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Abstract— Instruction of students with intellectual disability
(ID) presents both unique challenges and a compelling oppor-
tunity for socially embedded robots to empower an important
group in our population. We propose the creation of an
autonomous, intelligent robot instructor (IRI) to teach socially
valid life skills to students with ID. We present the construction
of a complete IRI system for this purpose. Experimental results
show the IRI is capable of teaching a non-trivial life skill to
students with ID, and participants feel interaction with the IRI
is beneficial.

I. INTRODUCTION

In light of significant teacher shortages in the special
education field [1], there is a compelling role that socially
embedded robots augmenting students’ instructional needs
could fulfill. Providing instruction to students with intellec-
tual disability (ID) can present unique requirements, and we
believe that an intelligent robot instructor (IRI) designed to
provide autonomous instruction could meet those challenges.

The term “intellectual disability” refers to students who
have an IQ two standard deviations below the mean, gen-
erally less than 70 with a mean of 100. Students with ID
require a high degree of repetition and face-to-face time with
an instructor, as well as consistent, timely, and precise feed-
back, which a robot could provide tirelessly while avoiding
common teaching mistakes.

Socially valid life skills are a group of skills commonly
taught to students with ID. Social validity, from the perspec-
tive of applied research in special education, refers to the
acceptability of the goals, procedures, and outcomes of in-
struction or treatment [2]. In the context of special education,
a socially valid life skill refers to knowledge or skills that
increase a person’s independence of personal, community,
or job life. The physical, practical nature of many of these
types of skills lend themselves well to robot demonstration
and observation. In addition, the methodologies used to teach
such skills can be formulated for an IRI.

Prompting is an evidence based practice (EBP) that has
been shown to be a successful instructional strategy for
teaching discrete and chained tasks [3], and is formulated
in a way that can be applied to robotic instructors. Gener-
ally, the goal of prompting procedures is to modify human
behaviors or teach by assessing the environment and acting to
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stimulate a targeted behavior. Assistance is provided through
prompting in an effort to elicit a desired response. One
of the key advantages of prompt response strategies is the
possibility of different modalities; common types of prompts
are vocal, visual, gestural, models (demonstrations), and
physical prompts. Another beneficial aspect of prompting
is the ability to “fade” or reduce the intrusiveness of the
prompts provided to enable individuals to perform the de-
sired behavior independently. Response prompting has been
used with strong success to teach pupils with a wide range
of disabilities [3].

In this paper we explore the creation of an autonomous,
intelligent robot instructor to teach socially valid life skills
to students with ID. We detail the cognitive framework that
computationally encodes response prompting as part of a
cognitive decision-making process and describe our use of
object tracking and interaction through speech and gestures
to enable instruction through a common medium between
an IRI and a student. The results we present show that
our approach is successful in teaching students with ID an
important socially valid life skill.

We believe that this is the first use of instruction via
response prompting in the cognitive decision making process
implemented on an intelligent, autonomous robot.

II. RELATED WORK

Recent works show an emerging interest in applications
of robots as teachers. The potential advantages for robot
instructors are becoming widely recognized: in [4] social
robots interacted with 18-24 month-olds for early childhood
education; [5] studied kindergarten-aged children and provid-
ed guidelines for using robot tutors in classrooms; the impact
of a robot’s perceived social role on a student’s likeliness to
seek educational assistance was examined in [6]; the effects
of personalizing a robot’s instruction based on an online skill
assessment were presented in [7].

A large number of works have examined the effects of
embodied robot instructors, coaches, and tutors on outcomes
and perceptions. Bainbridge et al. [8] discovered that a
physically present robot’s commands are more likely to be
obeyed than a video representation of the robot, and showed
that physical robots are afforded more of the aspects of a hu-
man, such as obedience of unusual instructions and physical
personal space. Leyzberg et al. [9] showed that instruction
from a physically present robot, compared to instruction
from a video of the robot, from an audio recording, and
no instruction at all, performed best when providing puzzle-
solving advice, as measured by puzzle-solving time and self-
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Fig. 1. Cognitive process flowchart. Information flows from lighter to
darker shaded process steps.

report measures. Fasola and Mataric [10] found that older
adults preferred a physically embodied robot “coach” over a
virtual coach for several key social factors, and under robotic
coaching performed at a consistently high level. Kidd and
Breazeal [11] found a physically present robot is perceived
as more enjoyable, credible, and informative than a video
character; [12] determined that an embodied robot is more
helpful and attentive than a video or simulated character;
[13] discovered that cognitively impaired and/or Alzheimer’s
patients are more engaged by robot treatment than virtual
agent treatment; and [14] showed that health advice from a
physical robot was followed more often than the same advice
from a robot video virtual agent.

