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ABSTRACT   

A novel approach for the sharing of knowledge between widely heterogeneous robotic agents is presented, 
drawing upon Gardenfors Conceptual Spaces approach [4].  The target microrobotic platforms considered are 
computationally, power, sensor, and communications impoverished compared to more traditional robotics 
platforms due to their small size.  This produces novel challenges for the system to converge on an 
interpretation of events within the world, in this case specifically focusing on the task of recognizing the 
concept of a biohazard in an indoor setting. 
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1. INTRODUCTION  
In research as part of the Army Research Laboratory’s Collaborative Technology Alliance for 
MicroAutonomous Systems Technology (MAST), we are developing foundational capabilities to provide 
knowledge sharing across widely heterogeneous robotic platforms: small crawlers equipped with relatively 
exotic sensing such as airflow sensors and micro gas chromatographs; and microflyers fitted with millimeter 
wave radar and infrared imagers. The research question we are pursuing is how can such robotic systems with 
such radically different views of the world share information in ways that allow for effective distributed 
mission tasking and completion? 

We continue to exploit our novel approach to this problem that leverages our significant prior work [6-10] in 
the conceptual spaces framework developed by Gardenfors [4,1]. In this paper we focus on the architectural 
design and implementation issues associated with widely heterogeneous micro-robots that are tasked for 
specific missions. This involves the creation of an abstract sensor layer, which is mapped onto a platform-
specific conceptual space that defines real-world objects in the context of the sensory capacity of each robotic 
agent. These in turn communicate high-level symbolic concepts along with a robot identification (id) and 
target location couched in an egocentric or allocentric (landmark-centered) frame of reference. For MAST we 
have considered a range of mission scenarios in the past [14] but the specific mission considered for the 
research in this paper involves multi-robot search, detection, and operator alert for possible biohazards or 
chemical weapons within an interior structure using teams of microflyers and crawlers equipped with highly 
disparate and somewhat esoteric sensor suites. 

Our technical approach involves the following major thrust areas: 
 

1. Extending the conceptual spaces approach for knowledge sharing among heterogeneous team 
members, focusing on the constraints imposed in MAST regarding power, sensing, computation, and 
communication. 

2. Within the architecture, to develop suitable MAST behaviors for the flyers and crawlers operating 
within the defined mission context to efficiently exploit shared knowledge based upon data derived 
or simulated from MAST-specific sensors under development by the Microsystems group. 

Of necessity, as these flyers, crawlers, and sensors are currently under development by other MAST team 
members we are using surrogate robotic platforms and sensors to test these ideas. 



2. OVERVIEW ON CONCEPTUAL SPACES 
Gärdenfors’ Conceptual Space Theory [4] suggests a metric world of thought that represents objects and 
abstract concepts with sets of perceptual features. Based on this theory, an architecture for heterogeneous 
robots was developed [6]. Figure 1 presents a visualization of the architecture and how and what the robots 
communicate with each other. 

 
Figure 1. The architecture has three components: the communication module, conceptual space, and abstract sensor layer. 

Each of the sensors provides raw sensor data relating to the intrinsic properties of the observed objects. This 
sensory data is processed within the Abstract Sensor Layer (ASL) to obtain relevant perceptual features, 
which are then mapped into the respective domains that define the Conceptual Space. As per Conceptual 
Spaces theory, each domain is composed of quality dimensions that represent various perceived qualities of 
situations or objects. Because these quality dimensions are metric, the similarity between the qualities of a 
detected object and of the concept under study can be easily calculated. Thus each domain verifies how 
similar the respective perceptual feature of the detected object is to the same feature of, in this case, the 
concept of a biohazard. The more similar the features are, the higher the probability that the detected object is 
indeed a biohazard. 
 
2.1 Conceptual Space Definition 

A conceptual space is made up of a symbol space and a concept space (Figure 2). In the symbol space, each 
symbol defines a different concept. Inside the concept space, a concept has several domains that distinguish it 
from other concepts. Thus, a specific concept is represented as a set of regions inside the domains. Each 
domain is composed of quality dimensions that represent the perceptual features obtained from the sensors. 
Their function is to represent various qualities of situations or objects. As stated earlier, the quality 
dimensions of the domains are metric, thus determining the similarity between a given instance of an object 
and a defined (or learned [7]) concept is straightforward. 

 
Figure 2. Schematic of a Conceptual Space and its components. 



Different sensors feed raw sensor data into each individual robot’s Abstract Sensor Layer (ASL). Remember 
that the robots do not share the same sensors and perceive the world in radically different ways. The ASL then 
processes the data and makes available perceptual features that are useful to identify/classify different objects. 
When an object property is detected, an instance of the relevant perceptual feature is compared to the already 
defined abstract concept prototype and associated probability distribution defining the concept. Depending on 
the probability of how similar that instance is to the concept, either an allocentric or egocentric location of the 
object in question (the candidate concept) is transmitted to the rest of the team for confirmation. In this initial 
research, without loss of generality, all experiments were made with the end goal of detecting a biohazard 
threat in a given environment. All robots, each mounted with widely heterogeneous sensors, must collectively 
achieve a consensus in determining if a detected object is considered as a biohazard threat or not. No 
individual robot has sufficient sensing capability to achieve the task by itself. 

