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Abstract— When a mobile robot interacts with a group of
people, it has to consider its position and orientation. We
introduce a novel study aimed at generating hypotheses on
suitable behavior for such social positioning, explicitly focusing
on interaction with small groups of users and allowing for the
temporal and social dynamics inherent in most interactions. In
particular, the interactions we look at are approach, converse
and retreat. In this study, groups of three participants and a
telepresence robot (controlled remotely by a fourth participant)
solved a task together while we collected quantitative and
qualitative data, including tracking of positioning/orientation
and ratings of the behaviors used. In the data we observed
a variety of patterns that can be extrapolated to hypothe-
ses using inductive reasoning. One such pattern/hypothesis
is that a (telepresence) robot could pass through a group
when retreating, without this affecting how comfortable that
retreat is for the group members. Another is that a group will
rate the position/orientation of a (telepresence) robot as more
comfortable when it is aimed more at the center of that group.

I. INTRODUCTION

As robots are slowly making their way into situations
where they interact with groups of people, it becomes
more and more important that we understand which robot
behaviors are suitable for such interactions. At the same time,
interactions with people can involve a very wide range of
different behaviors that may all be more or less appropriate.
In other words; being social can pose a very complex, highly
dynamic interactive challenge.

Since many robots have the capacity to move around,
one important aspect of being social are the behaviors
required to be positioned and oriented in a social way
(social positioning). Social positioning plays a role during
many of the different phases that could be entailed in an
interaction, such as approach, converse, and retreat. As such,
it has a very direct relevance to several settings, for example
(semi-autonomous) telepresence robots1 and robots giving
people information at a mall, airport2, or museum. As these
examples show, many of these settings can involve (small)
groups of users.

* The work described in this paper has partly been supported by the
European Commission under contract numbers FP7-ICT-611153 (TERESA),
and FP7-ICT-600877 (SPENCER).

All authors are with the department of Human Media
Interaction, Faculty of Electrical Engineering, Mathematics
and Computer Science, University of Twente, 7500 AE
Enschede, The Netherlands. {j.h.vroon, m.p.joosse,
m.lohse, j.kim, k.p.truong, g.englebienne,
d.k.j.heylen, v.evers}@utwente.nl and
j.kolkmeier@student.utwente.nl

1www.teresaproject.eu
2www.spencer.eu

Fig. 1. Example of the interactions described in the paper. A group of four
participants discuss a murder mystery. One of them is remotely present
through a robot, and has to go through several approach/converse/retreat
cycles. The inset shows the interface as seen by this participant.

Another aspect of social positioning are two interaction
dynamics that play an important role. First, there are the
temporal dynamics; interactions take place over time, which
implies that (social positioning) requirements can change
and that movements rather than static positions should be
taken into account [1]. Second, there are social dynamics;
participants in an interaction respond and adapt to each other
[2]. This means on the one hand that people could adapt to
the robot and on the other that they might expect the robot
to adapt to them. Obviously, these dynamics become more
complex as more entities become involved in the interaction
(e.g., a robot interacting with a group).

This paper introduces a study aimed at collecting quan-
titative and qualitative data that can be used to inductively
generate hypotheses on suitable social positioning behavior
for a robot interacting with a group that can move and
respond dynamically (see Figure 1). In particular, the study
looks at the interactions involved in approaching a group,
conversing with it, and retreating from it – since those
elements are common in many of the previously mentioned
settings in which mobile robots are used.

There are two reasons this aim is challenging. First, to
allow for the dynamics, there should not be many constraints
on the behavior of the participants, which reduces the control
we have over the study. Second, it still is a challenge to
implement temporally and the socially dynamic behaviors.
We have here resolved this by using a telepresence robot
controlled by one of the participants, though it should be
noted that this may limit the generalizability of the found
hypotheses to other kinds of robots.
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The contribution of this paper is twofold. First, we will
introduce the method of the study in more detail as well as
the data collected with it. Second, we will present social
positioning patterns we found in the data, from which
hypotheses can be derived. Note that though the data allows
for a more extensive analysis, we consider this to be out of
the scope (and size) of this paper.

