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Abstract— Natural language interaction between humans and
robots is a very challenging topic, especially when it refers to
motion descriptions in a certain environment. This problem is
particularly relevant during physical human-robot interaction,
e.g. in cooperative transportation tasks, where the partners’
physical coupling requires an agreement on the way to follow.
Understanding in depth the link between sentences, words,
environmental properties and motions can deeply enhance the
interaction between humans and robots. In this work, we
propose a novel approach for learning relations and depen-
dencies between motion, natural language and environmental
properties using parameterized left-to-right time-based Hidden
Markov Models. A natural language model represents the
link between language and motion symbols while the HMMs
parameterization corresponds to the explicit influence on mo-
tions of both words and environmental features. The proposed
PHMM approach parameterizes the output and the transition
probabilities using a non-linear dependency estimation. The
method is validated by learning and generating navigation
primitives in a 2 Degrees-Of-Freedom (DoF) virtual scenario.

I. I NTRODUCTION

In order for robots to interact with humans intuitively they
must understand their partners on different levels of com-
munication - verbally and non-verbally. This is particularly
important for the cooperation of robots with humans under
uncertainty where interactive planning, decision making,and
control play a crucial role as e.g. in [1]. Desirably a robot
understands a verbal “command” by the human interaction
partner and executes the corresponding motor action. As an
example let us consider a human-robot joint transportation
task. Due to the physical coupling, both partners must
agree on the path to follow as they navigate through the
environment. In case of disagreement, humans can easily
communicate with each other using natural language in order
to find a consensus and proceed with the task execution.
Synthesizing similar interactive behavior for robotic partners
is however a very challenging problem as the information
exchange between partners usually refers to evironmental
properties.

Humans easily interact with each other using motions and
gestures [2], [3]. Natural language is a unique symbolic
communication system to humans that provides much richer
descriptions even when referring to motions. More recently
also the interaction through haptic signals as in physical
human-robot cooperation is of increasing interest [1], [4].
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One of the major challenges is the combination of natural
language with motor action in terms of haptic primitives
with consideration for environmental and task constraints.
Understanding the link between signifiers and their corre-
sponding significants is a very challenging topic [5], [6],
especially considering motions [7]. This problem usually
implies, on one side, modeling sentence structures and word
relations in a natural language model and, on the other
side, considering the association between sentences and
motion symbols [8], [9]. Still, this representation does not
express the quality of behaviors in an explicit way. Many
adverbs and adverbials specify how to parametrize and/or
change motions or haptic primitives. As an example take the
sentence “Turn slowly” where “turn” stands for a motion
symbol and “slowly” expresses the quality of the motion
primitive. Extracting such word models can deepen robots’
comprehensive capabilities when using natural language and
improve their inference performance. Furthermore, motions,
as well as their natural language descriptions, are usually
influenced by environmental characteristics and constraints.
Considering these extrinsic dependencies in conjunction with
qualitative natural language descriptions will significantly
expand robots understanding capabilities and will potentially
shrink the gap towards seamless HRI.

The representation of time-series is a well-know issue in
the fields of learning by demonstration or speech recognition.
Hidden Markov Models (HMMs) are widely used in the
literature as a compact spatio-temporal representation ofbe-
haviors [10]. Adding explicit time information to the standard
model, generalized motions can be represented by smooth
trajectories using time-based HMMs (tHMMs) [11]. When
behaviors are characterized by external variables, a natural
extension of standard HMMs are Parametric HMMs (PH-
MMs), which include dependencies of the standard model
parameters w.r.t external parameters [12]. PHMMs have been
used to enrich motions representation by parameterizing its
output densities [12] or by linearly interpolating exemplar
parameters of the different states [13]. However, a full
parameterization of all HMM parameters in a non-linear
fashion is still an open issue.

