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Human inspired effort distribution during
collision avoidance in human-robot motion

Grimaldo Silva1, Anne-Hélène Olivier2,3, Armel Crétual2,3,
Julien Pettré3 and Thierry Fraichard1

Abstract— Recent works in the area of human robot motion
showed that behaving in a human-like manner allows a robot
to reduce global cognitive effort for people in the environment.
Given that collision avoidance situations between people are
solved cooperatively, this work models the manner in which
this cooperation is done so that a robot can replicate their
behavior. To that end, hundreds of situations where two walkers
have crossing trajectories were analyzed. Based on these human
trajectories involving a collision avoidance task, we determined
how total effort is shared between each walker depending on
several factors of the interaction such as crossing angle, time to
collision and speed. To validate our approach, a proof of concept
is integrated into ROS with Reciprocal Velocity Objects (RVO)
in order to distribute collision avoidance effort in a human-like
way.

I. INTRODUCTION

Consider a robot whose goal is to reach a particular target.
In between its current position and its goal, this robot can
encounter an unbounded number of static and dynamic obsta-
cles. Our focus in this work lies on the interaction behavior
when avoiding dynamic obstacles, specifically people. We
are interested in studying how a robot should move among
people, what we define as a Human Robot Motion (HRM)
problem. In the context of HRM, it is not sufficient to only
guarantee collision-free motions [1]. The main objective is
to provide robots with human-like behavior when avoiding
collision with people, which can involve a broad range of
concepts such as social spaces [2] and legibility concerns
[3], in what we call an appropriate motion.

In the present work, we focus on one characteristic of
human-human interaction during collision avoidance that is
the mutual sharing of the adaptations performed to solve a
collision [4]. We aim at better understanding the contribution
of each walker to avoid a collision, which is expressed in
terms of the amount of change in both desired energy and
time to the goal, what we call collision avoidance effort. We
hypothesize that replicating this human behavior in a robot
would imply that people will be able to rely on their implicit
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natural behavior when avoiding a collision with a robot [5].
This could be an advantage given that human-like motion has
been shown to reduce planning effort for all the people in the
environment [6]. In this context it is also worth noting that
people tend to choose collision avoidance strategies based
on situational factors, such as heading, rather than personal
characteristics [7] such as gender or personality - or lack
thereof in case of a robot.

Recent works have studied the proportional contribution
to avoid a collision in perpendicular crossing scenarios
between two walkers [4]. They found that there is a sta-
tistically significant difference in the amount of contribution
performed by each walker to reduce the perceived risk of
future collision. This contribution is done by adapting their
respective trajectories depending on their role in the collision
avoidance: the walker who arrives second at the crossing
performed more adaptation than the walker who arrives first.
Authors explained this as a consequence of the asymmetric
shape of personal space. To further expand these results for
a wider range crossing angles (not just perpendicular) and
also to better characterize this behavior, our work presents a
model designed from the evaluation of hundreds of collision
avoidance situations between two walkers.

Our approach is composed of two core components that
are a result of this evaluation. The first component is a
definition of collision avoidance effort, while the other com-
ponent is a representation of the effort distribution based
on a number of situational factors that describe a given
collision situation. These components are tested using the
Robot Operating System (ROS) with Reciprocal Velocity
Objects (RVO) [8] to simulate the navigation of both people
and robot. However, instead of RVO’s standard equal share,
our approach is used to predict the amount of contribution
to avoid a collision that is expected from each agent.

To our knowledge, this is the first work that explicitly
accounts, based on empirical data from walkers in collision
avoidance situations, for the manner in which a person
expects the effort to be shared in a given scenario.

A. Outline of the paper

In Sec. II, the state-of-the-art is presented and previous
works are contrasted with our method. Our first contribution,
a measure of collision avoidance effort for a given trajectory,
is presented in Sec. III. This measure and the manner in
which people distribute it in a given collision situation
are then modeled based on the evaluation of hundreds of
collision avoidance scenarios in Sec. IV. To evaluate the



impact of these changes in actual trajectories, simulated
experiments are done into ROS using RVO in Sec. V. Finally,
the conclusion is presented in Sec. VI.

II. State-of-the-art and contributions

Understanding and replicating human behavior has been
a common trend in recent human-robot motion research. To
that effect, many human-like models have been used to allow
a robot to replicate or account for a person’s behavior. For
example, in [9], a robot is able to predict how standing
people that are inadvertently blocking its way will react to its
motion, that is, in which manner they will allow the robot to
pass and how much effort this requires. This allows a robot to
pass through regions that would have been hard or impossible
otherwise. This is done through the use of the Social Force
Model (SFM) [10] to calculate people’s reaction (as a group
or individual) to a particular robot plan.

