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Abstract— In this paper, we discuss an approach to eval-
uate decisions made during a multi-armed bandit learning
experiment. Usually, the results of machine learning algorithms
applied on multi-armed bandit scenarios are rated in terms
of earned reward and optimal decisions taken. These criteria
are valuable for objective comparison in finite experiments.
But learning algorithms used in real scenarios, for example
in robotics, need to have instantaneous criteria to evaluate
their actual decisions taken. [1] To overcome this problem,
in our approach each decision updates the Zürich model
which emulates the human sense of feeling secure and aroused.
Combining these two feelings results in an emotional evaluation
of decision policies and could be used to model the emotional
state of an intelligent agent.

I. INTRODUCTION

Cognitive systems are often biologically inspired. Cog-
nition means the mental process to acquire knowledge and
understanding through observations, experiences, and sens-
ing the environment. One aspect of cognition are emotions.
They are triggered and in turn influenced by the environment
through cognitive processes.

This work concentrates on emotion aware systems and
presents one way to model psychologically correct two basic
feelings and express them in a high-level manner as human
emotions. It could be used to design inner mental states for
future generations of robots or other cognitive systems.

Up to now, most systems try to model emotional states
of surrounding people or robots instead of having an own
internal system of emotions and feelings only depending
on their own observations and decisions. Being equipped
with an own personality and will is considered to be one
of the most important aspect of human-like behaviour of
artificial agents. In future, it is getting more important to
make machines more believable so that the user is able to
trust them [2].

Another reason for turning machines with artificial in-
telligence into intelligent emotion aware systems is uncer-
tainty. There are two categories of uncertainty - aleatory
and epistemic uncertainty. The second, epistemic uncertainty
is the result ”of the human’s lack of knowledge” [3] of
the surrounding environment. Currently, the measurement
of uncertainty is done using Bayesian probabilities, fuzzy
sets, fuzzy logic, possibility theory, belief functions and
many more [4], [5]. Humans usually deal with uncertainty
through relying on their experiences - commonly known as
gut feeling or intuition - but machines cannot [6].

II. EVALUATION OF MULTI-ARMED BANDIT PROBLEMS

In our scenarios, an artificial agent is confronted with a
multi-armed bandit decision problem. We have chosen the
multi-armed bandit problems as a representative example
of many decision problems. Multi-armed bandit problems
model decisions in a large variety of research topics such as
online advertising, news article selection, network routing,
and medicinal trials, to name a few.

Currently, the decisions made by learning algorithms on
bandit problems are commonly rated in terms of the cumu-
lated reward, rate of optimal decisions, and regret. Usually,
these values are calculated after each experiment. In our
work, we present a way to evaluate actual decisions in a
biologically inspired way. Therefore, we have implemented a
psychological correct model which states the two feelings of
security and arousal for an artificial agent. The model relies
on the three input features for each object. These features
are relevancy, familiarity and psychological distance. We use
eligibility traces to calculate the relevancy and familiarity of
the bandit arms.

A combination of the two resulting values for security
and arousal provides a natural and more convenient way to
evaluate decision processes or rate decision uncertainty.

III. RELATED WORK

The research issue of artificial emotions and feelings can
be divided into two parts: on the one hand, techniques
used for emotion recognition, and on the other hand, those
techniques modelling (and expressing) artificial emotions and
feelings.

Emotion recognition is an important aspect for affective
systems to recognize the mood of the user and adapt its
behaviour. Two great examples can be found in [7] and
[8]. In case of robots, the emotion dependant adaptation
is used to express artificial emotions improving the social
behaviour and acceptance of the robot [9], [10]. There are
many ways of reacting to recognized emotions and therefore
there exists many ways to implement a correct recognition
system. The difficulty lays in the correct combination of the
feature acquisition and psychological modelling of human
emotions.

Besides emotion recognition, the second important aspect
of artificial emotions is the design of emotional models [11],
[12]. These models can be integrated into artificial agents
(e.g. robots) or computer games. Normally, those agents



or artificial intelligences try to imitate human behaviour
according to fuzzy logics, self organizing maps or other
psychologically or biologically inspired models.

The mentioned systems are focused on robotics and social
behaviour of distributed systems. To the best of our knowl-
edge, there exist no concepts for modelling emotion aware
systems based on a fixed psychological model which utilizes
only parameters related to decisions. Fixed means in this case
that the model works without any training. So, the main goal
of our work is to conduct an internal evaluation of decisions
in terms of emotions or feelings. This is our attempt to give
artificial agents the ability to experience something like the
well-known gut feelings of humans.