In this paper we address the probem of learning and
executing motion primitives including quality descriptors and
environmental constraints. To this end we propose a novel
approach for learning relations and dependencies between
motion symbols, natural language and environmental prop-
erties using parameterized left-to-right tHMMs. A natural
language model together with a motion language model
infers the link between sentences and motion symbols while
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Fig. 1. PHMM representation. Each motion symbol is represented by
a PHMM trained with parametric observations. The parameters are given
by the words used in the description of the motion and the environmental
properties.

the tHMMs parameterization represents the explicit influence
on motions of both words and environmental properties. The
proposed PHMM approach directly adapts both the output
and the transition probabilities of tHMMs providing a full
non-linear dependency estimation. The method is validated
by learning and generating navigation primitives in a 2 DoF
virtual scenario.

The remainder of this paper is structured as follows: in
Section II the general approach is presented. The proposed
PHMM learning method is explained in Section III and the
natural language model used is described in Section IV. Ex-
perimental results and discussion are presented in SectionV.

II. GENERAL ARCHITECTURE

The work presented in this paper consists of two problems:
On one side, learning explicit dependencies between words,
environmental properties and motion primitives and, on the
other side, generating the expected motion given a natural
language query and a specific environmental situation.

For the first problem, we consider a set of motion primi-
tives where each motion is represented by a PHMM trained
with a set of parametric motionsOθ = {O,θ}, consisting
of the motion itselfO and its corresponding parametersθ.
In this work we represent motion primitives in task space.
Depending on the reference frame, motions representing the
same primitive might vary significantly if represented in
classical task coordinates. In order to avoid this we choosean
invariant representation of motions [14]. Each invariant mo-
tion O is associated with a set of parametersθ = {θl θe}
given by the word parametersθl and the environmental
parametersθe. The word parameters are determined by
the natural language description of the motion. In order to
avoid computationally intractable parameter spaces, instead
of considering directly each word, a syntactic analysis se-
lects potential adverbials constructions and verbal forms,
drastically reducing the possible parameter candidates. As
undestanding natural language syntax lies out of the scope of
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Fig. 2. Proposed architecture for motion generation. Given aquery, the
natural language model together with the motion language modelextracts
the most likely motion symbol from the database. With the parameters
given by the words from the sentence in conjuntion with the observed
environmental properties, the most likely motion is generated.

this work, for simplicity of illustration we avoid this stepand
represent the word parameters as a vector with the size of the
dictionary, where the words used in the motion description
have value1 and the others0. The environmental parameters
are a set of features of the environment such as an object size
or its position. With this problem setting, shown in Fig. 1,
the training process is carried out as described in Section III.
Furthermore, in order to extract a generalized representation
of how parameters affect motions, the set of primitives
can be trained sharing the same parameterization function
acquiring ageneralized parameter model, as explained in
Section III-B.

For the second problem, once the motion symbols are
learned, amotion generationprocedure produces the motion
primitive given a natural language query and a specific
environmental situation, as depicted in Fig. II. A natural
language model together with a motion language model
select the most likely motion symbol from the set of motion
primitives, as described in Section IV. The words used
in the query together with the perceived environmental
features are then used to parameterize the selected motion
symbol and generate the expected behavior, as explained in
Section III-C.

III. PARAMETRIC TIME-BASED HIDDEN MARKOV

MODELS

A standard left-to-right time-based HMMλ is composed
of N states where each state has continuous observation
densities represented by a Gaussian Mixture Model (GMM)
with K components.λ is described by a set of parameters
{π,a,w,µ,Σ}, where:

• π = {πi} is the initial state probabilities vector, for
1 ≤ i ≤ N .

• a = {aij} is the transition probabilities matrix for
1 ≤ i, j ≤ N .

• w = {wik},µ = {µik},Σ = {Σik} are the weight,
the mean and the covariance matrix of the GMMs for



both the spatial andtemporaldata for1 ≤ i ≤ N

and1 ≤ k ≤ K.

A parameterized observationOθ = {O,θ} is given by
the observed spatial data sequenceO and its corresponding
parametersθ. Note that the parameters are constant during
the whole observation, i.e., a static environment is assumed.