2.2 Use of the Conceptual Space 

Consider how to represent an apple in a conceptual space. As humans, we can identify an apple by its intrinsic 
properties that, all together, specifically define an apple and nothing else (e.g. color, shape, texture, taste). As 
mentioned before, each property is represented by a region in a given domain. Thus, robots can use these 
regions (as we use the properties) to identify/classify a concept. The most representative member of a region 
is defined as its prototype. Thanks to the metric world of the domains, when a robot detects the color of an 
apple, sensor data from the camera is represented as a point in the quality dimensions, and the Euclidean 
distance between the instance and the prototype can be easily calculated. The closer the instance is to the 
prototype, the more likely it is to have the same color property as an apple. This analysis is done for all 
domains (shape domain, taste domain, etc.). It will be shown in Section 4 that, given a likelihood estimation, a 
likelihood value for an instance can be obtained based on the Euclidean distance between the instance and the 
center of the different regions that defines the properties of a given concept. The higher this likelihood value 
is, the more likely the entity in question is to be classified as an instance of the underlying concept. 

3. SURROGATE MAST SENSORS 
Before mapping sensor data into the conceptual space [4], features of interest are extracted from the sensors 
first into the Abstract Sensor Layer (see [6] for architectural details). Most of the sensors to be in used in 
MAST robots are still in the process of being developed. For this reason, surrogate sensors with similar or 
analogous functionalities are used to supply the robots with real-world data to verify our work (Figure 3). 
Table 1 compares the capabilities of the envisioned sensors and the surrogate sensors currently used. 

Table 1: MAST Sensors and their Surrogates 

MAST sensor Measurements  Surrogate Sensor Measurements 

Hot-wire Air Flow • Air flow velocity 
• Air flow direction 

 
     Wind sensor • Air flow 

velocity	
  

Micro Gas 
Chromatograph 

• Identification of Chemical 
Species 

• Concentration of Chemical 
Species 

 

CO2 sensor • CO2	
  

concentration	
  

Scanning laser 
range finder 

• Distance 
• Feature point for shape 

identification 

 
Hokuyo laser range 

finder 
• Distance 	
  

(0– 4m)	
  

IR Thermal 
Camera • Temperature  RGB camera • Temperature	
  

Vision Sensor • Color 
• Symbol detection 

 RGB camera • Color (HSV) 
• Size	
  

When biohazard materials are stored, one wants to be certain to store it safely; hence, it is logical to believe 
that there will be a negative airflow towards a biohazard container to keep it well ventilated. The surrogate 
airflow sensor from Modern Devices is capable of detecting wind and producing logarithmically 
corresponding voltage, but unlike the target HAIR sensor, this surrogate can only detect the wind flow 



velocity in one direction. The surrogate sensor also responds to sideways wind flow, although more weakly. 
As a result, weak frontal wind and strong sideways wind cannot be distinguished from one another, which 
presents challenges in determining the airflow direction when using the surrogate sensor. 

                
         (a)                                  (b)                                     (c)                                                (d) 

Figure 3: Surrogate Sensors. (a) Wind sensor (b) CO2 sensor (c) Laser scanner  (d) Web camera visual sensor 

If it is possible to sense airborne biohazard materials at low concentrations, it will be strong evidence of a 
biohazard container kept in vicinity. Otherwise a swab sample analysis taken by a robot can serve as a means 
for positive identification. For our testing purposes, a carbon dioxide (CO2) sensor acts as the surrogate Micro 
Gas Chromatograph, specifically the MG811 CO2 sensor from Shitongda Electric Co. It is capable of 
detecting CO2 concentration of 350 – 10000ppm, and outputs corresponding analog voltage between 30 – 
50mV. It has good selectivity to CO2 and is simple to set up and start sensing CO2 concentrations through an 
analog-to-digital converter (ADC). However, due to its wide sensing range but small output range, it needs an 
appropriate voltage amplifier. A non-inverting voltage amplifier has been placed between the sensor output 
and ADC input to address this problem. The sensor has been tested by exposing it to fumes from dry ice. 
Currently only coarse measurements indicating degrees of CO2 concentration can be taken with this sensor. 
There are other candidates for surrogate Micro Gas Chromatograph, but MG811 was chosen for its price and 
ease of use. We intend to replace the surrogate sensor with a more sophisticated gas sensor in the future, 
perhaps for several different gases. 

Laser range finders supply autonomous robots data to do many things, including navigation, obstacle 
avoidance, and feature detection. The Hokuyo URG-04LX-UG01 scanning range finder serves as the 
surrogate sensor for both the scanning laser ranger finder and millimeter-wave radar. It has a scanning 
distance of up to 4 meters, 240° scanning range, lightweight, low power consumption, and angular resolution 
of 0.352°. It is powered and interfaced through USB. Also, a driver is available in ROS, making it easier to 
interface in Linux.  