IV. MULTI-ARMED BANDITS

One-armed bandits are also known as slot machines and
can be found in almost all casinos around the world. Those
slot machines pay a reward from an unknown probability
distribution at each play. If a player is confronted with a
row of slot machines and has to decide which machine he
likes to play, then he is confronted with a multi-armed bandit
problem. The multi-armed bandit (MAB) research topic goes
back until 1952 when Herbert Robbins considered his clinical
trials as a bandit problem with more than two arms [13].

In a MAB experiment several trials are played on the same
bandit machine. The bandit machine consists of more than
one arm. Each arm has a specific probability distribution
which determines the success probability for winning. At
each trial the agent tries to maximize its reward by selecting
the arm with the highest chance of success. During a game,
the agent tries to find out which arm has the highest success
probability and then will keep playing this arm to maximize
its reward. To find out the right arm, the agent first has to
check out each arm several times. This is called exploration.
Always playing the arm with the supposedly highest success
probability is called exploitation. Both together is called
the exploration/exploitation trade off, which is an important
research problem in the machine learning area [14].

The success of each play is evaluated in terms of cu-
mulative reward and the rate of optimal decisions. The
performance of an agent (or learning algorithm) is evaluated
in the long run by calculating the mean values of the
cumulative reward and optimal decision rate over several
plays with several trials. These mean values are also used
for comparison among different algorithms.

Besides many different learning algorithms for multi-
armed bandit problems, there are also many variations of the
MAB problem. Bernoulli, Exponential or Poisson probability
distributions are used as reward structures.

For our experiments we have chosen the class of Bernoulli
distributed bandit problems. This class represents deci-
sions with only two possibilities - success or failure. Both
cases with a distinct probability. The extension to multiple
Bernoulli distributed experiments (MAB problem) corre-
sponds to a situation where each move can be successful, but
only one move has the highest success probability to win. An
efficient implementation of the Bernoulli multi-armed bandit

problem and several learning algorithms was done by Olivier
Cappé et al. [15]. We use this implementation to conduct
our experiments generating the decision policies and reward
processes.

V. ZÜRICH MODEL

The German psychologist Norbert Bischof proposed his
”Zürich Model of Social Motivation” in 1975 [16], [17]. It
is the result of his research in the fields of ethology and
evolutionary theory. Basically, it consists of three negative
feedback loops connected to so called detectors delivering
the actual state. This actual state is compared to reference
values resulting in impulses (momenta) compensating these
discrepancies.

The Zürich Model of Social Motivation can be considered
as one of the most applicable psychological models of
social motivation, since Bischof describes his model in a
psychological manner and in a systems theoretic way.

In the following, we describe Bischof’s model, but restrict
it to two basic feelings - security and arousal - omitting
the third, the autonomy claim which is not relevant to our
scenario. Because, the autonomy claim model would influ-
ence both the arousal and the security system [18]. Based
on empirical studies, the model describes the behaviour and
actions performed by a children in the present of surrounding
objects. These objects could either be things like an ordinary
ball or other humans. The recognition and classification of
these objects thereby is not a part of the original model
[18]. Instead, so called detectors were assumed to assign
two values - relevancy Ri and familiarity Fi - to each object
i. In addition to these two values each object has a position
zi. The complete Zürich model is drawn in Figure 1.

It can be divided into three coupled subsystems, namely
the security system, the arousal system, and the detectors.

Detectors

In the present bandit scenario we have implemented two
detectors (DetF and DetR) observing the bandit process.
The first detector calculates a familiarity value Fi of each
bandit arm i and the second determines the relevancy Ri of
each arm. Both familiarity and relevancy are calculated using
eligibility traces. The basic idea behind eligibility traces
is that each occurrence of an event triggers a short-term
memory process which gradually fades out afterwards [19].
If each new event accumulates to the existing trace, we call
this the accumulating trace defined by

et+1(s) =

{
λγet(s) if s 6= st
λγet(s) + 1 if s = st

,

where et(s) models the memory process and st the actual
state s at time t. Each time st equals to a specific state s it
is added 1 to the actual state.

The familiarity detector calculates for each arm an eligi-
bility trace by adding one to the trace of the actual selected
arm. Then all arms are multiplied by the decaying factors λ
and γ. Whereas, the relevancy detector always adds the actual
reward to each arm (could either be zero or one) before the
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Fig. 1. Realization of the Zürich Model, the security subsystem is drawn
in red and the arousal subsystem is drawn in blue

multiplication with the factors is performed. This results in
high familiarity values for regularly selected arms and a high
relevancy for familiar arms with high rewards.