The parametric tHMM modifies the standard output den-
sities and the transition probabilities as a function ofθ, i.e.

aij(θ) = aij + faij
(θ)

µik(θ) = µik + fµik
(θ)

Σik(θ) = Σik + fΣik
(θ),

(1)

where aij , µik and Σik are the standard transition prob-
abilities, means and covariances, calculated using the EM
algorithm [15] using only the spatial dataO. Here we
assume that the initial state probabilities are equal for all
states and therefore no parameterization is needed, but a
similar dependency could be easily added. The model’s
parametric dependencyf(θ) = {faij

(θ), fµik
(θ), fΣik

(θ)}
is estimated observing the variations of the standard tHMM
parameters with respect to the external ones.

A. Parametric Dependency Learning

In order to extract a non-linear approximation of the para-
metric dependency, we model the joint probability density
of f(θ) and the external parameters, i.e.P (f(θ),θ), using
a GMM. This probabilistic model expresses the probability
distribution of the parametersθ in conjunction with the
expected values off(θ). Given a set ofD parametric
observations (d = 1...D), the joint distribution is estimated
maximizing the likelihood of the GMM w.r.t the samples
{f(θd),θd}, wheref(θd) is given by

faij
(θd) = aij(θd)− aij

fµik
(θd) = µik(θd)− µik

fΣik
(θd) = Σik(θd)−Σik,

(2)

andaij(θd), µik(θd) andΣik(θd) are the transition proba-
bilities, means and variances maximizing the likelihood only
for the d-th observation.

A direct comparison of the standard model parameters
with the observation specific ones requires an alignment of
the states, i.e., a similar distribution of the responsibility of
the states through all observations. In order to achieve this,
we follow [13] initializing the valuesaij(θd), µik(θd) and
Σik(θd) with the overall onesaij , µik and Σik and then
fixing the means after one iteration of the EM algorithm. This
way, a similar distribution of the responsibility is extracted
from the overall model validating the state comparisons
from (2). The proposed approach is indeed similar to [13].
However, the inclusion of the GMM in order to model the
parametric dependency provides better generalizion proper-
ties due to its non-linearity and its regression capabilities in
the whole parameter space.

Given the set of samples{f(θd),θd}, the GMM is trained
using the EM algorithm.

Motion symbols

θf(θ)

Fig. 3. Generalized Parameter model. The non-linear dependency f(θ) is
designed considering the parameterization of all possible motion symbols.

B. Generalized Parameter Model

While the influence of external parameters on a specific
model is captured training a PHMM, a generalization of
how those parameters affect motions can not be inferred
with the parameterization of different primitives. In order
to acquire ageneralized parameter modelthe functionf(θ)
must be learned maximizing the expected parameterization
of all different motion primitives, as depicted in Fig. 3.

Given a set ofM PHMMs (m = 1...M ) with D paramet-
ric observations (d = 1...D) each, the generalized parameter
modelf(θ) considers all{fm(θd),θd} for 1 ≤ m ≤ M

and 1 ≤ d ≤ D, wherefm(θd) is the expected value
of the parametric function for the m-th PHMM and the d-th
observation.

C. Inference and Motion Generation

Given a query with its corresponding parametersθq, gen-
erating the expected motion from a PHMM requires first the
calculation of the expected values off(θ). Using Gaussian
Mixture Regression (GMR) [16], we calculate the expected
parameterization as the posterior mean estimate given byθq,
i.e. P (f(θ)|θq). Applying then (1), the expected motion is
generated calculating the generalized output of the resulting
tHMM as explained in [11].

IV. M OTION AND NATURAL LANGUAGE MODEL

The connection between motions with natural language is
achieved integrating two components: The motion language
model and the natural language model. On one side, the
natural language model represents stochastically all possible
words sequences. On the other side, the motion language
model is a stochastic model that captures the link be-
tween motion symbols and words. The combination of both
methods provides a model that considers both the sentence
structure constraints and the expected words and motion
symbols links.

The natural language model stochastically represents se-
quences of words. A bigram model is used to represent links
between words, modeling the expected sequences. Words are
represented by nodes and transitions between two words,
i.e. a word is followed by another one, as edges. This way,
the observed sentence structures are expressed as transitions
among words.