It is reasonable to believe that biohazard materials will be kept inside a container of certain specific shapes 
and sizes, as there is some tendency towards standardization. It might also be the case that those containers 
bear the standard markings of biohazard material. A vision sensor is required to look for these features. A 
normal USB webcam serves as the surrogate sensor for the micro-vision MAST sensor. The model chosen is 
a Microsoft Lifecam HD-5000. It was chosen for its color quality and ease of interface with Linux. OpenCV 
is used to extract color blobs from objects of interest, and analyze its color (HSV space), blob shape, and blob 
size [13]. 

Work is currently ongoing to simulate temperature data from RGB camera for the surrogate IR Thermal 
Camera. The same vision camera will be used for the surrogate IR Thermal Camera as for the surrogate 
Vision Sensor, but different processing algorithm will be implemented to mimic IR Thermal Camera to 
extract object temperature data. Real IR thermal imaging cameras have prohibitively high costs, even those 
with very low resolution, so data from IR Thermal Camera are being emulated with a normal camera for the 
time being. 
 
3.1. Implementation of Abstract Sensor Layers for Surrogate Sensors 

In the search and identification scenario, concepts are sought that indicate the existence of a biohazard, which 
is characterized by its associated container, temperature and airflow storage criteria, and chemical signature. 
To achieve this end, before mapping sensor data into the conceptual space, features of interest are extracted 



from the sensors and deposited within the Abstract Sensor Layer. Table 2 lists the MAST sensors, their 
corresponding surrogate sensors, and the features extracted by the Abstract Sensor Layer. In our current 
implementation, sensor-specific data structures are populated with this extracted feature data. Sensor data 
structures contain the features shown in Table 2. 

Table 2:  Perceptual Features produced by sensors for storage in ASL 

Sensor Surrogate Sensor Features 

Hot-wire Air 
Flow Wind sensor Air flow velocity (m/s) 

Micro Gas 
Chromatograph CO2 sensor CO2 concentration (digital voltage) 

Scanning laser 
range finder 

Hokuyo laser 
range finder 

Data about circular or cornered objects in sight  
      (number, coordinates to the center, and geometrical properties) 

IR Thermal 
Camera RGB camera Average temperature of the object of interest 

Vision Sensor RGB camera Data about 4-sided objects of certain color in sight  
      (number, size of the blob, and HSV values) 

Since a surrogate IR Thermal Camera has not been completed yet, the detection algorithm for surrogate IR 
Thermal Camera remains to be implemented at the time of publication.  The Abstract Sensor Layer for 
surrogate wind sensor is a null function; the voltage level from the surrogate sensor is automatically converted 
to airflow velocity at hardware level with a conversion function that is specific to that sensor, before Abstract 
Sensor Layer operates on it. Thus, the Abstract Sensor Layer does not have to do other feature detection tasks 
other than simply filling in the data structure for the wind sensor with the actual sensor’s output. The 
surrogate Micro Gas Chromatograph similarly has a null function for its Abstract Sensor Layer.   

The scanning laser ranger finder has an abstract Sensor Layer algorithm that extracts various features from a 
single scan data, based on an algorithm introduced in [15]. Using the distance and angular displacement data 
of individual points from one set of scan data, it can be turned into an egocentric 2-D plane with individual 
points having the same distance from the origin and angular displacement from a certain reference angle, e.g. 
the x-axis. Adjacent points with a difference in distance above a certain threshold are considered different 
segments, and these segments are marked accordingly. Then inscribed angles for each scan points are 
calculated. By processing these inscribed angles statistically, the algorithm offers an accurate feature analysis 
of what it sees. 

In accordance with the scenario of looking for possible containers of biohazard materials, qualities that 
biohazard containers are likely to have are sought after. For a scanning laser range finder, the concept of the 
shape of a container is of value. In our implementation, the algorithm only looks for circular objects, or 
objects with corners, which could possibly be the size and shape of a container. The Abstract Sensor Layer for 
searches for all circular/cornered objects in its laser scanning range. Then different types of features are 
calculated for different shapes of container candidates. For example, a scan data set is calculated that contains 
circular object, i.e., the number of those circles, the egocentric coordinates to their centers, distance to their 
centers, their radius and curvature. Curvature here is defined with respect to the second derivative calculated 
using discrete points. It is defined for circular and squared readings alike, and expresses how round a given 
segment of a sensor reading is, but it is not the inverse of radius. 

The Abstract Sensor Layer for the surrogate Vision Sensor consists of algorithms to process the visual data to 
extract data about objects. Color blob detection algorithm is used to segment blobs of certain colors of interest 
from an incoming image. Shape detection algorithm is then used to look for blobs of certain shape, such as 
rectangular blobs. Once color blobs that match these criteria are found, the Abstract Sensor Layer populates 
the data structure for Vision Sensor with a number of such objects, and their HSV values are calculated from 
the cameras RGB values. Currently, OpenCV is used to implement these algorithms. It will be a significant 
addition to incorporate biohazard symbol (Fig. 5 left) detection to the Abstract Sensor Layer for the Vision 
Sensor, but has not been incorporated in this research yet. 