Historically much work has been done to create assis-
tive therapy robots for people with disabilities, especially
for those with Autism Spectrum Disorder (ASD); surveys
of robotics and technological applications to ASD therapy
can be found in [15], [16]. Begoli et al. [17] presented a
formulation of response prompting as a process ontology
for intervention by intelligent agents for children with ASD;
however, it was not implemented on a robotic instructor
and no experiments were conducted with human subjects.
Grezczek et al. [18] presents an approach for feedback in
imitation gaming called “graded cueing” that shows promise
for encouraging autonomous behaviors in children with ASD
that is similar to one type of response prompting.

Our work aims to create an intelligent, autonomous system
for instruction, with a particular focus on teaching socially
valid life skills to students with ID. Furthermore, because the
methodology we have selected has been shown to be widely
applicable to students of all capabilities, we believe that the
approach should generalize and the lessons learned should
be useful to other educational robotic applications.

III. APPROACH

A. Response Prompting for Decision Making

In order to successfully teach, the IRI must be able to
make decisions based on observations in order to provide
feedback to the student. The decision of which feedback to
provide is performed using response prompting as part of a
cognitive process.

System of Least Prompts (SLP) is a popular variation of
response prompting that is well-validated as an EBP for
successfully providing instruction of chained and discrete
tasks to students with ID. Further, it is applicable to a wide
range of students and has been shown effective at teaching
a large variety of skills [3]. We have selected response
prompting as the theoretical foundation for our IRI system,
and for this work we have computationally encoded SLP for
use in an IRI’s decision making process.

In the SLP instructional methodology, a hierarchy of
prompts is arranged from least to most intrusive. At the least
intrusive level, no prompt is used. At the most intrusive level,
a controlling prompt, i.e., one that assures the task will be
correctly performed, is used. The hierarchy of prompts is tra-
versed iteratively to provide more assistance and information
as needed. At each iteration, the target stimulus is presented
with the prompt for the current level (initially, no prompt).
A constant amount of time is allowed to elapse before and
after each prompt, known as the “response interval.” When
a correct response is given, it is reinforced, regardless of
when it occurs (i.e., at any point in the hierarchy). When an
incorrect response is given, the prompt level is escalated.
Possible outcomes of each iteration include: unprompted
correct, unprompted error, prompted correct, prompted error,
and no response error. The goal of SLP is for students to
respond correctly before any prompt is delivered, at the
lowest level of the hierarchy. SLP is unique in response
prompting in that as the student answers correctly at lower
prompt levels, a process of “self-fading” occurs, where the
student’s answers themselves are what determine the rate the
intrusiveness of instruction is decreased.

Fig. 1, inspired by [19], illustrates the cognitive framework
at a high level. In the cognitive process, an interpretation
of the states and actions of the world is created by taking
basic sensory information from the world and perceiving
information salient to the task at hand. Then, the system
reasons on that information, given the knowledge of the task
at hand, to generate through evaluation (e.g., about the human
activities being observed and the correctness of a response)
higher-level representations about the scenario. Using that
higher-level information, a decision is then made. In the
IRI scenario, this involves using the encoded instructional
methodology to select the correct instruction response (e.g.,
present stimulus, prompt, consequence, reinforcement). Fi-
nally, the action is articulated in the world via the navigation
and motor system.

The general instruction process is shown in Fig. 2a. The
process we have encoded is an adaption for an IRI of
the SLP methodology, which leads to a strongly defined
process that has been shown to be successful when used by
human teachers. The instructional intervention begins with
the IRI giving an introduction and general instructions for
the scenario. Task Instruction is the formal term for the step
of introducing the task and presenting the target stimulus.
Next, the IRI selects a prompt. Initially, there is no prompt;
that is, the student is given the opportunity to present an
answer independently. The student then responds, while the
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Fig. 2. (a) shows the overall instruction process based on response
prompting methodology; (b) shows the internal representation generated by
ROS SMACH.

