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Abstract— Aiming at the design of adaptive artificial agents
which are able to learn autonomously from experience and
human tutoring, in this paper we present a system for learning
syntactic constructions grounded in perception. These construc-
tions are learned from examples of natural language utterances
and parallel performances of actions, i.e. their trajectories and
involved objects. From the input, the system learns linguistic
structures and qualitative action models. Action models are
represented as Hidden Markov Models over sequences of
qualitative relations between a trajector and a landmark and
abstract away from concrete action trajectories. Learning of
action models is driven by linguistic observations, and linguistic
patterns are, in turn, grounded in learned action models. The
proposed system is applicable for both language understanding
and language generation. We present empirical results, showing
that the learned action models generalize well over concrete
instances of the same action and also to novel performers, while
allowing accurate discrimination between different actions.
Further, we show that the system is able to describe novel
dynamic scenes and to understand novel utterances describing
such scenes.

I. INTRODUCTION

An important goal in order to achieve more natural and
intuitive communication with robots is to equip them with the
ability to learn language – in particular linguistic structures
grounded in perception – autonomously, both from experi-
ence and via human tutoring. A particular challenge lies in
endowing robots with the ability for open-ended language
and action learning over their whole lifetime, thus enabling
them to acquire new linguistic constructions and the actions
or objects they refer to incrementally and continuously.
Relying on grammars or linguistic knowledge encoded at
design time clearly does not fulfill this goal.

To equip robots with the ability of open-ended language
and action learning, the robot must be able to i) learn
representations for objects and actions appearing in visual
input, ii) extract words and grammatical patterns from a
speech stream and iii) establish connections between the
extracted structures to ground linguistic structures in mod-
els of perceptual observations. While work concerning the
individual subtasks exists, a unified system solving all of
them does not yet exist. Working towards such a system,
in this paper we explore how syntactic patterns grounded in
qualitative action models can be learned autonomously based
on example performances of actions coupled with natural
language descriptions.
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The acquisition of grammatical patterns along with a map-
ping to corresponding semantic representations has been
explored previously by several researches, both with the goal
of building cognitive models of human language acquisition
(e.g. [1], [2], [3]) and with respect to application on a robot
(e.g. [4], [5], [6]). However, most research has considered
meaning representations in symbolic form, e.g. in predicate
logic, rather than information extracted from video or im-
ages. While in particular some research aiming to equip
robots with language learning abilities has also considered
information extracted from scene representations, work has
mainly focused on the description of static scenes (e.g.
[6]), e.g. grounding language in objects or object positions
rather than representations of actions. However, in order to
learn syntactic patterns referring to actions, for instance,
to allow human tutoring of novel actions, the robot also
needs to be able to build models for actions which abstract
over individual trajectories and ground linguistic knowledge
in these. While previous work has also addressed learning
action models (e.g. [7]), we are not aware of other systems
learning these together with syntactic constructions.
Our approach is based on an existing cognitive model [1] for
the acquisition of syntactic constructions which learns from
symbolic input, i.e. from natural language (NL) utterances
coupled with meaning representations represented by formu-
las in predicate logic. Extending this model towards learning
from dynamic scenes rather than symbolic meaning represen-
tations, in this paper we explore learning from trajectories
of actions and present an approach which learns generalized
action models from such observations. We integrate this
approach into the model such that learning of action models
is driven by linguistic observations and linguistic patterns
are, in turn, grounded in learned action models. Actions
are represented as Hidden Markov Models over sequences
of qualitative relations between a trajector and a landmark.
Since we focus on learning action models, we assume that
the system has the capability to extract representations for
objects, and thus observed objects involved in actions are
given in symbolic form.