4. IMPLEMENTATION 
All experiments were made using the MissionLab1 mission specification system [3,5,11]. This software was 
used to code algorithms that are capable of implementing the described architecture and determining if it is 
useful for knowledge sharing in this context. The open source command-line program gnuplot was used to 
plot an object’s features into the respective domains. These plots serve as a visual representation of the 
respective domains in a given Conceptual Space. 

As mentioned in Section 3, the following sensors are used: a wind sensor, a webcam for color detection, a 
carbon dioxide (CO2) sensor, and the Hokuyo laser range finder. These sensors serve as surrogates for the 
MAST-specific sensors under development by the MAST Microsystems group at the University of Michigan. 
It is intended that in the future these sensors will be replaced by the MAST-specific ones and others may be 
added as well. 

Each sensor provides raw sensor data relating to the intrinsic properties of the observed objects. This data is 
then processed in the ASL to obtain relevant perceptual features, which are then mapped into the respective 
domains. 

4.1 Conceptual Space Designs 

As mentioned previously, each conceptual space is composed of several domains that contain a set of regions 
that define a specific concept. The designed domains depend on the sensors mounted on each robot. For each 
domain, the quality dimensions (axes) are the perceptual features obtained from the ASL which are then 
stored in a database. For example, after processing the webcam’s raw data, the ASL generates HSV values for 
a detected object’s color and plots them in the respective domain. Similarly, for the Hokuyo
scanner, curvature and radius values of a detected object are generated and plotted into the respective domain. 
For the wind sensor and the CO2 sensor: airflow velocity and CO2 readings are generated respectively. Figure 
4 provides a visual representation of these designed domains with their respective quality dimensions. 

 
Figure 4. Implemented domains for four MAST sensors. 

Both the Hokuyo scanner and the webcam have their own domain with their respective quality dimensions. It 
is important to mention that the CO2 and wind sensors are independent of each other. They are shown in the 
same domain for simplicity at the time of classifying an instance. For both the CO2 reading and the airflow 
velocity, arbitrary thresholds are selected. For example, an instance with CO2 intensity below the selected 
threshold is disregarded and considered to have zero probability of matching the property. Above the 
threshold, the higher the CO2 concentration is, the more likely it is to be a biohazard. For this project, dry ice 
is used as a source of CO2 to represent a chemical signature of a potential biohazard. In addition, it is assumed 
that a biohazard will have a negative airflow associated to it (meaning that there is air flowing away from the 
object), which is usually a safety requirement for storage. This information is used to identify the presence of 
a potential biohazard. 

4.2 Defining Properties as Gaussian Mixture Models 

In a given conceptual space, each domain contains different regions that represent the concept’s intrinsic 
properties. Each concept can be defined/identified by these properties. For example, an apple can be defined 
by its color (red or green), its texture (hard of soft for rotten apples), its shape, and its taste. Sometimes, a 
                                                
1 MissionLab is freely available for research and educational purposes at: http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/. 



given property cannot be defined by a single region (an apple’s color property can’t be defined just as red). 
Therefore, the respective property region cannot be defined with a single Gaussian. This is why a Gaussian 
Mixture Model (GMM) is used to represent several regions for a given property. 

Previous work [7,10] has shown that the mixture regions can be obtained by training the GMMs using 
different data sets. For this project, we obtain the model parameters by experimentally sensing sets of positive 
and negative instances. Figure 5 presents the objects used that are considered as positive instances of 
biohazard containers. Tables 3 and 4 summarize the positive and some negative instances used in the 
experiments. 

 
Figure 5. Objects used as positive instances that represent a biohazard threat. From left to right: a) biohazard bucket, b) 
gray rectangular biohazard container, and c) red rectangular biohazard container. 

Table 3.  Positive instances used to represent a potential biohazard threat. 
Positive 

Instances 
Microsoft Life 

Webcam 
Hokuyo Laser 
Range Finder 

CO2 Detector Wind Sensor 

1 Red Cylindrical Present Present 

2 Red Rectangular Present Present 

3 Gray Rectangular Present Present 

Table 4.  Some negative instances used to verify that the algorithm can classify objects correctly. 
Negative 
Instances 

Microsoft Life 
Webcam 

Hokuyo Laser 
Range Finder 

CO2 Detector Wind Sensor 

1 Green Cylindrical Absent Absent 

2 Green Cylindrical Present Absent 

3 Red Rectangular Absent Absent 

4 Blue Cylindrical Present Present 

Table 5.  Prototypes for each region that defines the biohazard bucket. 

Domains Quality Dimensions Prototypes of each 
region Covariance Matrices 

Wind sensor and CO2 
detector 

Airflow velocity (m/s) and 
CO2 concentration (k ppm) (0.4, 2.5) 0.95 0

0 90  

Hokuyo Laser Range 
Finder 

Radius(m) and       
Curvature (1/m) (0.15, 0.3) 50 1

1 40  

Microsoft Life Webcam HSV values (177, 192, 255) 
0.001 0 0
0 0.0005 0
0 0 0.002

 

 



In a given domain, each region/property has a prototype. A prototype is the most representative value of each 
region. For each domain, Table 5 presents the prototypes of the regions that define the biohazard bucket 
(Figure 5). 