The motion language model represents the relations be-
tween motion symbols and words in a stochastic way. The
model is structured in three different layers: motion symbols,
latent states and words. Two different probabilities connect
the motion symbols layer with the words layer. On one side
the the connection between motion symbols and latent states
and on the other side the link between latent states and
words. The first connection represents the probability thata
motion symbol generates the corresponding latent state while
the second connection expresses the probability that a latent
state generates a word. With this structure, the latent states
layer symbolizes the association between motion symbols
and words.

The motion language model and the natural language
model are integrated by performing a computational search
of sentences given a motion or for motions given a sentence.
In this paper we focus only on the second direction. Further-
more, the usage of a bigram structure for the natural language
model ensures a simple and efficient search appropriate for
queries in both cases.

A more detailed explanation about both the motion lan-
guage and the natural language model can be found in [17].

V. EXPERIMENTS

In order to test the potential applications of the proposed
approach we acquired simple motion primitives labeled with
adequate descriptions in a 2 DoF virtual scenario for a
cooperative joint transportation task. We trained all different
primitives using a single parametric dependency model,
except for one primitive, used to test the applicability of
the approach to unrelated motions. Using the descriptions
and the learned PHMMs, we built both the corresponding
natural language model and the motion language model. The
presented results show the generalization properties of the
system and its validity.

A. Experimental Setup

In a human-robot joint transportation task, due to the
physical coupling, both partners must agree on the path to
follow as they navigate through the environment. In case
of disagreement, humans can easily communicate with each
other using natural language in order to find a consensus
and proceed with the task execution. However, finding an
agreement implies the understanding of the description of
motions through natural language. Such descriptions may
also refer to environmental constraints. In this scenario,we
designed a dataset in a simple environment in order to teach
a robotic partner motion primitives with their respective
description and environmental constraints that typicallyarise
during this kind of interaction.

The training set used in the experiments is extracted with
a haptic interface where the human applies forces in order to
move the object along a desired trajectory, see Fig. V-A. The
haptic interface consists of a two degrees-of-freedom linear-
actuated device (ThrustTube) having a free-spinning handle
at the grasping point. Attached to the handle, a force/torque
sensor (JR3) measures the human force input that serves as
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Fig. 4. Experimental setup.

the input for an admittance control scheme. A virtual scene
is visually represented on a display placed on top of the
interface showing a box in the middle.

Using this setup, we generated samples for7 different
primitives: ”go straight”, ”turn right”, ”turn left”, ”go to
the right of the box”, ”go to the left of the box”, ”go
behind the box left” and ”go behind the box right”. For each
primitive we produced25 motions, combining the standard
description with the adverbs ”fast” and ”slow” as well as
changing the size of the box displayed in the scene with
three different sizes, i.e. big= 3, middle= 2 and small= 1.
Several exemplary motions from the dataset for ”go behind
the box right” and ”turn left” are shown in Fig. 5. The motion
data captured in task space was encoded in an invariant way,
which, in the case of pure translation without orientation in
2 dimensions reduces to both the curvature and the velocity
profile [14].

Given the description of the motions, the dictionary used
for this scenario contains13 different words. The parameters
for the observations are therefore determined by the word
parametersθl, a vector of size13, and the environmental
onesθe, given by the size of the box displayed in the scene.
Considering the 7 different motion symbols and the sentences
used for the descriptions, the natural language and the motion
language model were built as explained in Section IV.

With these conditions, we trained all PHMMs sharing the
same dependency functionf(θ) as explained in Section III,
except for the one representing ”go behind the box left”,
which was trained apart. Each PHMM was trained with
N = 8 states withK = 1 mixture components each.
The GMM of generalized parameter function was trained
with 8 mixture components. The following results show the
expected motion for a query given to the system and using
the generalized parameter model learnt for all primitives.
The resulting motion is then reconstructed from the invariant
representation back to the task coordinates.

B. Experimental Results

In order to show the general parametric model’s general-
ization capabilities, the following queries given to the system
are always referring to the primitive learned apart, ”go behind
the box left”, which was not considered inf(θ).