IRI observes the student to determine whether the student
is idle, the task is complete, or a period of time, formally
known as the response interval, has elapsed. The Response
Evaluation determines the result of the step: if an incorrect
answer is given, the IRI then uses the evaluated result
information as part of the process to select the appropriate
response; if a correct answer is given, the IRI provides
reinforcement; if a correct but non-optimal answer is given,
a correction occurs before reinforcement. All reinforcement
is positive. The type of reinforcement is differential, in that
it is tailored to the level of intrusiveness of the prompt that
was required: students who require less intrusive prompts are
rewarded with an increasingly “excited” verbal reaction from
the IRI; an independent correct response (i.e., no prompt was
required) also triggers a gesture reinforcement (a “thumbs
up”). After reinforcement, the student is asked if he or
she would like to continue with another lesson. Through
repetitions of this process, the goal is for the student to
require less and less intrusive prompting, to the point of
performing the task independently.

The most important decision making our IRI system
performs takes place between the Response Evaluation and
the Prompt Selection & Delivery steps. Response evaluation
begins when the robot has observed the student to be idle
over a specified idle interval, or a longer response interval
time has elapsed. Response evaluation determines the type of
response: correct, incorrect, partially correct, or no response.
That information, coupled with the known information about
the previous prompt and human’s state (active or inactive), is
what the IRI uses to decide the appropriate feedback. In the
case where the student is perceived to be actively providing
a response during prompt delivery, the IRI immediately
reevaluates and presents an updated prompt, if necessary.

Fig. 3. The interaction setting for instruction.

Throughout the interaction, a concurrent process is imple-
mented that monitors for a verbal stop command from the
student (Fig. 2). Before beginning the experiment, students
are informed that any use of the words “stop” or “exit”
in combination with the name of the robot, initiates an
immediate shutdown of the robot. This provides an additional
layer of safety and comfort for the students beyond the
supervision of the experiment operator.

B. Object Tracking and Interaction Gestures

Our approach is designed to teach socially valid life skills
that require object manipulation and discrimination. In our
setting, a human student and an IRI stand across from each
other at a table (Fig. 3) and the IRI presents a lesson scenario.

The IRI observes the performance of the requested task,
and provides feedback to the student. Observation is achieved
through a custom object-tracking system, and interaction and
feedback is provided through speech, speech recognition, and
gestures.

In an instructional scenario where both a human and
robot must interact with objects, the IRI must be able to
observe the objects to accurately interpret the performance
of the student, make proper decisions, and provide correct
instruction; therefore, a fast, accurate method of tracking
objects is critical.

Our system uses a high-definition camera mounted under
a table with a transparent surface (Fig. 4). To create a simple
yet highly accurate and efficient solution to the object track-
ing problem, known color information about objects being
tracked is used. In the event of similarly colored objects,
small colored tags are discretely affixed to the bottom of the
objects.

Custom object tracking software leveraging OpenCV [20]
has been created. Objects are segmented in the image using
contours derived from HSV ranges, and positions defined
as the contour centroid. Orientations, when applicable, are
calculated using methods appropriate for the shape. This ap-
proach provides live, highly accurate location and orientation
information of the objects on the table surface. Pose infor-
mation for each object is published into the Robot Operating
System (ROS) framework using the tf [21] coordinate frame
package.

One challenge for any vision system is accurately tun-
ing it for use, particularly when deployed in different lo-
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Fig. 4. The table setup for the instructional setting from the student view
(a) and overhead (b).

cations with varying lighting conditions. To address this,
a convenient GUI has been created that provides a live,
annotated view of extracted location, orientation, size, and
identification of objects and allows online adjustment of
vision parameters. In the GUI, a live reading of the HSV
values at the current cursor location is projected to allow
the experiment operator to quickly identify and recalibrate
as necessary. Fig. 5 shows a screen capture of the GUI
displaying the annotated image and calibration interface.

Measured performance of our object tracking system
shows it is both highly accurate and efficient. To compute
the accuracy of our object tracking system, we analyze the
error distance between detected and ground-truth centroid, as
well as a standard object-matching approach using bounding
boxes. For matching accuracy we use an approach similar to
[22] to evaluate each frame with the PASCAL [23] detection
measure by calculating the area of overlap of the ground truth
bounding box BBgt and the detected bounding box BBdt of
each detected object. The PASCAL measure states that the
overlapping area ao must exceed 50%, as defined in Equation
1, to be considered a match.

ao
.
=

area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.5 (1)

The object tracking accuracy consistently exceeds the
PASCAL matching threshold of 50%, with a mean ao of 0.86
and minimum ao of 0.6. The mean error distance between
detected and ground truth centroids is less than 2mm.