II. THEORETICAL BACKGROUND

Much of the work in social positioning for robots is based
on two theories from sociology on social positioning in
humans. Proxemics, first introduced by Hall [3], focuses
on the distances people keep to each other. F-formations,
as introduced by Kendon [1], describe the different spatial
arrangements people can use in social interactions. It has
been shown that, as these theories would predict, many
different social situations can be distinguished based on only
position and orientation information (e.g. [4], [5]).

We will give an overview of the existing work in social
positioning for robots, including work which demonstrates
how the behaviors displayed by participants controlling a
telepresence robot can be used to investigate the suitability
of different (telepresence) robot behaviors (Section II-A).
We will further discuss work that focuses on the different
interaction dynamics (Section II-B).

A. Social positioning in robotics

Previous work has applied and investigated proxemics and
F-formations in the context of robotics. Significant effects
have been found in various settings; in different contexts
[6], with different properties of the robot [7], with relation
to the background of the participants [8], and for different
cultures [9]. These findings show that taking proxemics and
F-formations into account can have a positive effect on the
perceived appropriateness of the displayed robot behavior.
To our knowledge, there is no work on social positioning
for robots specific for interaction with small groups.

Social positioning has also been approached by having
participants control the robot. By definition, this approach
involves some form of telepresence, and often uses robots
that are equipped with a video connection as well. The
approach can be used to have participants experience the
possibilities and limitations of the robot [10] or to inform
design decisions [11]. Of particular relevance in the context
of this paper is the research of Kristoffersson et al. [12] and
van Oosterhout & Visser [13], since they actively observed
the displayed behaviors. Both used manual annotations of
visual data (video/photo), to investigate relevant patterns
in the behavior. Van Oosterhout & Visser [13] found that
people generally position themselves within Hall’s personal
space zone. Kristoffersson et al. [12] found that when talking
through a telepresence robot about a disembodied topic (here
a remote control) participants tend to assume a L-shape
arrangement, as Kendon’s F-formations would predict [1].
Actively observing the behaviors used by participants con-
trolling a robot thus seems a fruitful approach to investigate
suitable social positioning of (telepresence) robots.

B. Temporal and social dynamics of interaction

One factor that makes it hard to study human robot inter-
action is that it is a dynamic process. Or, as Hüttenrauch et al.
[14] put it when investigating the applicability of proxemics
and F-formations to the field of robotics, “The dynamic
changes and transitions from one interaction episode state
into the another one are difficult to express in terms of
Hall’s interpersonal distances and Kendon’s F-formations
arrangements when tried in a HRI scenario” ([14], p.5058).

There are two sides to these interaction dynamics. First,
there are the temporal dynamics of movements and changing
requirements. There is a limited set of papers that explicitly
look into the temporal dynamics of social positioning for
interactions between people and a robot [12], [14], [15], [16].
Second, there are the social dynamics of people adapting to
a robot and other people, as well as expecting adaptation.
Complex as they are, these dynamics allow for many inter-
esting applications. For example, by relying on people to
get out of the way for a navigating robot [17], to signal
approachability with a group of virtual agents [18], or to
influence the formation of people interacting with a robot
[19]. As evidenced by these papers, the temporal and social
dynamics are relevant and can have a strong influence on
what happens in the interaction.

III. METHOD

The aim of this study was to collect data that can be used
to generate hypotheses on (dynamic) features that could be
taken into account when designing social positioning robot
behavior for interaction with a small group. To achieve this,
we created a setting in which groups of four people would go
through several cycles of approach/converse/retreat behavior.
One of the participants was present through a telepresence
robot (the Visitor), and used the robot to interact with the
rest of the group (the Interaction Targets).

One of the challenges to our aim was that to allow for
the dynamics to arise we wanted to leave our participants
as free as possible. At the same time, we wanted to keep
the different cycles comparable, to make the comparison of
the acquired quantitative data easier. Therefore, we created
a somewhat controlled setting where we ’reset’ the position
of the Interaction Targets between the cycles, while allowing
them to move during the cycles.