For evaluation, we collected a reference dataset in which
12 human subjects performed different actions described
by corresponding utterances, thus yielding several concrete
examples of utterances and trajectories of actions described
by these. We present empirical results on the dataset, show-
ing that the learned action models generalize well over
concrete instances of the same action and also to novel
performers, while allowing accurate discrimination between
different actions. Further, we show that by learning syntactic
constructions grounded in the learned models, the system



is able to describe novel dynamic scenes and to understand
novel utterances corresponding to such scenes.
The remainder of this paper is as follows. Next, we describe
related work and subsequently the proposed approach. We
then describe the learning setting and acquisition of input
data and present empirical results on the acquired dataset.

II. RELATED WORK

Our work is related both to approaches to grounded
acquisition of language in robots and cognitive systems, but
also to approaches to the representation and acquisition of
actions. With respect to approaches to grounded acquisition
of language, there has been a lot of work on developing mod-
els which can acquire single words and their meanings (e.g.
[8], [9]). In some approaches, this meaning is grounded in
perception, but is typically limited to static objects [10], [11].
Other approaches (e.g. [4], [5]) deal with the acquisition of
syntactic constructions as we do, but typically do not ground
these constructions in qualitative action models. The work by
Feldman et al. on Embodied Construction Grammar (ECG)
[12], [13] is very related to our approach. However, the X-
Schemas in which the meaning of linguistic constructions are
represented are very symbolic compared to our qualitative
models. Our qualitative models are still far away from a
full grounding in the sensoric and actuator systems of a
robot, but clearly go one step further than the X-Schemas
used in Embodied Construction Grammar (ECG). The closest
related work is the one of van Trijp et al. [14], who have
developed approaches by which robots can learn linguistic
knowledge in the framework of Fluid Construction Grammar
(FCG). With respect to the representation and acquisition
of actions, different approaches based on prototypes [15],
markov models [7] and neural networks [16] have been pro-
posed. Suguria, Iwahashi, Kashioka and Nakamura [7] learn
reference point dependent motion between a trajector and a
set of possible landmarks as a quantitative sequence. They
directly use position, velocity and acceleration relative to an
action intrinsic coordinate system to learn a Hidden Markov
Model for a given set of trajectories. Ogawara and Takamatsu
[17] cluster independent trajectories using a distance function
based on the symmetrized likelihood between their respective
Hidden Markov Models. Dominey and Boucher [5] derive
perceptual primitives of contact (touch, push, take, give)
as a predicate representation from observed visual scenes.
Together with a speech to text transcript of the narrated
event they generate a well-formed < sentence,meaning >
pair from which they learn their grammatical construction
models.

Overall, there is little work so far that attempts to develop
models that endow robots with the capability to acquire
more complex linguistic constructions that are grounded in
representations of action and are acquired in parallel as the
linguistic knowledge is acquired.

III. METHOD

In this paper, we attempt to ground linguistic knowledge
of a computational model for the induction of syntactic con-

structions from symbolic input in qualitative action models.
In the following, we will first briefly describe the existing
model and subsequently the proposed extension.

A. Learning syntactic constructions

The existing computational model is represented as an
interrelated network and acquires a lexicon and syntactic
constructions in an online fashion by observing input ex-
amples represented in symbolic form. More specifically, the
input comprises two temporally paired channels: a language
channel and a visual channel. The language channel presents
NL utterances to the computational learner, while the visual
channel presents a symbolic description of the visual context,
which comprises a set of actions taking place while the
utterance is being uttered; this reflects natural settings faced
by an infant or a robot operating in some environment. Each
action mri ∈ MR is represented by means of predicate
logic formulas, comprising a predicate ξ along with a set of
thematic relations. The learning process and an example of
a verb-specific construction stored in the network are shown
in Fig. 1.
The learned network can be roughly divided into a sub-

Fig. 1. Overview of the learning process for the existing model. The figure
shows the two input channels together with an example construction stored
in the network.