To measure the efficiency of the object tracking system,
we record the time until detection of all objects is complete
in a live experimental setting for different quantities of coins
placed in varying positions throughout the table. Time to de-
tection of 20 objects, which we have selected as the standard
quantity of coins for the making change task, since it is both
twice number of coins sufficient to make change for any price
and provides a substantial number of possibilities for students
to respond correctly or incorrectly, is 33ms (p=0.95). Using
twice that number of objects increases our detection time by
20ms (p=0.95). Combined with total system overhead, our
tracking system operates at a frequency above 70Hz.

A second essential need for a competent system for
interactive instruction is the ability of the robot instructor

Fig. 5. The object tracker GUI, with live, adjustable parameters on top
and the annotated live image on the bottom. Right zoom shows an enlarged
view of the annotated image. Annotations include position, orientation, size,
centroid location, and bounding box for each object.

TABLE I
CONFUSION MATRIX FOR GESTURE TEST

Coin named
T F

Perceived T 42 (0.33) 3 (0.02) PPV:0.93
F 10 (0.08) 71 (0.56) NPV:0.88

TPR:0.81 TNR:0.87 ACC:0.90

to make gestures that are interpretable by, and acceptable to,
the human student. Our system uses a collection of physical
cues to provide a realistic, attentive appearance, as well as
gestures to provide explicit, physical instruction. When the
IRI is speaking she uses skeleton tracking to turn her head to
face the student, to give the impression of maintaining “eye
contact,” and when the student is performing a response, the
IRI faces the objects being manipulated. When providing
instruction, the IRI uses the poses of objects extracted by
the object tracking system to point directly at the objects to
which she is referring. She is also able to gesture at objects
for other procedural purposes, such as asking the student to
reset the table environment in between trials. The IRI also
uses gestures when providing differential reinforcement.

To examine gesture interpretability, a simple test where
the robot interacts with a student with ID was conducted
where the robot attempts to deceive the student half of
the time by selecting a coin to gesture to, but then either
asks whether the coin is the type of coin she is gesturing
to, or names a different random coin type, with an equal
probability. A confusion matrix is presented in Table I. Over
126 samples, the true positive rate was 0.81, true negative
rate 0.87, positive prediction value 0.93, false omission rate
0.12, and overall accuracy 0.90.

Together, the object tracking and gesture components,
when combined with out-of-the-box speech and speech
recognition, form a complete interaction system.

IV. EXPERIMENTS

A. Robot

The primary robotic hardware for this research is a
humanoid robot named Rosie (Fig. 4a). Rosie is a Meka



Robotics M3 mobile humanoid robot with two 7 degree of
freedom (DOF) series-elastic arms, two 5-DOF hands, and
a sensor head with 2-DOF movement. For this research, she
makes use of one PrimeSense short-range camera, one USB
camera, a Bluetooth microphone, and stereo speakers.

Rosie is equipped with two desktop-level PCs: one provid-
ing real-time functionality of the base, arms, hands, and lift;
the second dedicated to the vision and audio components.

All behavior software is implemented in the Robot Oper-
ating System (ROS) open-source framework. At a high-level,
Rosie’s functionality includes collision-aware trajectory-
based movement planning using MoveIt! [24] integrated
through the ROS action request/service paradigm; speech
recognition using CMU PocketSphinx [25]; speech synthesis
using eSpeak [26]; and 3D human tracking using NITE [27],
all of which are leveraged in this work.

B. Instructional Task

For this research, the task selected for the IRI to teach
is the task of making change. The ability to make change,
i.e., to calculate the correct quantities and denominations of
currency that should be exchanged after a cash transaction
is made, is a valuable skill for both the workplace and
independent living, and therefore fits the definition of a
socially valid life skill.

To set up this task, we use the configuration described in
Section III-B. We use standard U.S. coins (quarters, dimes,
nickels, and pennies) and affix a colored tag to one side of
each coin, which is placed facing down, towards the camera.

The general outline of an experimental trial begins with
Rosie, our IRI, providing the task instruction and then asking
the student to show the correct change for a dollar for a
randomly selected price less than $1, which is referred to
as the target stimulus. After presenting the target stimulus,
the student presents an answer by placing coins into a
specially delineated area of the table (an “answer box”).
Rosie observes and selects the appropriate feedback at the
correct time using the encoded decision making approach.