Another challenge was to automatically generate robot
behaviors that are sufficiently dynamic and appropriate. As
discussed in the introduction and theoretical background, we
have here resolved this by having one participant control the
telepresence robot used in the study.

A. Task

The task had to motivate the participants to have a
conversation in which the Visitor had to go through several
cycles of approach/converse/retreat behavior. We thus asked
our participants to solve a murder mystery, where the Visitor
had to go and collect eight clues, and return to the group in
order to share the clues. To eliminate effects of the specifics
of the murder mystery, groups were randomly assigned to
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one of three murder mysteries. Preliminary analysis did not
indicate any effect of the different murder mysteries, so this
variable has been excluded from the analysis.

Each of the clues had to be picked up at different markers
positioned around the interaction area (see Figure 2). The
location of the marker for the next clue was provided to
the Visitor 75 seconds after the previous clue was presented,
which gave ample time for both approach and conversation
(we confirmed this in a pilot study).

Each group of participants was thus part of a total of eight
approach/converse/retreat cycles, separated by the Visitor
having to go to a marker to collect the next clue. After these,
rather than a ninth clue, the Visitor was given the instruction
to decide as a group on a primary suspect. This resulted in
one last approach, and a discussion that was ended by the
experimenter when consensus was reached.

B. Procedure

The study took place in a controlled laboratory setting. For
the study, we used a Giraff (www.giraff.org) telepresence
robot equipped with the hardware required for the data
collection (Section III-C.1). The robot was located in a room
with the Interaction Targets (interaction area). The Visitor
controlled the robot from a separate room using the standard
Giraff software (Figure 1).

After a briefing, participants were randomly assigned to
either be the Visitor (1 participant) or be an Interaction Target
(3 participants). This was followed by task-specific instruc-
tions from the experimenter. The Interaction Targets were
equipped with everything required for the data collection
(Section III-C.1) while the Visitor was given a brief training
on controlling the Giraff (changing position, orientation and
head tilt).

The Visitor approached the Interaction Targets for a total
of 9 times. The first eight times the Visitor approached the
Interaction Target from one of the eight markers shown in
Figure 2. The final approach was from the same marker as
the first approach. To eliminate possible ordering effects, the
Visitor had to go to the different markers in one of eight
randomly assigned counterbalanced orders3.

At the end of each cycle, before being given the next clue,
we asked participants (individually) to fill in a brief ques-
tionnaire on the robot behavior during that cycle (Section
III-C.2.a). The next clue was presented after all participants
had finished filling in the questionnaire.

While filling in the questionnaire at the end of each
cycle, the Interaction Targets were asked to stand in a fixed
formation which was temporarily projected on the floor.
The projections were not shown during the cycles and we
explicitly told our participants that they were allowed to
move around during the cycles. We used two formations; a
circular formation, with every participant occupying an equal
amount of space, and a semi-circular formation featuring an
open space [18]. Groups were randomly assigned to one of

3We used a balanced latin square design for this, controlling for regu-
larities in the order in which positions close-by and further to the previous
position would be chosen.

Fig. 2. Overview of the interaction area (approximately 6 by 4 meters).
On the circle in the middle the positions of the Interaction Targets are
indicated (IT1, IT2, IT3), these were projected using a projector mounted
to the ceiling, but only in between the approach/converse/retreat cycles. The
rectangles near the border of the interaction area indicate the positions of
the markers A-H. C1 and C2 indicate the positions of the cameras.

the formations. This was not a condition, as it would have
been in deductive research, but instead intended to cover
some of the variations that might naturally occur.

At the end of the interaction part of the study, after the
group had reached a consensus on their primary suspect, we
asked all participants individually to fill in a post-experiment
questionnaire (See Section III-C.2.b).

C. Data collection

During the study, a variety of data has been collected. Here
we will describe the methods we used for collecting objective
data with various sensors (III-C.1) and subjective data with
questionnaires (III-C.2). The tracking and questionnaire data
is available from the first author upon request.