network representing lexical and a subnetwork represent-
ing syntactic constructions, where the syntactic subnetwork
builds on the lexical subnetwork and is divided into two
sublayers: a slot-and-frame (S&F) pattern layer and a map-
ping layer. The lexical subnetwork encodes simple phrases,
i.e. (short sequences of) words, as nodes together with the
associated semantic referents, e.g. the word “Tim” and the
corresponding semantic referent tim in Fig 1. The S&F
pattern layer represents syntactic constructions as sequences
of nodes that together constitute a path. Paths can contain
variable nodes that represent slots in the syntactic pattern.
These slots can be filled with elements contained in specific
groupings. This layer also encodes the associated semantic
frames. For instance, in Fig. 1, a syntactic construction is



represented as a path p which expresses a pattern “SE1 sees
SE2”, where SE1 and SE2 represent syntactic slots in the
pattern, which can be filled with groupings of elements such
as “Mia” and “Tim” in the case of SE1 or “pizza” and
“candy” in the case of SE2. The semantic frame associ-
ated with the pattern is see(AGENT,THEME). The mapping
layer contains networks representing construction-specific
argument mappings between syntactic patterns and semantic
frames together with mappings of the syntactic arguments
to semantic arguments. For example, in Fig. 1 an individual
mapping network captures the correspondences between SE1

and AGENT as well as SE2 and THEME.
The network contains nodes of two types: Nodes representing
linguistic entities such as i) simple phrases, e.g. “Tim” or
“the cat”, ii) syntactic patterns, e.g. “SE1 sees SE2”, and
iii) syntactic slots of constructions represented as sets of ele-
ments containing all the simple phrases that can fill the slot,
e.g. SE1 = [Mia → mia, Tim → tim]) and nodes represent-
ing semantic entities such as i) simple semantic referents,
e.g. tim, ii) semantic frames, e.g. see(AGENT,THEME), and
iii) argument slots of frames, e.g. AGENT). Correspondences
between linguistic nodes and semantic nodes, i.e. form-
meaning mappings, are established by capturing their co-
occurrence frequencies across observed examples/situations;
we apply associative networks [18] to establish associations
between form and meaning.
During learning, input examples are processed one-by-one,
causing immediate changes in the network structure. Learn-
ing is roughly divided into two learning steps: i) update of the
lexical layer, where connections between lexical units and se-
mantic referents are established and reinforced, and ii) update
of the construction layer, where the model mainly attempts
to merge paths, and thus generalizes over specific linguistic
and action examples observed. For generalization, the model
exploits type variations that have a semantic implication to
generalize observed NL sentences and (partially generalized)
patterns to more abstract patterns. Consider the following
example: A learner hears “Mia eats” and “Peter eats” in the
above-mentioned visual context. To learn across situations,
the model would use its knowledge that the linguistic phrase
“Mia” refers to the semantic entity mia and that the phrase
“Peter” refers to the semantic entity peter to bootstrap that
the type variation in the sentences’ first position (“Mia” vs.
“Peter”) reflects the meaning difference in the AGENT role of
eat. The model would use its knowledge to acquire the more
general pattern shown in (1), where SE1 = [Mia → mia,
Peter → peter].

(1)
Syntactic pattern SE1 eats
Semantic frame eat(AGENT)
Mapping SE1 → AGENT

Given an input NL sentence, the model finds a meaning by
searching the network for corresponding paths/lexical nodes
and ranking all possible meanings based on the weights
stored in the associative networks. An NL sentence is parsed
by first replacing units contained in groupings expressing
syntactic slots (e.g. Mia) by the set (e.g. SE1). Then, the
model determines the semantic frame that corresponds to the

Fig. 2. This figure shows two moving objects k and l at two different time
points t1 and t2. In this example k is moving towards l at time t1 on the
left hand side of the reference line RL from k to l, l is moving away from
k on the left hand side of the reference line from l to k. The corresponding
QTCc relation is (−+−−). Reproduced from [19]

path in the graph, if such a path exists. Finally, the model
retrieves the meanings of lexical units at positions of syntac-
tic slots from the lexical network. It uses the construction’s
mapping, i.e. the mapping specifying that SE1 is the AGENT,
to insert these meanings into the corresponding argument
slots in the semantic frame. For details, please see [1].