Security System

The feeling of security is defined as the warmth, pro-
tection, and intimacy someone feels for example at home
surrounded by a familiar person [20]. As already mentioned,
the subsystems use two features and the position of objects
to calculate their outputs. In a first step, the security system
calculates a potency value Pi from the familiarity Fi and
the distance value xi. The distance value in the actual
implementation is determined by the Euclidean distance
between the two points in a two dimensional space multiplied
by a hyperbolic function H(xi). This function is defined by

H(xi) =

{
r(xmax−|xi|)

r(xmax−|xi|)+|xi|xmax
if |xi| < xmax

0 otherwise
,

where r determines the slope of decay of the hyperbolic
function and xmax the distance where it vanishes to zero.
The function is used to take possible additional psycholog-
ical effects influencing the purely geometric distance into
account. In the actual bandit scenario, we have given each
arm a fixed position, only the agent itself is able to move.

The potency value Pi of each object is multiplicatively
combined to the joint potency

P = −1
n∏

i=1

(1− Pi).

The joint potency is then multiplied by the joint familiarity
F of all surrounding objects n by

F =

∑n
i=1 PiFi∑n
i=1 Pi

resulting in the security value s = P · F . Finally, the se-
curity subsystem (drawn in red) compares the security value
with the dependency D, a reference value determining how
dependent a subject (agent) is. The result is the activation
component As of the security system.

Arousal System

The feeling of arousal is triggered in new and uncertain
situations and can be further defined with feelings ”such as
interest, fascination, curiosity, as well as feelings of alarm
or fear” [20]. In the Zürich model the arousal value a is
calculated by multiplying the inverse joint familiarity with
the joint potency value:

a = P · (1− F ).

The reference value of the arousal system is labelled with
enterprise E and denotes how initiative the subject (agent)
behaves in unknown and changing environments. The arousal
value and reference value is compared through subtraction
resulting in the activation component Aa of the arousal
subsystem (drawn in blue).

Momentum Vectors and Distance Regulation

The activation components are used to express appetence
(positive A values) while negative A values express aversion
[18]. This means, if the actual security or arousal values
fall below the corresponding reference value resulting in
positive activation components, the agent enters a state called
appetence. In this state, it tries to increase its feeling of
security or decrease its degree of arousal through adjusting
its distance to objects more familiar and relevant.

This is done by calculating a direction and magnitude of
a vector superimposing so called incentive vectors Ia and
Is. Therefore, the location, the potency value P ′ai and the
degree of familiarity Fi of each object around the agent is
combined. Based on the agent’s location, the vectors pointing
from each object to the agent’s position are weighted either
by the potency values P ′ai or the inverse familiarity values Fi

resulting in the incentive vectors Ia and Is. Superimposing
them would result in a single vector pointing in a direction of
an area with either a higher value of security or less arousal.

Multiplying these incentive vectors with their correspond-
ing activation components results in so called momentum
vectors [18], weighted versions of the incentive vectors.
The weighting with the activation component combines the
demand (appentence) or reluctance (aversion) of the agent
with directions of objects spending security or irritating it.

At each time step, both, the momentum vector of the secu-
rity subsystem Ms and the one of the arousal subsystem Ma

are superimposed and damped by a damping factor d. This
damping improves the stability and smooths the movement.
The result is then added to the actual agent position. This
creates a self-regulating feedback loop, altering all preceding



values of the last time step, converging to a position with the
highest security value and lowest arousal value.

VI. EMOTIONAL EVALUATION

In this section we describe the connection between the
Zürich model and the bandit scenario in order to evaluate
the decision process internally with emotions. Our objective
is to give an agent the ability of evaluating an arbitrary
decision process using a psychological model which does not
require huge adaptations to new problems. The Zürich model
fulfils this property because its adaptations to a new problem
affect only the detectors. In order to keep the detectors
as simple as possible we choose the multi-armed bandit
scenario with only one observable variable and one possible
action in each round. These two variables are the interface
between the Zürich model and the bandit process. The
bandit experiment is independent from the Zürich model. The
emotions generated by the model are not used in the decision
or learning process of the bandit. Such a combination is
planned for future experiments.

Under these conditions, we conduct the bandit simulations
or learning experiments generating decision processes and
reward curves. This results in data streams with pairs of the
decision and the gained reward. These pairs are presented one
by one to the Zürich model which generates for each trial
a value for the feeling of security and arousal. Then, for a
better visualization we combine these values in relation to
each other and plot them as human emotions.