1) Objective measures: All three Interaction Targets were
equipped with uniquely identifiable markers (one on the
back of the chest, one on a cap), which were tracked
by an OptiTrack (www.naturalpoint.com/optitrack/) motion
capture system using 8 infrared cameras. The robot was
similarly equipped. The system used allows sub-centimeter
level precision tracking of both position and orientation of
each marker. We optimized tracking for the center of the
interaction area, to make sure we could properly capture the
interaction. Markers near the edges of the interaction area
could often not be tracked. To ensure proper tracking of the
actual interaction, we informed the Interaction Targets about
this and asked them to not get too close to the edges of the
interaction area. In the analysis here presented, we will take
the marker on the cap worn by the Interaction Targets to
represent their position.

Speech of the Interaction Targets was recorded by equip-
ping them with microphones for close talk recordings. The
robot was equipped with a microphone array to record audio
and a Kinect sensor.

Two cameras recorded the interaction area. One camera
provided a side view, the other a (fish eye) top down view. All
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interactions of the Visitor with the interface were recorded
with screen capture software.

2) Subjective measures: After each approach/converse/
retreat cycle (i.e. 9 times), all participants were given an
in-between questionnaire. After the interaction part of the
study a post-experiment questionnaire was administered.

a) In-between questionnaire: The in-between question-
naire consisted of five questions; two related to the usefulness
of the clue and task progress. The remaining questions
measured comfortability with the robot operators’ driving
behavior during approach and retreat, and the distance to the
robot during conversation. For the robot operator, we instead
used three questions assessing work load (based on [20]).

b) Post-experiment questionnaire: The post-experiment
questionnaire consisted of 49 items. Among others we mea-
sured co-presence and attentional engagement [21]. Further-
more we measured the participants’ attitude towards robots
[22] and workload [20].

D. Participants

A total of 56 participants participated, divided into 14
groups of 4 persons. Of these, 13 (23.2%) were female, 43
(76.8%) male. All were students, aged between 18 and 32
years with a mean of 20 (SD=2.2). Most participants had the
Dutch nationality (85.7%).

E. Data synchronization and segmentation

After the experiment, we synchronized the data from
the various sources in Elan4 using points that were
visually/auditory/motion-wise salient. We used the tracking
data to determine when the robot was moving or not5 and
then used that information to segment the collected data.
Approaches are defined as the set of movements (and
enclosed non-movements) between the Visitor being given
a clue and the Visitor starting to (verbally) share that clue
with the Interaction Targets. Likewise, Retreats are the set
of movements (and enclosed non-movements) between the
buzzer indicating that the next clue could be collected and the
end of the recorded movement to the marker. The segment
in between Approach and Retreat is a Converse.

In the segment between each Retreat and the next Ap-
proach the participants were filling in the questionnaires,
we did not use this segment in our analysis. After the
ninth Approach, the task of the participants changed, so we
excluded that data from our analysis as well.

IV. FINDINGS

We will present first findings from the (quantified) obser-
vations (IV-A) and the investigation of the relations between
features of the dynamics of the motion patterns and the
ratings of the Interaction Targets (IV-B). A more extensive
analysis is out of the scope of this paper.

4Annotation tool developed by the Max Planck Institute for Psycholin-
guistics (The Language Archive, Nijmegen, The Netherlands), available
from tla.mpi.nl/tools/tla-tools/elan/

5We defined the robot to be moving if the position of the marker placed
on its base, smoothed over 50 frames, changed more than 0.02cm between
frames (2.4cm/s). This yielded some false positives.

A. Observed patterns of behavior

Under the assumption that the participants all tried to
display suitable social positioning, suitable behaviors would
likely be more common. Thus, patterns that are commonly
observed in the interactions can be generalized to hypotheses
for suitable behavior with inductive reasoning. We will here
introduce some of such patterns, organized by the phase of
the interaction (Approach/Converse/Retreat) in which they
occurred. Where applicable, we will quantify these patterns
and use the tracking data to calculate how common they
were.

1) Approach: During the Approach, most Visitors drove
the robot towards the Interaction Targets (Table I-1,4). Only
in one of the groups we observed that the Visitor only turned
the robot to face the Interaction Targets without driving to
them.