B. Learning qualitative action models

In this approach actions are represented as Hidden Markov
Models (HMM) over sequences of qualitative relations be-
tween the trajector and the landmark. To describe the relative
position and movement between the two objects we build
on the qualitative trajectory calculus - double cross (QTCc)
[19] as a formal foundation. In general, QTCc describes the
interaction between two movable objects k and l with respect
to the reference line RL that connects them at a specific
point t in time. QTCc relations consist of a 4-element state
descriptor (C1, C2, C3, C4) with ternary elements (+, 0,−)
yielding a total of 34 = 81 different basic relations. The state
descriptor is comprised of the following qualitative relations:
C1) movement of k with respect to l at time t1:

- k is moving towards l
0 k is not moving relative to l
+ k is moving away from l

C2) movement of l with respect to k at time t1: same as
above but with k and l swapped

C3) movement of k with respect to RL at time t1
- k is moving to the left-hand side of RL
0 k is moving along RL or not moving at all
+ k is moving to the right-hand side of RL

C4) movement of l with respect to RL at time t1: same as
above but with k and l swapped

To build the sequence of QTCc relations we first have
to reconstruct the velocities of the two objects from the
raw Euclidean positions in the dataset by replaying all
movements recorded by the game. As a calculus, QTCc

imposes some limitations on transitions from one state to



another, e.g. a transition from + to − has to pass through 0.
The resulting sequence misses some of these 0 passages of
the state vector elements because the positions were sampled
at a fixed rate. The missing intermediate state(s) are added
to the sequences one element at a time from left to right.
The resulting sequences can contain subsequences where the
same symbol is repeated many times. Unlike many spatial
reasoning systems, where repeating states are simply omitted,
we use a logarithmic compression of repetitive subsequences:

|ŝ| = min(|s|, 10ln(|s|+ 1)) (2)

where |s| is the original number of repeated symbols in the
sequence and |ŝ| is the new number of repeated symbols.
By using this compression scheme we preserve information
about the acceleration along the trajectory, which increases
the overall performance especially for very similar actions
like “jumps over” and “jumps upon”. The HMM action
models are built using standard K-Means training [20] with
iterative Baum-Welch refinement [21]. Merging of two mod-
els is done by retraining the HMM on the joined set of obser-
vations. The optimal number of hidden states for our models
has been empirically determined by searching through the
whole parameter space for the maximum likelihood model.
Interestingly, it corresponds approximately to the number
of distinct QTCC symbols in the underlying sequences.
Classification is done by finding the most probable model
to produce the respective sequence.

C. Grounding syntactic constructions in qualitative action
models

In general, language learning is performed in a simi-
lar manner as in the computational model working with
completely symbolic meaning representations, albeit se-
quences/HMMs are considered instead of predicates. For
instance, in Example 3, the construction would comprise an
HMM instead of the predicate eat. However, since in this
paper we focus on learning of trajectories/action models, we
(still) assume that objects and their roles can be detected out
of a visual scene, and these are presented to the learning
system in symbolic form. All semantic representations are
composed of a trajectory/sequence or an HMM generated
from such sequences along with two objects and their roles:
trajector and landmark. For example, an input example could
be of the following form:

(3)

NL utterance red triangle jumps over blue circle.
Objects trajector: red triangle

landmark: blue circle
Moves/positions move(2389,red triangle,[10:11]);

move(2397,red triangle,[11:12]);. . .
Notice, however, that observed objects are only given

as IDs and that no direct correspondences between words
and observed objects or actions are presented. The system
must i) establish which words of the utterance refer to the
observed objects and which words express the action, and ii)
generalize over observed sequences to build action models.
Learning problem i) is tackled as in the existing model and
described previously, i.e. by searching for variation at the
linguistic level which yields corresponding variation at the