A Gaussian Mixture Model is a parametric probability density function represented as a weighted sum of 
Gaussian component densities: 

! ! ! = !! ∗ ! ! !! ,!!

!

!!!

                                                                  (1) 

where x is a feature vector for a property, M is the number of Gaussian Models, and wi is known as the 
mixing proportions. ! is a set containing all of the mixing proportions and model parameters: 

! = !! , !! ,!! !!!
!                                                                                                           (2) 

where ui is the mean of the model, and Σi is a covariance matrix. 

The model parameters needed to define a GMM can be obtained after running the Expectation Maximization 
(EM) Algorithm [2]. Given a set of data points, the algorithm groups different points into clusters and assigns 
each cluster the model parameters that separate it from the others. It alternates between estimating the 
association of the points to the clusters and updating the parameters of the clusters given the association. 

For this project, each region is defined directly with the model parameters. The mean and the covariance 
matrix are defined by experimentally sensing the positive instances in Table 3 and mapping the features into 
their respective domains. The mean is equal to the prototype of the region – the most representative values of 
a cluster, and the covariance matrix determines how much the cluster stretches in the axes of the domain. In 
other words, it defines how far a detection can stray away from the center of a region and still remain a 
concept property. In a 2D domain, the covariance matrix is a symmetric 2x2 matrix and defines the convex 
regions as ellipses. Similarly, the covariance matrix is a symmetric 3x3 matrix and defines the convex regions 
as an ellipsoid for a 3D domain. 

4.3 Classification of an Instance (Maximum Likelihood Estimation) 

When a robot senses an object, it plots the instance into the respective sensory domain (which includes all 
mixture regions that define the positive detections).  A Maximum Likelihood Estimation (MLE) [12] is 
obtained to determine the region to which each instance is more likely to be a member of. For a given domain, 
the likelihood of an instance relative to all the regions is based on the Euclidean distance between said 
instance and the mean (prototype) of each region. In addition to the MLE, we also use the following equation 
to determine how likely it is for the instance to be a part of the selected region: 

c k =    a k, i ∙ s p k, i , f k, i                                                                         (3)
!

!!!

 

where s(p(k,i),f(k,i)) is the similarity between the ith property p of the kth concept and the ith feature f of the 
detected object. The similarity between two points is defined as the Euclidean distance between them: 

                            s a, b = [1 + d a, b ]!!                                                                                          (4)   

where d(a,b) is the Euclidean distance between a and b. 

For this research, using the MLE together with the similarity value provides a better estimation for the 
detection of a potential biohazard versus calculating only the similarity between an instance and the 
prototypes of each region. When calculating similarity values, the actual region around its prototype is not 
taken into consideration. When using MLE, the covariance matrices and mean values take into account the 
convex region that was chosen to define the properties of the biohazard concept. Moreover, using only the 
MLE determines how likely an instance is of being a member of one region versus another. It doesn’t state 
how likely it is of being a member of the selected region. This is why the combination of the similarity value 
and the MLE proves to be useful. Finally, it’s important to mention that the logarithm of the likelihood is used 
rather than the likelihood itself because likelihoods, being products of the probabilities of many data points, 
tend to be very small. In contrast, the logarithm of the likelihood, which sums instead of multiplying, tends to 
grow. 



5. EXPERIMENTAL RESULTS 
5.1 Experimental Procedure 

Several experimental tests were performed both in simulation and with real sensor data in order to 
demonstrate the value of the conceptual spaces approach in MAST relevant scenarios, specifically in the case 
of identification of a biohazard threat. These preliminary experiments consist of a stationary robot directly 
viewing a given object possibly representing the concept in question. However, the end goal is to extend the 
conceptual spaces approach for knowledge sharing among a team of widely heterogeneous robots. Future 
experiments will extend to multiple robots searching a given environment for a potential biohazard threat. 

 
Figure 6. Basic experimental setup. 

Figure 6 shows the basic configuration for all robotic experiments. The robot closest to the object (red 
biohazard bucket) is used for support of the CO2 and wind sensors given that their range of measurement is 
limited. The goal is to have a consensus between all the domains and determine if the detected object fits the 
concept of a biohazard threat or not. All sensors/domains were controlled by a single centralized computer. In 
future experiments, the domains will be separated between two or more robots with each robot separately. 
One of the robots will then be assigned the Hokuyo scanner and webcam domains (a notional flyer), and the 
second robot will be assigned the CO2 & Airflow Velocity domain (a notional crawler). 

The main experiment is as follows: an object (positive or negative instance of a biohazard threat) is placed 
directly in front of the sensors. Relevant perceptual features are extracted from the ASL for the three 
biohazard concept domains shown in Figure 3. These features are then mapped into the respective domains. A 
MLE is calculated to determine the region to which an instance is more likely to belong to. If and only if the 
concept value (eq. 3) between the instance and the selected region is greater than the established threshold 
that defines a biohazard, then will all the domains come to a consensus and classify the detected object as a 
potential biohazard. If so, an alert message is sent to notify the user. This message contains a time stamp, the 
robot id, the distance between the robot and the detected object, and the robot heading with respect to the 
position of the object. 