When approaching, Visitors commonly aimed for the
closest-by opening between the Interaction Targets they
could see, rather than taking a larger detour to approach
the group from another angle (Table I-3). We only observed
one Visitor taking multiple such detours; for this Visitor,
the Interaction Targets were in the semi-circular formation
and the detours seemed aimed at the large opening in that
formation.

In some cases we saw that the Interaction Targets actively
changed their position to accommodate for the approaching
Visitor – e.g. by making the opening the Visitor was aiming
at larger and/or by moving a little towards the Visitor.
However, this pattern was only moderately common (Table
I-5).

2) Converse: During conversation, many Interaction Tar-
gets changed their position between the beginning and the
end of the Converse segment, while movement of the Visitor
was very rare (Table I-6,7). When the Visitor did move, these
movements were rotations that increased the visibility of the
Interaction Targets.

3) Retreat: In 38 out of the 112 Retreats (33.9%) we ob-
served, to our surprise, that Visitors passed straight through
the group. This was always done to reach a marker located
directly behind the group. In 42% of these situations the
Visitors communicated this beforehand. Only in rare cases
(9 cases, 8% of total Retreats) we observed that the Visitor
backed up from the group and took a detour instead. The
Interaction Targets actively assisted the Visitor, by pointing
out the position of markers, by moving out of the way and
even by actively inviting the Visitor to pass through the
group.

B. Relating motion patterns with ratings

The ratings provided by the Interaction Targets during
the in-between questionnaire give additional information on
whether the displayed behavior was actually perceived as
more or less comfortable. Patterns in the relation between
this information and (dynamical) aspects of the recorded
behavior can be used as further hypotheses for suitable
behaviors.
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Quantified pattern min Q25 Q50 Q75 max
1 Distance between robot and center of the group at end of Approach 7cm 91cm 113cm 134cm 315cm
2 Angle (in degrees) between robot viewing direction and center of the group

at the end of the Approach
0deg 5deg 10deg 18deg 133deg

3 Angle (in degrees) between the actual position of the robot at the end of the
Approach and the position it would have had if it had moved in a straight
line from the marker to the center of the group.

0deg 9deg 18deg 34deg 135deg

4 Distance between first and last detected position of robot during Approach 0cm 111cm 176cm 211cm 293cm
5 Distance between first and last detected position of Interaction Targets during

Approach (averaged)
1cm 9cm 13cm 21cm 84cm

6 Distance between first and last detected position of robot during Converse 0cm 0cm 0cm 1cm 233cm
7 Distance between first and last detected position of Interaction Targets during

Converse (averaged)
5cm 13cm 20cm 37cm 122cm

TABLE I
QUANTIFIED PATTERNS OF BEHAVIOR WITH A FIVE-NUMBER SUMMARY (MINIMUM (MIN), LOWER QUARTILE (Q25), MEDIAN (Q50), UPPER

QUARTILE (Q75), AND MAXIMUM (MAX)) OF THEIR DISTRIBUTION IN THE COLLECTED DATA

There were large individual differences in how the dif-
ferent Interaction Targets answered the in-between ques-
tionnaires, which makes it harder to reliably extract this
information. To compensate for this, we used Gaussian nor-
malization (normalizing the scores of an Interaction Target
by subtracting the mean of those scores and dividing by
their standard deviation), averaged over the three Interaction
Targets in a group.

We will first describe some informal findings acquired by
looking for patterns in the Approaches/Converses/Retreats
that had the ten highest and ten lowest average normalized
ratings (IV-B.1). Then we will discuss more quantified ways
for looking at these findings (IV-B.2).

1) Motion patterns with the highest/lowest ratings: Driv-
ing the robot with a smooth and steady path seems to
be important for the average normalized ratings, since we
observed this in most of the ten Approaches and Retreats
that scored highest, while observing more ‘wobbly’ robot
motion in many that scored lowest.