Fig. 3. Simple game with two geometric objects which can be freely
moved on the gamefield. In this screen test subjects are tasked to revolve
the blue rectangle around the green triangle (instruction in the lower part
of the screen).

meaning layer (with the exception that we do not require that
predicates for mergeable paths are alike). Learning problem
ii) is addressed based on the approach described in Section
III-B: For observed input examples, we generate HMM
action models. Actions models are merged/generalized in two
cases:

1) If they are associated with the same utterance/NL
pattern, i.e. if they have been observed with the same
utterances/patterns.

2) If they are associated with mergeable paths, i.e. if the
model determines that utterances are mergeable into
more general syntactic patterns, all HMMs associated
with mergeable paths are merged as well (and the
association scores are accumulated, so that the gen-
eralized HMM is directly associated with the resulting
generalized path).

IV. LEARNING SCENARIO AND INPUT DATA

For evaluation, we consider a learning setting in which the
system learns from utterances describing different actions
coupled with example trajectories in 2D corresponding to
these actions. We considered four actions, i.e. jump onto,
jump over, revolve around (once), and pushes. These actions
were chosen because they can be performed easily in a
2D-scenario with the same two objects and because they
also provide some challenges regarding discriminability, e.g.
instances of jump onto and jump over may have rather similar
trajectories.
To collect suitable data, we implemented a simple game in
which users could slide geometric objects on a computer
screen; an example screen shot is shown in Fig. IV. The
game consisted of 100 trials, each corresponding to a single
action. In each trial both objects could be moved freely, only
for push actions collision physics with the landmark was
enabled.



In each trial, an utterance expressing an action was dis-
played on the screen along with two objects named in the
utterance, and subjects were asked to perform the action
described by the displayed utterance accordingly by sliding
the corresponding object(s). Each displayed utterance de-
scribed one out of the four different actions. For each action
a single syntactic pattern was used to generate utterances
describing the action, with different combinations of the
objects appearing in the syntactic slots of the pattern. For
our experiments, we used the following four patterns:

• trajector pushes landmark from left to right
• trajector jumps onto landmark
• trajector jumps over landmark
• trajector revolves once around landmark
We considered 9 objects for trajector and landmark, i.e. 3

geometric forms (rectangle, triangle, circle) * 3 colors (red,
blue, green), and 25 different utterances (i.e. instantiations
of the pattern) were generated for each action, for example
“red circle pushes green triangle from left to right”. For
each performed action, we sampled the positions of both
objects at a fixed rate. We collected data from 12 subjects (9
male, 3 female, mean age = 29,4 years), yielding 1200 input
examples altogether.

V. EXPERIMENTAL EVALUATION

Since we explore grounded language learning, we are
interested in the system’s generalization abilities both at the
linguistic level and at the visual level. That is, the main
goals of the system are to i) understand and generate novel
utterances, and to ii) abstract over concrete trajectories of
actions, in particular to also recognize actions performed by
novel subjects. Thus, we consider two evaluation scenarios:

1) novel-performer: 12-fold cross-validation over all sub-
jects, i.e. training on data collected for 11 subjects and
testing on the data of the 12-th subject.

2) novel-utterances: Data for all subjects are collapsed.
We then partition the data into 25 folds by choosing a
single (different) utterance for each of the four actions
and taking all corresponding utterances as data for
one fold. On the partitioned dataset, we perform a 25-
fold cross-validation in which all utterances observed
during testing are novel, i.e. none of them has been
observed during training and thus cannot be understood
or generated by performing rote-learning.