The resulting motions for the queries ”go behind the box
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Fig. 5. Generated dataset for the primitives ”go behind the box right” for box sizes1, 2 and3 on top. On the bottom, generated motions for ”turn left”
performed in three different speeds: slow, normal and fast.
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Fig. 6. Resulting motions for the queries ”go behind the box left”, ”go
behind the box left slow” and ”go behind the box fast”.

left”, ”go behind the box left slow” and ”go behind the
box fast” all considering a middle box size are shown in
Fig. 6. The motion language model selected the motion
symbol representing the primitive ”go behind the box left”
for all three cases. As shown by the execution times, the
three resulting motions, while having very similar curvature
profiles differ mainly on the execution time, even when the
parameterization of ”fast” or ”slow” for this primitive was
not included in the generalized parameter model.

For the queries ”go behind the box left” with box sizes
0.8, 1, 2, 3 and4, the resulting motions are shown in Fig. 7.
As with the previous queries, the motion language model
selected always the primitive ”go behind the box left”. In

this case, the queries consider parameter values which were
even not in range of the training set and a motion that was not
included in the generalized parameter model. However, the
resulting motions show the intuitive response of the system
which can even model the influence of the box in an abstract
manner for a primitive not considered previously. While this
result might be initially surprising, it is mainly due to the
inclusion of the primitive ”go to the left of the box” in the
generalized parameter model which was trained for different
box sizes. As both motion descriptions share many words
(”go”, ”the”, ”box”, ”left”), the parameterization tends to
extract most of the non-linear dependency from that model,
whose motion profile is indeed similar to ”go behind the box
left”, except for the end of the motion.

While the previous experiments show a proper response of
the system to fully specified queries, the marginal influence
of some parameters can also be extracted generating the
expected mean posterior of their marginal distribution. In
order to test the influence of the words like ”fast” and
”slow”, we can calculate the parameterization of the model as
the marginal distributionsP (f(θ)|”fast” = 1, ”slow” = 0),
P (f(θ)|”fast” = 0, ”slow” = 0) and P (f(θ)|”fast” = 0,
”slow” = 1). The results for these3 queries applied to the
primitive ”go behind the box left” are shown in Fig. 8. As
shown in the execution times, the essence of the adverbs
is present as the fast motion is the fastest and the slow
motion the slowest. However, it is also remarkable that in this
case the motion profiles slightly differ showing an undesired
response. This effect might be produced by the small amount
of primitives considered in this scenario.

In summary, the proposed approach captures the influence
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Fig. 8. Generated motions for the generated parameterization
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P (f(θ)|”fast” = 1, ”slow” = 0), P (f(θ)|”fast” = 0, ”slow” = 0)
andP (f(θ)|”fast” = 0, ”slow” = 1) applied to the primitive ”go behind
the box left”.

of external parameters on motions using PHMMs. The mo-
tion language model extracts the most likely motion symbol
given a natural language query and, as shown by the motion
generation results, the parameterization of primitives not
considered in the training using the generalized parame-
ter model produces motions in agreement with their real
meaning. Furthermore, the influence of isolated parameters
is abstracted calculating their expected marginal distribution
also producing similar results.

VI. CONCLUSION

In this paper we present a new approach to the problem
of learning natural language together with motions and envi-
ronmental properties. The proposed PHMM model captures
the direct influence on motions of extrinsic elements such
as adverbs from a description and evironmental features.
Furthermore, a generalized parameter model is obtained
training together different motion primitives with the same
parametric function. As shown by the presented results, the

proposed approach extracts the abstract meaning of external
parameters and successfully applies its effect to motions
not considered in the training. Combined with the natural
language model and the motion language model, given a
natural language query the presented system can also extract
the most likely primitive from a motion symbol database and
generate the expected motion.

The presented application shows the potential of the pro-
posed approach for enhancing pHRI tasks through natural
language communication. Testing the generalization capabil-
ities for larger datasets including a more extense dictionary
and richer environmental features, as well as evaluating the
system during disagreement in full scale scenarios during
joint manipulation tasks is the matter of our future work.
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