Experiments

We conduct two different bandit experiments. The first one
is a complete simulation of a bandit experiment in which we
predetermine the learning curve and decision policy. In the
second experiment, we use a bandit simulation and a learning
algorithm generating the decisions.

In the simulation, we perform 100 plays each with 1500
trials. The structure of each play is divided into five phases.
The first phase represents a state in which the agent is
completely untrained and does not have any knowledge about
the bandits. All decisions are made randomly. After 300
trials, the agent enters the second phase. In this phase, the
simulation selects randomly the two best arms resulting in
higher rewards. This phase represents a state in which first
training success is made by the agent. Again, after 300 trials
the agent enters phase three in which the training is finished,
the decisions are optimal and it selects only the best arm.
After this exploitation phase, the agent enters phase four at
trial 900. In this phase, a hidden disturbance in the bandit
process causes that the agent is only able to select the best
arm with a probability of ten percent. In the last phase, the
bandit process recovers and the agent is again able to ideally
select the best arm for getting the highest rewards.

We designed these phases, so that the agent is faced with
five different situations. Each situation can occur during an
experiment using machine learning algorithms (as used in
the second experiment). But it could be difficult to clearly

observe each individual phase in those experiments. There-
fore, we use the simulation as described above, to present
how the Zürich model evaluates predetermined situations.

The second experiment is then used to show how the
Zürich model evaluates decisions made by a machine learn-
ing algorithm. In this experiment, we perform also 100 plays
each with 300 trials, but now using a standard implementa-
tion of a Bernoulli bandit process and an agent autonomously
learning its decisions. In order to investigate the agent’s
behaviour in a learning and relearning scenario we modify
the bandit scenario after trial 200 and 300. The modification
consists in exchanging the best arm, so that the learning
algorithm has to stop exploiting the best arm in order to
explore a new strategy.

During the bandit experiments, the values calculated by
the Zürich model do not influence the learning algorithm.

Implementation
Both, the bandit processes and the Zürich model are

implemented using Matlab. A good framework we use is
called pymaBandits [15]. It already includes several learning
policies like the Gittin’s index, the classical UCB policy and
some variations of it, the MOSS policy and some others.

We chose the Gittins index policy for learning the deci-
sions in our experiments, because this policy is well known
and is proven to be optimal [21]. We applied it on a
four-armed Bernoulli bandit experiment implemented by the
existing functions of the pymaBandit framework.

The interface of the Zürich model consists of a function
which is called every time a new pair of decision and reward
is available. The current state of the model is saved in an
object-orientated data format. In case of the above mentioned
experiments we iteratively present the bandit decision and
reward pairs to the model, which updates the objects. There
exist two different classes, one representing the agent (ego)
containing its position, the reference values and the actual
security and arousal values. The second class models the
objects around the agent, like the bandit arms and contains
values for the familiarity and relevancy of the object and its
position.

We took care to design the model and the experiments with
as few parameters as possible. The Zürich model only needs
its reference values D and E, the detectors are parametrized
with a decay parameter λ and a discount-rate γ. For the
bandit experiments, we had to set the number of arms, trials
and plays, as well as the success probability µi for each
bandit arm. We summarized these values in Table I.

A dependency value D of 0.75 and an enterprise value
E of 0.8 corresponds to an individual, highly dependent on
sources of security and simultaneously receptive to changing
situations. We set the product of the decay and discount-rate
to 0.95, which results in a slow decay of the eligibility traces.
The success probabilities of the bandit arms were selected
arbitrarily, except, that one arm has a clear maximum.

Results
As described in Section V, the Zürich model delivers

values representing the degree of arousal and security of an



TABLE I
PARAMETER SETTING USED FOR THE ZÜRICH MODEL, THE DETECTORS

AND THE EXPERIMENTS

Zürich Model Detectors Bandit experiments

D = 0.75 λ · γ = 0.95 µ1 = 0.1
E = 0.8 µ2 = 0.3

µ3 = 0.2
µ4 = 0.8

agent. The arousal value corresponds to the human feeling of
getting excited or being externally stimulated. The security
value quantifies the level of how secure the agent feels.
Both values have to be interpreted together, because their
meanings change relatively to the higher one of the two.
Therefore, we have implemented a function comparing the
security and arousal value, presenting them as emotions. The
exact function for each emotion is provided in Table II. But
this abstraction depicts only one example of how the results
of the Zürich model could be interpreted. Currently, these
combinations are not based on any psychological model.