For each fold, parameter optimization for the construction
learning model, i.e. generalization at the linguistic level, is
performed on the training data for that fold prior to testing.1

We consider three different experiments: two concerning the
understanding and one concerning the generation abilities of
the developed system. As measures we compute precision,
recall and f-measure (the harmonic mean of precision and
recall). We compute recall as the percentage of testing
examples for which the system generates the correct result

1See [1] for details concerning parameters explored in the model for
linguistic construction learning. In the experiments presented in this paper
we only apply the rating threshold at the word level.

and precision as the percentage of correctly generated results
of the number of testing examples for which the system
actually generates a result (i.e. the system may choose that it
cannot determine the result, for instance, because it has not
been able to determine a suitable syntactic pattern and/or
action model).
In the following, we will first focus on language under-
standing abilities using a matching and a choosing test,
and subsequently explore a language generation experiment.
Afterwards, we discuss the achieved results.

A. Matching test

In the first experiment, we evaluate the system’s under-
standing abilities in a matching task. During testing, the
system is presented with utterances along with a potential
action – i.e. an action which may or may not correspond to
the utterance – and is asked whether the action corresponds
to the utterance. These testing data are generated such that
the action corresponds to the utterance in about 50% of the
examples. More specifically, we keep the correct semantics
for half of the testing examples and shuffle the semantic
representations for the other half such that the semantics do
not correspond to the utterance.
Given an utterance, the system makes its choice by first deter-
mining a syntactic pattern the utterance is an instantiation of
along with the meaning associated with this pattern. If i) the
meaning’s HMM is the most probable one for the example’s
sequence/action, and ii) the mapping and objects fit (i.e. the
meanings for lexical units appearing in syntactic slots of the
utterance appear in the corresponding slots of the example’s
meaning), the system decides that both match.

B. Choosing test

In this task, we add two distractor meanings to each
testing example, thus yielding three potential meanings for
an example utterance, out of which exactly one is correct.
Importantly, one of them incorporates the same action as
expressed by the utterances but different referents, while the
other one incorporates the same referents but a trajectory
produced for a different action. We then ask the system
to choose the action matching the utterance. The system
determines whether an utterance and a action match as in
case of the previous test, and we count the number of correct
choices. This test is not applicable for the novel-utterances
condition, since in this condition all utterances for each
action are alike, and thus no distractor meaning having the
same action but different referents can be considered.

C. Language generation test

We evaluate the system’s language generation abilities by
first extracting a generation grammar based on the learned
knowledge induced from the training data and then use this
grammar to generate utterances for given testing actions.
This grammar is generated by simply extracting all linguistic
knowledge – i.e. syntactic patterns, lexical units and group-
ings of elements – along with their associated meanings
and subsequently reversing the associations. For example,



we might extract a pattern “X pushes Y ” associated with
a meaning comprising an HMM and the information what
lexical units can occur in position’s X and Y along with
their corresponding role in the meaning (such as trajector).
Given a testing action, the system first determines the most
probable HMM for the sequence. Based on the grammar, it
can then retrieve the corresponding syntactic pattern along
with the information about lexical units and their roles. The
generated utterance is considered correct only if it is identical
with the example’s actual utterance.
For comparison, we create a baseline in which natural lan-
guage utterances for observed testing meanings are generated
by choosing an utterance from the training data which
has been observed with a similar meaning representation.
In particular, we rate similarity based on both observed
referents and action sequences. For this, we evaluate a simple
matching strategy using the Levenshtein distance on the
compressed QTCc sequences. We compare the trajectory
of the action performance to all trajectories observed in
examples of the training data involving the same objects.
For all pairs of trajectories t1, t2 we calculate a matching
score as the normalized Levenshtein distance divided by its
theoretical upper bound lev(t1, t2)/max(|t1|, |t2|). However,
this baseline can only yield matches in the novel-performer
condition; in the novel-utterances condition none of the
testing utterances has been observed during training and thus
cannot be found by simply taking an utterance observed with
a similar meaning.

D. Results

Results for all three tests along with their corresponding
baseline values are presented in Table I.