5.2 Simulation Testing 

To test the system, two simulated runs were made using the implemented code in MissionLab. The runs were 
made based on the positive and negative instances presented in Tables 3 and 4. For the positive instance, 
random data was generated around the respective prototypes that define the selected object. For example, 
when simulating the biohazard bucket, random data is generated around the prototypes of each domain (Table 
5) plus some added noise. When simulating a negative instance, random data is generated around the 
measured values for each domain (e.g., for the Hokuyo domain, the generated data involves the measured 
radius and curvature plus some added noise). Since the ASL data was generated near predefined points, these 
simulated runs are considered to be ideal and are used to test the functionality of the code prior to deployment 
on the robots. 

Tables 6 and 7 show 5 data points generated from the ASL for the biohazard bucket (positive instance) and 
the blue cylindrical container (negative instance) respectively. The information shown in these tables are the 
perceptual features used to obtain the MLE values and analyze the detected object. Additional perceptual 
features can be extracted from the ASL. For example, the distance and the angle between the robot and the 



target object can be extracted from the Hokuyo domain. Even so, this additional information isn’t used for the 
identification, but for the localization of the detected object in the event that the robots classify it as a 
biohazard threat. Tables 8 and 9 show the resulting MLE values that correspond to the data points in Tables 6 
and 7. Each data point generates a likelihood value for each region per domain. The likelihood values are used 
to determine to which region an instance is more likely to be a member of. Tables 8 and 9 also show the 
calculated similarity values obtained from equation (3) for each instance. These values are the ones used in 
the classification of the detected object. For these simulated experiments, a threshold equal to 35 was 
arbitrarily selected, indicating that all instances with a similarity value above 35 are considered a potential 
biohazard. Figures 6 and 7 show a given instance plotted into all domains at time t for the biohazard bucket 
and the blue container respectively. These figures illustrate how the data points extracted from the ASL are 
mapped into their respective plots. 

Table 8 shows that the biohazard bucket is indeed classified as a potential biohazard threat given the 
following: 1) the likelihood values indicate that a selected measured instance will map into the property 
regions that define the concept of a biohazard, and 2) the calculated similarity values are above the selected 
threshold. Figure 6 supports the conclusion obtained from Table 8. It  can be seen  that the selected measured  

Table 6.  Five data points generated from the ASL for the biohazard bucket (positive instance) for all domains. 
Hokuyo Scanner Domain Vision Domain CO2 and Wind Sensors Domain 

Radius 
(m) 

Curvature 
(1/m) H S V Windflow 

(m/s) 
CO2 Concentration 

(k ppm) 

0.101 0.410 178 215 207 0.49 2.687 

0.184 0.363 175 213 205 0.18 2.309 

0.159 0.441 179 212 205 0.53 2.291 

0.183 0.431 175 215 208 0.16 2.603 

0.165 0.422 178 216 206 0.23 2.536 

Table 7.  Five data points generated from the ASL for the blue container (negative instance) for all domains. 
Hokuyo Scanner Domain Vision Domain CO2 and Wind Sensors Domain 

Radius 
(m) 

Curvature 
(1/m) H S V Windflow 

(m/s) 
CO2 Concentration 

(k ppm) 

0.162 0.365 114 212 87 -0.08 1.23 

0.165 0.403 114 211 86 -0.18 1.04 

0.192 0.373 114 209 86 0.35 0.83 

0.177 0.427 117 211 86 -0.10 1.15 

0.194 0.380 114 211 85 -0.06 1.07 

Table 8.  Likelihood values obtained from the MLE implemented algorithm for all domains for biohazard bucket. 

Hokuyo Scanner Domain Vision Domain (x1011) CO2 and Wind 
Sensors Domain 

Final Similarity 
Value 

Region1 Region2 Region1 Region2 Region1  

-8.112 -26.020 -6.923 -0.0002 -48.720 48.230 

-6.932 -18.010 -6.729 -0.0003 -261.226 42.976 

-8.819 -22.933 -6.726 -0.0006 -93.599 39.910 

-8.565 -20.878 -6.901 -0.0004 -307.292 36.476 

-8.206 -21.646 -6.963 -0.0004 -157.698 36.749 



Table 9.  Likelihood values obtained from the MLE implemented algorithm for all domains for blue cylindrical container. 

Hokuyo Scanner Domain Vision Domain (x1011) CO2 and Wind 
Sensors Domain 

Final Similarity 
Value 

Region1 Region2 Region1 Region2 Region1  

-6.870 -19.516 -4.971 -0.553 -1306.86 31.618 

-7.673 -20.820 -4.912 -0.559 -1893.01 31.659 

-7.159 -17.896 -4.799 -0.561 -173.09 32.341 

-8.404 -21.078 -4.922 -0.541 -1420.95 33.762 

-7.308 -18.046 -4.911 -0.565 -1231.67 31.349 

 
Figure 6. An instance represented as a red dot is mapped into all the domains for the simulated experiment while looking 

at the biohazard bucket (positive instance). 