TABLE II
COMBINATORIAL RULES DETERMINING WHICH EMOTION IS TRIGGERED

(A: AROUSAL, S: SECURITY)

Emotion Rule

 uncertainty a < 0.15 ∧ s < 0.15
 aversion ∇s < 0 ∧∇a > 0
 anger (a > 0.85 ∧ s < 0.15) ∨ . . .

(|∇a| > 0.0075 ∧ s < 0.3)
 fear ∇a > 0 ∧∇s < 0 ∧ a > s
 anticipation ∇a < 0 ∧∇s > 0 ∧ a < s
 joy a < s ∧∇a ≤ 0
 trust a < s ∧ |∇a| < 0.0005

In Table II the ∇ operator calculates the gradient over the
last five values. An emotion is outputted for each instance of
time only if the corresponding rule is evaluated to be true.

Figure 2 shows the resulting security and arousal values,
as well as the overlaid emotions for the simulated bandit
process. The five simulation phases are separated with dotted
lines. The first phase is characterized by uncertainty at the
beginning followed by emotions like aversion and fear. This
corresponds to the expected result in this phase. In the second
phase the amount of emotions like anticipation, joy, and trust
increases but is still broken by feelings of aversion. In this
phase our interpretation using the combinatorial logic above
lacks and needs still some improvements. The Zürich model
delivers good values, i.e. the increased arousal value is an
result of the changed situation and the increasing security
value is a consequence of the higher rewards. Then, in phase
three, the ideal case, the agent only shows emotions like
anticipation, joy, and trust. The internal disturbance of the
bandit process in phase four causes emotions like aversion
and fear, but no uncertainty due to the remaining fraction
of good decisions. Which fits to our expectations. In the last

phase, the decision process recovers and the agent regains its
trust. The security and arousal values also recover and show
expected values.
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Fig. 2. Plot of the security and arousal feeling for the simulation experiment
with overlayed emotions according to Table II

Applying the Zürich model on the machine learning ex-
periment results in Figure 3. As stated above, we altered
the bandit process two times while an agent learns the
optimal decision policy using the Gittins index. So, there
are three phases in which learning and relearning occurs.
We expect for the learning phase increasing security values
and decreasing arousal values and corresponding emotions.
The relearning phase should invert this upto the point when
the new policy is learned.

In the first phase, the agent learns for the first time and tries
to find an optimal policy. The Gittins index policy discovers
the best arm fast, and then stops exploring. During this initial
exploring, the agent feels uncertain. Having found the best
arm, results in high rewards, so the agent begins to feel joy
and trust. The model works as expected. Then, at trial 100
the arm configuration changes and the agent has to relearn.
Right after the change, the agent does not like its decisions
resulting in the emotion of aversion followed by a phase
of uncertainty, during which it discovers the new optimal
choice. Then, it shows emotions like anticipation and joy
again. Changing the configuration for the second time, again
results in phases characterized by emotions of aversion and
uncertainty. But now the relearning process lasts remarkably
longer because the Gittins index policy is not designed to
adapt regularly to new arm configurations. But, the Zürich
model still delivers interesting results. Although the policy
does not deliver optimal decisions, the agent shows emotions
of anticipation, joy and trust, which is a result of the previous
experiences.

The results show, that the Zürich model is able to evaluate
decisions of an artificial agent based on psychological prin-
ciples. We see, that the model produces values representing
the feeling of security and arousal corresponding to situations
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Fig. 3. Emotional evaluation of a multi-armed bandit problem using the
Gittins index policy

with uncertainty and learning progress.

VII. CONCLUSIONS AND FUTURE WORK

This paper began by dividing the research topic of artificial
emotions into two parts and then considering the modelling
aspect of this research area. We presented the Zürich model
which models the human feelings of security and arousal.
As yet, machine learning algorithms were evaluated by
objective figures like reward or regret, but in future emotion
aware systems an emotional evaluation of decisions made
by the artificial intelligence are considered to be important.
The results show that the model indeed can be used for
the evaluation of a machine learning process extending the
common objective figures with values representing feelings.

At the same time, the emotional evaluation could be an
helpful indicator for uncertainty which is often required by
machine learning algorithms (e.g. reinforcement learning).
Another reason for modelling feelings and emotions based
on decisions instead of user feedback is to improve the
behaviour of artificial agents and make them more believable
[2].

Future work will concern the implementation of an au-
tonomy system as suggested by Bischof, giving the agent
the feeling of being competent and respected by others.
Furthermore, it will be interesting to apply the model on
further scenarios and combine it with reinforcement learning.
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