For situations when people are already in motion, in [11]
a robot navigated inside a shopping mall using an approach
also based on SFM. However, in their work, the amount of
contribution that each person did to avoid a collision to the
robot was not compared to a people-only baseline. To better
quantify the amount of change in a person’s motion caused
by the robot, in [12], a measure, called social work, was
used as an additional cost for each candidate trajectory to the
robot’s goal. Such formulation allows one to give precedence
to trajectories that have smaller impact on the motion plan
of nearby people.

In the aforementioned works, the impact of a robot trajec-
tory in a person (or group) is minimized without accounting
for people’s expectations. However, in [4] it was shown
that humans walkers mutually solved the collision avoidance
task but their contribution is not symmetric. In particular, in
an orthogonal crossing situation, a person who will arrive
second at the crossing contributes more than the other to
avoid the collision in terms of motion adaptation. Therefore,
attempting to solve a collision situation by simply minimiz-
ing the impact in a person’s original motion plan would lead
to a robot behavior that is not human-like. In our work the
expectations of people concerning their contribution to avoid
a collision in a given situation are defined in the context
of the current collision scenario, accounting for situational
factors such as: crossing angle, crossing order and time to
collision.

In our previous work, presented in [13], the definition of
effort was based on progression to the goal i.e. the faster one
arrives at the goal the better. This implies, for most cases, that
one preferred speed should be its maximum speed. This is
not sufficient to properly explain human behavior, as people
do not walk at their maximum speed and furthermore often
accelerate (or decelerate and change heading) [4] to avoid a
collision. Moreover, the effort distribution in [13] does not
account for several situational factors such as crossing angle
and time to collision. We considered these factors because
they may have an influence on the perceived future risk of
collision for a given situation. Obviously, on one hand, time
to collision indicates how soon the collision will occur. On

the other hand, the crossing angle may change how the future
distance of closest approach is projected in the personal
space of the walker. Indeed, personal space was shown to
be elliptical during human locomotion [14], this can change
the threshold in which a person perceives their personal as
being invaded when crossing through different angles. These
factors (among others) and their impact are accounted for in
this work, which is based on empirical results obtained from
people in collision avoidance situations.

Our work brings novel contributions in the area of human-
robot motion. We present a definition of collision avoidance
effort in order to describe scenarios in terms of total effort
and also its distribution among people. Furthermore, we
also present this as a human-like model for robots that
explicitly accounts for situational factors such as crossing
angle, crossing order and time to collision. This allows one
to define what are the situations in which more effort is
expected and also how changes in one or more factors affect
the effort distribution.

III. Effort-based trajectory cost function

In this section, we describe the cost of a given trajectory
in terms of energy and time. This cost is used to calculate
the collision avoidance effort which allows one to estimate
the relative effort performed by each agent in a collision
avoidance interaction.

A person walking towards his/her goal dedicates a certain
amount of energy to reach it, the amount of energy dedi-
cated, for his/her chosen speed, tends to be optimal [15].
Furthermore, the total energy required for a given trajectory
πp =

{
~pp(0),~pp(1), · · · ,~pp(t), · · · ,~pp(n)

}
with each position

~p(t) = (xp(t),yp(t))∈R×R, is defined in the context of our
work, based on [15], as

E(πp) =
n

∑
t=1

(
32+0.0050vp(t)2) (1)

which represents a quadratic cost function in terms of speed
vp(t) at time t for the trajectory πp in meters per minute. It
returns the cost in terms of calories per minute per kilogram.

A. Describing trajectories in terms of time and energy

A person going towards its goal without any obstacle,
dynamic or otherwise, might choose what is defined as an
optimal-speed walk [15] which refers to the most energy
efficient (in terms of calories) walking speed for a given
person. Empirical evidence found that this value for an
average person is of 80 m/min or 1.33 m/s [15]. For a robot,
finding the most human-like trajectory, at least in terms of
energy efficiency, to a given goal could be defined simply as

π
∗
π = argmin

πr∈Πr

E(πr) (2)

where Πr is the set of admissible trajectories of robot r to
its goal - trajectories that are both safe (collision-free) and
appropriate.