 
Figure 7. An instance represented as a red dot is mapped into all the domains for the simulated experiment while looking 

at the blue cylindrical container (negative instance). 

instance is mapped directly into the constructed regions. For example, for the Color domain, Table 8 shows 
that the instance will be more likely a member of region 2 (defines the color red), than a member of region 1 
(defines the color gray). This is illustrated in Figure 6 (Center). 

Similarly, Table 9 shows that the blue cylindrical container is not classified as a biohazard threat. All the 
calculated similarity values are below the selected threshold. In addition, both the MLE values and Figure 7 
show that the measured instance is not mapped into the regions that define a biohazard. For example, for the 
Color domain in Figure 7 (Center), the instance is seen between regions. Although the MLE analysis shows 
that it is more likely for the instance to be a member of region 2 than a member of region 1, it is not close 
enough to either one to be considered as a biohazard. 

Note that for the Hokuyo domain, the measured instance for the blue container is inside region 1 (defines 
cylindrical objects). Although this domain suggests that the detected object is a potential biohazard, the other 
two domains deny it. This is a basis of conceptual space theory: making decisions based on the consensus 
from all available domains. We expand these concepts to using real surrogate sensors below. 



5.3 Robot Experimental Testing 

For the preliminary robot experimental testing, the ASL values are obtained from raw sensory data. When 
using actual sensors, there is much more to take into consideration. For example: contrary to the simulated 
experiments, at any given point in time the sensors may detect more than one object. In addition, not all 
sensors will detect all of the same objects. It may be that, in addition to the object placed in front of the 
robots, the Hokuyo scanner detects three more objects in the background while the webcam detects only one 
more object due to the established color thresholds. Moreover, it will be shown that, even though these 
objects were previously classified as positive or negative instances, the results of each run may present false 
positives. This is due to different ambient factors such as room lighting, sensory noise, and room temperature. 

Figure 6 shows the experimental setup of the robots and the objects for each run. One of the robots is placed 
very close to the object given that the range of detection of the CO2 is very limited. Note that, due to the 
difficulties of calibrating the sensor, readings for CO2 concentrations are only meant to provide relative 
concentrations. Actual sensor output and interpreted sensor values are correlated, but the interpreted sensor 
values do not correctly represent the actual physical gas concentration. They are only given scale for the ease 
of interpretation. The case for the wind sensor is also similar. 

 Using the experimental configuration, three tests were conducted using real sensor data: 1) the biohazard 
bucket (positive instance), 2) the blue cylindrical container (negative instance), and 3) the gray squared 
container (positive instance) (See Tables 3 and 4). Tables 10-12 show the generated ASL values obtained 
from raw sensory data for the experiment runs made with the biohazard bucket, blue cylindrical container, 
and gray squared container respectively. Tables 13-15 show the resulting Likelihood values from the MLE, 
and calculated similarity values. Figures 8-10 show how a selected instance in time t is mapped into the 
respective domains for each experiment run. For these experimental runs using real surrogate sensors, the 
selected threshold for the similarity values was empirically set to 30 (the threshold was set lower than the 
simulation value of 35 due to consistently lower similarity values returned in the robot experiments. Learning 
techniques developed earlier in our laboratory could assist in threshold determination for concept recognition 
[7]). Any instance with a similarity value above 30 is classified as a potential biohazard. 

Table 10.  Five data points generated from the ASL for the biohazard bucket (positive instance) for all domains using real 
surrogate sensors. 

Hokuyo Scanner Domain Vision Domain CO2 and Wind Sensors Domain 

Radius 
(m) 

Curvature 
(1/m) H S V Windflow 

(m/s) 
CO2 Concentration 

(k ppm) 

0.126 0.356 178 233 223 0.378 1.500 

0.126 0.250 179 235 224 0.394 1.600 

0.125 0.241 177 241 219 0.349 2.100 

0.127 0.382 0 255 137 0.439 1.900 

0.126 0.250 179 235 224 0.394 1.600 

Table 11.  Five data points generated from the ASL for the blue cylindrical container (positive instance) for all domains 
using real surrogate sensors. 

Hokuyo Scanner Domain Vision Domain CO2 and Wind Sensors Domain 

Radius 
(m) 

Curvature 
(1/m) H S V Windflow 

(m/s) 
CO2 Concentration 

(k ppm) 

0.228 0.389420 113 206 204 0.368 2.400 

0.227 0.397430 120 255 144 0.462 2.500 

0.227 0.393 119 255 101 0.446 2.500 

0.224 0.338 113 206 204 0.367 2.500 

0.227 0.304 113 206 204 0.360 2.200 



 

 
Table 12.  Five data points generated from the ASL for the gray squared container (positive instance) for all domains 

using real surrogate sensors. 
Hokuyo Scanner Domain Vision Domain CO2 and Wind Sensors Domain 

Radius 
(m) 

Curvature 
(1/m) H S V Windflow 

(m/s) 
CO2 Concentration 

(k ppm) 

0.425 0 103 45 90 0.252 2.500 

0.421 0 101 36 98 0.297 2.200 

0.426 0 87 31 81 0.380 2.500 

0.432 0 87 31 83 0.332 2.200 

0.426 0 87 31 83 0.312 1.700 

Table 13.  Likelihood values obtained from the MLE implemented algorithm for all domains for biohazard container using 
real surrogate sensors. 

