed approach captures the influence

0.25¢

]

y[m]




0.25¢

y[m]

proposed approach extracts the abstract meaning of ekterna
parameters and successfully applies its effect to motions
not considered in the training. Combined with the natural
language model and the motion language model, given a
natural language query the presented system can alsotextrac
the most likely primitive from a motion symbol database and
generate the expected motion.

The presented application shows the potential of the pro-
posed approach for enhancing pHRI tasks through natural

0 0.25 0.5
x[m]

Fig. 7. Generated motions for the queries "go behind the bfi% Wath
box sizes0.8, 1, 2, 3, 4 and5.

7 [1]
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3 / [4]
slow(4.26
[5]
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| | ‘ [6]
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z[m]
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Fig. 8. Generated motions for the generated parameterization
of the marginal probabilities of “slow” and “fast” given by
P(f(8)|fast” = 1,"slow” = 0), P(f(6)|"fast’ = 0,"slow” =0)  [8]
and P(f(6@)|"fast” = 0, "slow” = 1) applied to the primitive "go behind

the box left”. ]
of external parameters on motions using PHMMs. The mo-
tion language model extracts the most likely motion symbdtol
given a natural language query and, as shown by the motion
generation results, the parameterization of primitives n@ii]
considered in the training using the generalized parame-
ter model produces motions in agreement with their reﬂ2
meaning. Furthermore, the influence of isolated parameters
is abstracted calculating their expected marginal digticin 13
also producing similar results. 23]

VI. CONCLUSION [14]

In this paper we present a new approach to the problem
of learning natural language together with motions and-envi!®]
ronmental properties. The proposed PHMM model captures
the direct influence on motions of extrinsic elements suchs]
as adverbs from a description and evironmental features.
Furthermore, a generalized parameter model is obtainfpy
training together different motion primitives with the sam
parametric function. As shown by the presented results, the

language communication. Testing the generalization dkpab
ities for larger datasets including a more extense dictipna
and richer environmental features, as well as evaluatieg th
system during disagreement in full scale scenarios during
joint manipulation tasks is the matter of our future work.
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