Outside of the optimal-speed walk, in terms of energy
spent per meter walked, there are always two speeds that



spend the same total energy: one faster than optimal-speed
walking and one slower. Walking faster means smaller time
to goal while walking slower can allow for greater safety,
exploration and also etiquette. In this sense, at least for the
task of goal reaching without obstacles there is no incentive
to walking slower than the optimal-speed walk.

In the case where dynamic obstacles with potential col-
lision risk are involved, more specifically people, one can
increase or reduce their speed and also change their heading
to avoid a collision. This in turn can change their original
balance between the amount of energy invested and the time
to the goal. This trade-off is important in the sense that it can
allow even for an energy inefficient action to be justified as it
helps minimize global energy cost to avoid a collision. This
time and energy trade-off for a person can be represented as
a trajectory cost function Γ : [R2, · · · ,R2]→R and represents
the cost of a trajectory (with fixed time step), defined as

Γ(πp) = E(πp)+ζp(vdes
p ) ·T (πp) (3)

where T (πp) is the time required to execute this trajectory
and vdes

p is the desired speed choice for a person, which is
not necessarily the most energy efficient, in case there are
no obstacles to its goal. Moreover, ζ : R→ R is a function
of a given speed that returns a value which makes a given
time energy trade-off optimal only when the agent p arrives
at the goal with the desired energy and time. That is, even
in cases where the agent arrives earlier to the goal while
using more energy or when it arrives later while using less
energy, the value of Γ(πp) will not be minimum. Thus, for a
given vdes

p the value of ζ (vdes
p ) that makes this chosen time

energy trade-off optimal for Eq. 3 can be pre-calculated for
any speed. The shape of the time energy trade-off function,
given ζ , is showcased in Fig. 1.

The value ζp(vdes
p ) is of fundamental importance for our

formulation given that it defines the willingness of a person
to spend energy to reach their goal sooner. For instance, if
ζ is defined as zero, the agent will prefer the most cost-
efficient speed. On the other hand, higher values of ζ (vdes

p )
progressively indicate to the agent that higher energy costs
are worth, up to a point, in order to arrive sooner to his goal.

Each person has a different trajectory energy cost func-
tion and thus a different ζ (vdes

p ). Several ways are being
considered to approximate an individual trajectory energy
cost, such as using height and gender as predictors, but in
the current iteration of our formulation, the most energy-
efficient speed is set as a grand average found in empirical
tests in the literature [15].

B. Collision avoidance effort
As we established in Eq. 3, to reach a goal while avoiding

a collision an agent is forced to change its time energy trade-
off to non-optimal values. This change is what we define as
collision avoidance effort. Let ∆E(πp) and ∆T (πp) represent,
respectively, the change in energy and time between the
current Γ(πp) and the optimal time energy trade-off from
an ideal situation without obstacles - the baseline. Thus, we
represent collision avoidance effort as

Fig. 1: Change in the time energy trade-off function in
accordance to change in ζp(vdes

p ) in case one walks straight to
the goal without obstacles. Thus, for each case the minimal
value is reached only when the agent arrives at his goal at
the desired time using the desired amount of energy. Thus,
in case a person accelerates, decelerates or move its heading
away from the goal in order to avoid a collision its value
will not ever be minimal.

F(πp) = ∆Γ(πp) = ∆E(πp)+ζ (vdes
p ) ·∆T (πp) (4)

The value F(πp) will only be minimal when the person
arrives in his goal with both the desired time and energy.
In this case, F(πp) will be zero.

Given the aforementioned formulation, the effort distri-
bution coefficient (EDC) of a given agent p, that is, their
contribution to collision avoidance in relation to another
agent q, represented as αp,q, can be directly calculated using

αp,q =
F(πp)

F(πp)+F(πq)
(5)

IV. Human-like effort distribution

For a robot, when avoiding collision with a person it is
necessary to account for social expectations instead of an
approach based on, for instance, the minimization of total
effort to avoid a collision. For example, a person that is
coming from behind another one generally does not expect
the person in front to collaborate in order avoid the collision,
even if they are aware of each other. Moreover, depending
on the crossing order, relative speed and relative position
between people the distribution of effort to avoid a collision
won’t be necessarily equal.

In this section, we estimate the value of αr,p for the robot
r based on situational factors that describe a given collision
situation. This is done by analyzing hundreds of collision
avoidance scenarios, particularly the trajectories for each
person, which are required to calculate F(πp). This allows
us to estimate αr,p by establishing a relationship between
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Fig. 2: Experiment area is a square with twelve meters
in length. The red circle has six meters of diameter and
represents the zone of observation where collision avoidance
analysis is made. The circle is virtual. This particular situa-
tion represents a scenario with 150◦ crossing angle.

the situational factors that describe a given situation and the
actual collision avoidance effort distribution.