TABLE I
RESULTS FOR THE MATCHING (LANGUAGE UNDERSTANDING), THE

CHOOSING (LANGUAGE UNDERSTANDING) AND THE LANGUAGE

GENERATION TESTS.

Matching test
Setting F1 Precision Recall
Baseline 50% chance
novel-performer 92.58 92.58 92.58
novel-utterances 87.25 87.25 87.25
Choosing test
Setting F1 Precision Recall
Baseline ∼33% chance
novel-performer 92.96 99.47 87.25
novel-utterances not applicable
Language generation test
Setting F1 Precision Recall
Baseline novel-performer 89.0 89.0 89.0
novel-performer 87.33 87.33 87.33
Baseline novel-utterances – 0 –
novel-utterances 77.5 81.66 73.75

The results reveal that the system achieves a large increase
in performance over the baseline, i.e. performing at chance,
in both language understanding tests. For the matching
test, F1, precision and recall are alike, since the system

determines whether the action matches the utterance and if it
does not estimate a match votes for no-match, thus yielding
a result for each testing example if a suitable syntactic
pattern and a corresponding action model can be determined.
Since most utterances were parsed correctly (as indicated
by high values for precision and recall), the system appears
to have induced a suitable grammar and action models in
most cases, i.e. for most folds. For the novel-performer
condition, individual values for folds range from 77% to
98%, with only two out of 12 folds yielding values below
90%, i.e. 88% for one fold and 77% for the other. Thus,
the learned action models appear to generalize well to a
novel performer for most human subjects. For the novel-
utterances condition values are slightly lower, with values
for individual folds ranging from 50% to 97.92%. A value
of 50%, i.e. performance at chance, was obtained for a single
fold only and likely results from an insufficient determination
of syntactic patterns, i.e. syntactic patterns may not have
been learned before testing for this fold. However, taken
together, the results are promising, showing a large increase
in performance over the baseline in both cases. In addition,
the system also achieves a large increase over the baseline in
the choosing test. In this test, the system also performs with
high precision, i.e. performance is close to 100%, indicating
that if the system is given several potential meanings for
an utterance and cannot determine the correct match it
does not confuse the utterance with distractor meanings,
even if these are also somewhat similar to the observed
utterance, i.e. corresponding to the same action or involving
the same objects. Thus, taking the results for both tests
together, the learned action models appear to be suitable
for determining actions while also yielding a reasonable
discrimination ability between different actions.
In the language generation test, the system performs only
slightly below the baseline in the novel-performer condition,
showing that by merging observed action trajectories for sev-
eral subjects into generalized action models the discrimina-
tive power is mostly retained. However, the learned grammar
and models yield the additional benefit that the system is able
to also generate utterances not observed during training. In
particular, in the novel-utterances condition the system is still
able to generate several utterances correctly, even though it
has never observed them or their corresponding meanings
before which is an important ability for adaptive artificial
agents.

VI. CONCLUSION AND FUTURE WORK

We have presented a system which learns both syntac-
tic patterns and qualitative action models. Learning action
models is driven by linguistic observations and syntactic
patterns are grounded in these models. We have presented
promising results, showing that the proposed system is able
to describe novel scenes and to understand novel utterances.
In addition, our results indicate that the learned action models
generalize well over concrete instances of the same action,
while allowing accurate discrimination between different
actions. As the learning of syntactic constructions is already



tackled in an online fashion, the next step would be to
implement the model merging also in an iterative manner.
An interesting idea in that directions comes from Stolcke and
Omohundro [22], who iteratively train Hidden Markov Mod-
els using Bayesian model merging. In the current system,
generalization of actions is driven by linguistic information.
An interesting point would be to integrate a criterion for
merging learned action models based on their similarity and
to guide linguistic generalization accordingly. This could,
for instance, be useful for detecting synonyms. Further, with
respect to application on a robot, one of our main goals is
to extend the system to also work with 3D data.
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