Hokuyo Scanner Domain Vision Domain (x1011) CO2 and Wind 
Sensors Domain 

Final Similarity 
Value 

Region1 Region2 Region1 Region2 Region1  

-6.785 -21.792 -8.347 -4.337 -62.171 32.528 

-6.690 -18.705 -8.511 -5.240 -49.238 31.810 

-6.826 -18.598 -8.775 -7.712 -26.831 31.030 

-7.237 -22.725 -8.447 -0.290 -32.093 30.732 

-6.690 -18.705 -8.511 -0.0524 -49.238 31.810 

Table 14.  Likelihood values obtained from the MLE implemented algorithm for all domains for the blue cylindrical 
container using real surrogate sensors. 

Hokuyo Scanner Domain Vision Domain (x1011) CO2 and Wind 
Sensors Domain 

Final Similarity 
Value 

Region1 Region2 Region1 Region2 Region1  

-7.900 -16.575 -5.808 -2.113 -9.94 27.042 

-8.069 -16.948 -8.096 -4.266 -24.213 33.617 

-7.985 -16.751 -7.800 -6.119 -14.999 19.885 

-7.052 -14.855 -5.808 -2.113 -9.661 17.152 

-6.926 -13.688 -5.808 -2.113 -17.461 27.170 

 

Similar to the simulated experiments, the MLE likelihood values and the calculated similarity values (Tables 
13, 14, and 15) are both used, and the plotted domains (Figures 8, 9, 10) to classify the detected object as a 
biohazard or not. For example, for the run made with the gray squared container, it can be observed in Figure 
10 that the measured instance belongs to all the property regions that define a biohazard. For the CO2 and 
wind flow domain, the measured instance is plotted directly into the region that defines the correct wind flow 
velocity and a significant amount of CO2 is present. 

  



Table 15.  Likelihood values obtained from the MLE implemented algorithm for all domains for the gray rectangular 
container using real surrogate sensors. 

Hokuyo Scanner Domain Vision Domain (x1011) CO2 and Wind 
Sensors Domain 

Final Similarity 
Value 

Region1 Region2 Region1 Region2 Region1  

-25.590 -7.257 -0.026 -3.466 -119.798 30.773 

-25.350 -7.226 -0.0435 -3.749 -64.543 31.449 

-25.608 -7.260 -0.021 -4.145 -6.081 29.942 

-25.938 -7.310 -0.023 -4.132 -33.728 31.864 

-25.626 -7.262 -0.023 -4.132 -80.383 31.864 

 
Figure 8. An instance represented as a red dot is mapped into all the domains for the simulated experiment while looking 

at the biohazard bucket (negative instance) using real surrogate sensors. 

 
Figure 9. An instance represented as a red dot is mapped into all the domains for the simulated experiment while looking 

at the blue cylindrical container (negative instance) using real surrogate sensors. 

 
Figure 10. An instance represented as a red dot is mapped into all the domains for the simulated experiment while looking 

at the gray squared container (positive instance) using real surrogate sensors. 

 



Figure 9 shows an example of how the blue cylindrical container may result in a false positive. Even though, 
for the Color domain, the measured instance is far away from both property regions, for the Hokuyo, and CO2 
and Wind domains, the measured instance is mapped directly into the regions that define a potential 
biohazard. In terms of the algorithm, the detected object has similar radius and curvature values as the defined 
biohazard bucket (Figure 9(Left)). It also has a considerable high concentration of CO2 present and an 
associated wind velocity similar to the established prototype of the respective region. Equation (3) introduces 
a weighting value for each available domain. Given that having a high concentration of CO2 is more 
significant the correct container color in terms of defining a biohazard concept, a higher weight value is 
assigned to the CO2 and Wind domain. Thus, the presented measured instance is classified as a biohazard and, 
in this case, identified as a false positive (e.g. Table 14 Row #2). 

As mentioned earlier, some domains may sense multiple objects as candidate concepts. For these preliminary 
experiments, given that we are trying to analyze only one object at a time, we assume that the relevant point is  
the one closest to the concept region. For example, in Figure 10 (Left), the Hokuyo scanner sensed three 
different objects. Given that the squared container is being observed, for which its width was previously 
measured, it is safe to assume that the relevant point is the one at radius approximately equal to 0.4m (the 
same as the measured value for width). 

6. CONCLUSIONS  
This paper presents the transition from the theoretical research developed earlier (e.g., [6-10]) to a practical 
working architectural implementation of Gardenfors conceptual spaces to a team of completely perceptually 
heterogeneous robots.  Using sensors being developed by the Army’s Microautonomous System Technology 
program and their surrogates, the abstract sensor layer (ASL) and conceptual space component of the overall 
system architecture has been implemented and tested, demonstrating the viability of this concept in the 
context of a biohazard search and detection mission. 

Future work involves continued development and integration of sensor, both surrogate and actual MAST 
sensors alike, and the generation of team behavior based on the coordination required for all robots to share 
this knowledge among themselves. 
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