A. Behavior of people during collision avoidance

To understand the behavior of people when avoiding
collisions among each other, we first designed an experiment
involving interactions between two walkers having crossing
trajectories. Participants volunteered to perform the exper-
iment and our study conforms the declaration of Helsinki.
The experiments were composed of over 450 runs divided
near equally into five different crossing angles: 30◦, 60◦,
90◦, 120◦and 150◦. Several filters were used into the data
to remove data with too much noise and situations without
collision avoidance behavior, after which 202 runs remained
for analysis.

The area designed for the experiment is equal to a square
with length twelve. As can be seen in Fig. 2, there are
occluding walls each with three meters in length at the
middle of each square side that are oriented towards its
center. The walls are meant to separate participants in such
way that they are not able to see all other participants at
the same time. This allows walkers to reach a comfort speed
and a stable state before interacting with the other walker.
Participants were told to reach the opposite side of the
experiment area at comfort speed and were informed that
they will interact with another walker.

The observation zone in which we concentrate our atten-
tion is a circular region with three meters radius in the center
of the square. This region is meant to provide sufficient space
so that subjects can adapt their speed and orientation during
collision avoidance.

Each run of a collision avoidance scenario involves four
participants, however only two at a time will ever enter
the observation zone at each run. This is necessary as in
some crossing scenarios a person may see another one as
soon as they are into their initial positions, as such, it is

Fig. 3: Collision situation between r and p, where crossing
angle φ , bearing angle β and its derivative β̇ are shown. The
z is calculated based on bearing and crossing angle. Also note
that zr,p = −zp,r. Arrows indicate a velocity vector.

necessary to add some uncertainty to avoid possibly altering
their behavior. The non-participants, as can be see in Fig. 2,
won’t enter the observation zone and thus do not participate
in the collision avoidance.

The synchronization of the participants initial position and
start time is done automatically in order to allow for several
different collision situations.

B. Roles during collision avoidance

The information provided in the experimental evaluation
of human behavior, detailed in Sec. IV-A, and in accordance
to the work of [4], two main roles depending on the crossing
order can be identified. Participants are able to identify
their future crossing order early in the interaction since few
inversions occur within the interaction [4], [7]. This can be
done using the optic variable named bearing angle β and its
derivative, both variables are shown in Fig. 3. The rate of
change of a given β (its derivative) can be a strong indicator
of potential collision. This was established in [16], where
a rigorous study of the role of β and its derivative β̇ was
made. The derivative of the bearing angle also determines
the crossing order, which represents two main roles during
collision avoidance: who crosses first and who crosses last.
As such, two important conclusions have been reached by
analyzing β and its derivative during a situation involving a
potential collision [16]:

• when βr,p is diverging over time i.e. going away from
the center of the field view, the agent r is crossing first;

• conversely when βr,p is converging over time i.e. going
towards the center of the field of view, the agent r is
crossing last.

The role of crossing order in a collision situation has been
subject of much research. In particular, in [4] for the case
of 90◦ crossing angle it was shown that the person who is
crossing first in average contributes less to avoid a collision
than who crosses last.



Fig. 4: Proportion of effort that was done by the person who
crosses first with respect to total effort required to avoid
a collision. In situations that require higher total collision
avoidance effort its distribution shift the majority of the effort
towards the last crosser. Boxplots in blue indicate that there
is a significant difference between the contribution of the first
crosser and last crosser (p-value<0.05) and in red indicate no
significant difference (p-value>0.05). Values are considered
outliers when outside 99.3% coverage.

C. Variability in effort distribution

Let πfirst and πlast be, respectively, the first and last crosser
trajectories. Based on the analysis of the whole dataset with
people in pairwise interaction to avoid a collision, that was
done for each of these roles for all crossing angles, paired t-
tests show that the last crosser contributed more to collision
avoidance task when the combined total, that is F(πfirst)+
F(πlast), is between 0.55 and 0.165 (p-value<0.05). There
was no significant difference in the low effort condition in
the interval between 0 and 0.55. Thus, whenever a relatively
small amount of effort is necessary to avoid a collision
the distribution of effort varies without bound between both
people, as shown in Fig. 4.