For the making change scenario, a prompt hierarchy has
been encoded as a decision tree, and incorporated into the
overall cognitive framework. We have defined four levels of
increasingly intrusive prompts, with unique interactions for
each of the possible response types that could result in a
prompt (incorrect, partially correct, and no response). Table
II shows an overview of the resulting prompt hierarchy where
prompts are arranged from least to most intrusive. Verbal Cue
1 is the least intrusive; Prompt level Direction 2 serves as
the controlling prompt. Responses: NR - No Response, PC
- Partially Correct response, I - Incorrect response; PC is a
special case where all of the coins in the response are part
of the solution, and none are not part of the solution, i.e, the
student is progressing towards a solution.

C. Evaluation

1) Single Case Experimental Design: Single case ex-
perimental design (SCED) is common in special education
research because it allows for the participants to serve as their

TABLE II
PROMPT HIERARCHY FOR THE making change TASK USING SLP.

Prompt Lvl. Resp. Prompt Description

Verbal Cue 1
NR Verbal interaction to determine how

much change is due
PC Verbal encouragement, verbally pro-

vide goal
I Same as NR

Verbal Cue 2
NR Verbal interaction to determine which

coin to begin with
PC Verbal encouragement, verbally pro-

vide goal + shortage between current
state and goal

I Verbal encouragement, provide goal +
excess between current state and goal

Direction 1
NR Gesture to correct first coin, verbally

provide goal
PC Gesture to correct next coin, verbally

provide goal + shortage
I Gesture to coin to remove, verbally

provide excess

Direction 2
NR Gesture to each coin to add, wait until

added
PC Same as NR
I Gesture to each coin to remove, wait

until removed, then same as NR

own control data for the purpose of comparing performances
between at least two experimental phases as opposed to
comparison between groups or subjects [28].

A multiple baseline across participants single-subject ex-
perimental design was used to determine whether a causal or
functional relation exists between the delivery of the indepen-
dent variable (IV), intelligent robot instruction, and signifi-
cant increases in the dependent variable (DV), the acquisition
and maintenance of the skills required to independently make
correct change from purchases under $1.00. SCEDs generally
involve repeated, systematic assessment of one or more IVs
and DVs over time. Because withdrawal of skill knowledge
is not possible, this design was selected in order to allow
evaluation of intervention effects by controlling for threats
to internal validity and to establish a cause-effect relation.
Sequentially introducing the intervention across a minimum
of three replications of participants allows for experimental
control by eliminating the possibility of any observed change
occurring due to extraneous factors (e.g., practice or history
effects), thus a causal relation can be established [29].

During baseline, each participant was asked to perform
a series of trials related to counting amounts of change
back to the researcher for purchases of items under $1.00.
No feedback, prompting, or assistance was provided to
participants under the baseline condition. At least three trials
were conducted until data were considered stable. Stability
was defined using the “80%-20%” criteria of the stability
envelope, meaning that 80% of the data points fall within
20% of the mean of baseline [28].

Upon verification that participant 1 was unable to correctly
perform the skills related to making change independently,
and baseline data were considered stable, participant 1 was
introduced to the intervention. Participants 2 and 3 continued
to be assessed periodically to ensure the skills had not
been learned through practice or carry over effects. Once



participant 1 demonstrated an ascending trend of at least
three consecutive scores per skill above baseline mean, the
intervention phase was introduced to participant 2 while
participant 3 remained in baseline. This continued until all
three participants had reached acquisition criteria of at least
3 consecutive trials. Section V-A discusses the results of this
study.

2) Subjective Acceptance Survey: To evaluate the attitudes
of the student volunteers towards learning from a robot,
Likert-scale statements and open ended questions were used
to collect subjective data. Students were surveyed both prior
to and after working with the IRI system. A five-point
Likert Scale was used for each statement, and optional open-
ended follow-up questions appropriate to each statement (e.g,
“Why or why not?”, “Please explain”) were asked. To ensure
a uniform understanding of the questions, surveys were
performed orally, with visual aids provided for responses.
The pre-assessment survey consists of 18 statements divided
into 8 categories, the post-assessment 30 statements in 14
categories, with 2-3 statements each category, and a summa-
tive analysis was applied. Section V-B discusses the results
of this survey.

V. RESULTS AND DISCUSSION

A. Participant Performance

The task of making change is treated as two sub-skills:
Skill 1, the ability to identify the correct amount of change
for a given price and Skill 2, the ability to provide the correct
amount of change using the least amount of coins possible.
Rosie provides instruction for both sub-skills, with calculator
instruction for Skill 1.

Participants in this study are college-age and attend a post-
secondary education program for young adults with intel-
lectual and developmental disabilities. None of the students
selected for this study were able to perform any of the
steps involved in the making change task independently. All
participants are female with an IQ between 57 and 67. All
three received special education services throughout school
under intellectual disability and earned modified high school
diplomas. In addition, participant 1 has a dual-diagnosis of
emotional disturbance.