In most of the highest rated Approaches we additionally
observed that the Visitor stopped at on average 1.25 meter
from and aimed at the center of the group, and changed the
head tilt of the robot to face the group even better (see Figure
3a). In some of the lowest rated Approaches the Visitor did
not approach at all, or got so close to the Interaction Targets
that they stepped away (see Figure 3b).

In nine out of the ten highest rated Retreats we saw that
the Visitors explicitly communicated their goals (verbally)
before driving. The pattern we observed before, in which the
Visitor passed straight through the group while retreating,
was observed in both the highest and the lowest rated ten
Retreats and thus seems to have had no strong influence of
itself on the given ratings.

We did not observe any particularly salient patterns in the
ten highest rated Converses, but in the ten lowest rated the
robot was usually far away from the group center or relatively
close to at least one of the Interaction Targets.

2) Quantified relations with ratings: We wanted to quan-
tify the relation between the ratings and several aspects

of the used motions. To do so, we here used Spearman’s
rank correlation since it is robust against outliers and non-
normally distributed data (the average normalized ratings
were not normally distributed, p=0.0306 in a Kolmogorov-
Smirnov test). We did not find a significant correlation for
distance between the robot and the center of the group at
the end of the Approach (ρ = 0.109, p = 0.220), nor for the
speed used during the Approach (ρ = -0.008, p = 0.929). We
did, however, find a significant correlation for angle between
the direction of the robot and the center of the group at the
end of the Approach (ρ = -0.218, p = 0.014). This indicates a
positive relation between how well the robot faces the center
of the group and the ratings.

These are only first results, to illustrate how this data could
be used. Though it does not fit the size and scope of this
paper, further analysis, for example based on mutual infor-
mation, will likely reveal even more measurable relations.
Different aspects of the motion of the robot and its behavior
in general are still open for investigation, and may well reveal
subtle yet strong indicators of proper robot behavior.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a study in which a
Visitor controlling a telepresence robot went through several
approach/converse/retreat cycles with a group of three Inter-
action Targets. During these cycles, they together attempted
to solve a murder mystery, with the Visitor leaving repeat-
edly to collect clues. We then identified various qualitative
and quantitative patterns in the data we recorded in these
interactions; common behaviors, regularities in the behaviors
that were rated as most/least comfortable, and a correlation
between these ratings and a particular positioning.

Using inductive reasoning, all these patterns can be used as
hypotheses for more general settings. These could be settings
with a different task, different people, and a different robot.
One of the limitations of inductive reasoning is that it is
impossible to know beforehand if such a generalization is
justified. For example, since our patterns were found in a
setting with a telepresence robot, there is no guarantee they
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a

b
Fig. 3. Representation of head tracking data from two Approaches, one with
a high average normalized rating (a) and one with a low average normalized
rating (b). The circles with lines show the positions and orientations of the
Visitor and Interaction targets in the interaction area. Indicators near the
end of the Approach are darker. Axes indicate distance (in meter) from the
center of the interaction area in the horizontal and vertical direction.

will translate to other types of robots. It is for this limitation
of inductive reasoning that it is important to realize that our
findings are hypotheses only.

To demonstrate the use of our method, we have used this
inductive reasoning to generate a variety of hypotheses on so-
cial positioning. These include, in line with what proxemics
would pose [3], the hypothesis that a (telepresence) robot
should make an approach motion to get within approximately
1.25 meter of the individual interaction targets it wants to
interact with. Based on our findings we can also hypothesize
a relation between how well a robot faces the center of a
group and how comfortable the group rates that positioning.
In addition we found that dynamics indeed play a role in
these interactions, since both the Visitor and the Interaction
Target adapted their position and orientation to each other
in various ways. This for example led to the hypothesis that
a robot could pass through a group when retreating without
this effecting how comfortable that retreat is.

Given the rich data that we collected, there are many
opportunities for further analysis, in particular into the re-
lation between aspects of the motion of the robot and how
comfortable it is rated to be.

Overall, we have introduced a quantitative inductive study
to robotics research and used it to generate various hypothe-
ses that can guide the design of social positioning robot
behavior. Our findings furthermore show that the temporal
and social dynamics can play a role in the interaction
between a (telepresence) robot and a group.
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