Although a clear reason for this behavior is not apparent,
one possible explanation is that crossing order is less relevant
in smaller crossing angles, such as 60◦, which in our exper-
iments required, in average, less collision avoidance effort.
This can be seen in Fig. 5, where the difference in effort
distribution between the first and last crosser is comparatively
small in comparison to other crossing angles.

D. Avoiding collision in non-trivial cases

The proportion of collision avoidance effort required for
the person crossing last increases in correlation with the total
amount of effort in a given collision avoidance scenario, as
was shown in Fig. 4. Thus it is necessary to determine what
are the conditions that engender higher or smaller effort in
a given collision avoidance scenario.

To explain the effort of a given collision scenario we
model it based on four variables: crossing angle φ , difference

in speed, deviation from baseline bearing angle zr,p =
∣∣βr,p

∣∣−
φr,p

2 and time to collision; the time to collision represents the
amount of time in which a collision will happen in case
no change in the velocity vector is made. Some of these
variables can be visualized in Fig. 3.

Both the difference in people speed and z are calculated
in relation to the first crosser. Thus, for each crossing angle
we fit the data to a Generalized Linear Model (GLM), with
a Binomial distribution and a Logit link function. The GLM
was chosen, instead of a linear regression, as it allows for
constant change in predictors (situational factors) to be able
to cause non-constant change in response. This is important
as the increase in total collision avoidance effort causes a
non-constant increase in the proportion of effort done by the
last crosser.

A GLM model was fitted to the data of the first and of the
last crosser (p-value<0.05). Do note that these p-values are
valid only within the region where effort is bigger than 0.035,
given that the spread of effort distribution when absolute
collision avoidance effort is small would be too high to allow
for reliable prediction.

An example of effort difference between first and last
crosser can be seen in Fig. 5, where the evaluated model
indicates that, in average, the upper bound for effort invested
by the first crosser remains nearly constant while the last
crosser effort increases unbounded as the collision avoidance
problem becomes more difficult. The cases of highest effort
happens whenever the current crossing order is not respected
e.g. one agent yields when it should pass first, as can be seen
in the lower left of each individual surface in Fig. 5.

Do note that, as stated in Sec. IV-C, in cases which require
relatively small amounts of total effort the spread of the
effort distribution is high, as such, the effort distribution in
these cases is not consistent with the values predicted by our
generalized linear model.

E. Discussion

The manner in which people share effort is consistent
over situations with high total collision avoidance effort. Our
model allows a robot to evaluate situational factors in order
to estimate how effort is distributed among roles. The focus
on these factors is inspired on recent works which highlight
the importance of situational factors (instead of personal
characteristics) in explaining collision avoidance behavior
[7]. Although this model can be applied to multiple people
by considering each possible pair-wise interaction separately,
this could generate unrealistic behavior when dealing with
groups of people.

There are other factors that can affect the effort distribution
which were not accounted for in this work. For instance,
the gender of a person may affect both the degree of
collaboration [17], the size of a person’s personal space
and also group organization [18], which may impact overall
behavior. Moreover, a person may decide to yield to a child
or an older person even if situational factors indicate that
passing first is the expected behavior, in what can be called
a polite behavior.



(a) First (left) and last crosser (right). Crossing angle 60◦. (b) First (left) and last crosser (right). Crossing angle 120◦.

Fig. 5: Collision avoidance effort surface, given time to collision of three seconds, for first and last crosser for two crossing
angles.

V. Experiments in ROS using RVO

The simulated experiments were performed with two main
goals in consideration. One is to evaluate if the chosen
situational factors are consistent to explain common collision
scenarios, while the other helps to validate if the generated
effort distribution is consistent with observed data.

A. Finding effort distribution in terms of RVO

Consider a situation where two agents q and p, with
desired velocities vdes

q and vdes
p need to avoid a collision with

each other. In this case, RVO finds the smallest change in the
relative velocity (vdes

q −vdes
p ) that avoids a collision between

them [19], this is given by ~u as

~u = (argmin
~v∈∂VOτ

q|p

‖~v− (~vdes
q −~vdes

p )‖)− (~vdes
q −~vdes

p ) (6)

where ∂VOτ

q|p is the set of changes in relative velocity that
are in the threshold between collision and no collision - the
minimum change in relative velocity that avoids a collision.