To score the participant’s performance, points are assigned
on a weighted scale based on prompt levels, as in [30], using
a 100-point scale. If a student responds 100% independently,
a score of 100 points is recorded. Because each solution has
n coins, for Skill 2 there are at most n possible controlling
prompts. So, for each correct coin placement step performed
prior to the delivery of the controlling prompt, a score of
100/n points is recorded. In the worst case, where a student
does nothing and Rosie directs each coin (Direction 2 in
Table II), a score of 0 points is recorded. For each less
intrusive prompt, points are deducted in proportion to the
intrusiveness: −50/n for prompts regarding the value of the
coins, −25/n for general prompts, and −5/n for prompts
related to an inefficient combination (e.g., 5 pennies vs. a
nickel). For Skill 1, an independent correct response was giv-
en 100 points, a correct response with prompting/instruction

Fig. 6. Results from the making change experiment using multiple baseline
across participants.

was given 50 points, and a 5 point deduction was applied for
each missed response in the calculator instruction sequence.
Fig. 6 shows results for each student’s performance across
baseline, Skill 1 and Skill 2 conditions.

With the IRI the students were able to achieve skill
acquisition to mastery, defined as 100% correct performance
of Skill 1 following calculator instruction and 100% indepen-
dence of Skill 2. While data collected during baseline condi-
tions verified that the participants were not able to perform
the making change task, specific prerequisite knowledge was
not assessed, such as coin value identification and the ability
to follow Rosie’s directions. Participant 3 demonstrated more
limited understanding of these prerequisites than participants
1 and 2, and therefore had a steeper learning curve to achieve
criteria for acquisition and mastery. Such considerations will
be applied to future studies of robot interventions for people
with ID.

B. Subjective Acceptability Survey

An acceptability study was conducted to examine the
opinions of students under Rosie’s tutelage. Survey responses
were scored from -2 (Strongly Disagree) to 2 (Strongly
Agree), and averaged across categories. In Table III, we see
categories from the pre- and post-instruction survey results.
The initial results of the assessment of students’ opinions
prior to working with a robot instructor showed mixed
enthusiasm for the experience; however, post-instruction
results show a positive opinion of the overall experience
and performance of the robot. Compared to the students’
willingness to work with a robot pre-instruction, the students
showed greater willingness to work with Rosie again.



TABLE III
ACCEPTANCE SURVEY RESULTS.

Category (Pre-Instruction) S1 S2 S3
Do you like robots? 1 2 0
Have you been exposed to robots before? -0.33 0.67 -1
Are robots useful? 1.5 1.5 0.5
Would you learn from a robot? -0.5 1 1
Category (Post-Instruction) S1 S2 S3
Was the robot good or bad overall? 1.5 1.5 1.5
Was the robot knowledgeable? 1.5 1 2
Did you trust the robots instructions? 1.5 1.5 0.5
Did you obey the robot? 2 1 1.5
Was the robot easy to learn from? 2 1 -0.5
Would you work with the robot again? 2 1.5 2

The open-ended question answers highlighted this sen-
timent. One student had several suggestions for additional
teaching tasks. Students could also envision the advantages
of a robotic instructor, with comments about the ability to
“give [human] teachers a break,” and the increased ease of
learning from a robot, because where teachers move at the
pace of the class the “pace could be better” with a robot.

VI. CONCLUSION

For the purpose of teaching socially valid life skills to
students with ID, we have presented the first implementation
of response prompting for cognitive decision making on an
Intelligent Robot Instructor. We have detailed the creation
of a functional system to provide essential perception and
interaction capabilities for this purpose, with a fast and
accurate solution for object recognition, and salient gesturing
for interaction. Experiments using SCED methods show that
an IRI is capable of teaching students with ID the selected
task. We have also presented subjective results from subjects
in our volunteer student group that show enthusiasm for
this work. We believe that through the advancement of
intelligent, autonomous robot instructors there is the potential
to empower students with ID, and others, to lead more
independent lives.

VII. ONGOING AND FUTURE WORK

The formulation of the response prompting approach and
the vision, tracking, and gesture system are being used in
ongoing research aimed at examining how a social robot can
be used to teach students with ID socially valid life skills.

Planned future directions of this research include exam-
ination of other instructional methodologies for cognitive
decision making, application to new task environments, and
group instruction.
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