Commonly, RVO shares the change in relative velocity
equally between the two agents [19], that is, 1

2~u for each.
However, when an agent represents a model of a person’s
behavior this is not always the correct approach. As such,
our work tackles the problem of mapping how much an
agent should contribute to avoid a collision into α , that is
used instead of the equal share. To that end, given the effort
defined in Eq. 4, each agent goal and situational factors of all
agents, calculating the k that translates to the desired effort
distribution in terms of RVO is trivial.

Another issue is the large spread of effort distribution
in small collision avoidance effort situations. Given that
RVO requires effort to be reciprocal, it’s not evident how
to translate this optional cooperative effort into its model.
Thus, collision avoidance scenarios that require smaller total
collision avoidance effort are set to have equal effort dis-
tribution while when total collision avoidance increases the
effort distribution is shifted to the actual model-based effort
distribution value. Thus, let EDC = αr,p, we represent the
desired behavior as

f (πp,πq) =
1

1+ e−γ(T (πp)+F(πq)−c)
(7)

RVO-EDC(πp,πq) = 0.5+(EDC−0.5) f (πp,πq) (8)

(a) Effort shared between
agents. Both change trajectory.

(b) First crosser does all effort
to avoid collision.

Fig. 6: Impact of different ways to distribute effort in the
generated trajectories.

where c = 0.03 and γ = 260 are defined based on the
empirical data as to allow for smooth transition from equal
distribution to using EDC depending on the total collision
avoidance effort.

B. Simulated experiments

In the simulated experiments, the person and the robot
are simulated using the same robot model. Furthermore, in
order to simulate human speed, the desired speed is set as
1.3 m/s and 1.5 m/s as maximum speed for the two agents.
Using these agents, tests were executed three times for each
of these crossing angles: 60◦, 90◦, 120◦ and 180◦. However,
in the case of 60◦ the examples produced diverged little
from standard RVO as the effort distribution in our method
approximated equal share.

The first step in the evaluation of our model is to demon-
strate the impact of effort distribution in generated trajec-
tories. To that end, the results of the comparison between
collaborative and non-collaborative agents are presented in
Fig. 6. These results show that the manner in which effort
is distributed significantly changes generated trajectories.

The second step of our model requires establishing a com-
parison between predicted effort distribution in our simulated
cases with the baseline obtained from the dataset. For the
90◦ experiments, the last crosser tended to change their
heading in order to avoid a collision. In our tests, the actual
effort distribution was at most within five percentage point
difference from the one indicated in our model. This indicates
that our implementation is able to translate the RVO-EDC
to an appropriate value for a given collision avoidance
effort distribution. In contrast, in the 120◦ experiments, see
Fig. 7b, agents tended to change their speed (heading is



(a) 90◦crossing angle. Hu-
man 75%, predicted 70%

(b) 120◦crossing angle. Hu-
man 85%, predicted 88%

Fig. 7: Last crosser collision avoidance effort proportion
comparison between actual people and simulated data. Hu-
man trajectories are in red, simulated trajectories with our
method are in blue.

Fig. 8: Behavior when crossing angle is 180◦. Agent in front
is three times slower and does not contribute in avoiding the
collision.

slightly changed), in this case, in our model, the first crosser
accelerates less and the last crosser decelerates more.

In order to evaluate if the agent in front does not share
collision avoidance effort as expected from our model, in
Fig. 8 the 180◦ case is tested. In all tests performed, the
expected behavior is obtained where the agent in front does
not participate in the collision avoidance.

VI. CONCLUSIONS

People do not always share collision avoidance effort
in the same manner, factors such as time to collision and
crossing angle affect the proportion each role (first and
last crosser) is responsible for. In this work, based on
hundreds of collision avoidance situations between people,
we evaluated what factors influence the collision avoidance
effort distribution in several distinct scenarios. From this, a
definition of collision avoidance effort was created and also
a model capable of predicting effort distribution. The model
shows a clear increase in the relative proportion of effort for
the last crosser as the effort increases.

The model was tested in simulated experiments and its
result reveals a difference in generated behavior when com-
pared to standard RVO. This difference is more pronounced
when a given collision situations requires higher amounts of
collision avoidance effort.

It is important to highlight that other factors can influence
the manner in which a robot should share effort to others. For
instance, a robot can and should yield to a child, given that its

awareness of social rules and expectations is not certain when
it comes to collision avoidance, even when situational factors
would indicate otherwise. As future work, we intend to
develop navigation strategies that are better able to represent
this non-mandatory cooperation that is present in collision
avoidance behavior between people, adding concepts such
as politeness in its decision making.
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