
Deep Reinforcement Learning for Formation Control

Can Aykın, Martin Knopp1, and Klaus Diepold

C. Aykın, M. Knopp, and K. Diepold, “Deep Reinforcement Learning for Formation Control”, 2018 27th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), Nanjing, China, 2018, pp. 1124-1128. DOI: 10.1109/ROMAN.2018.8525765

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Continuing our work on using reinforcement
learning for formation control, we present an end-to-end deep
learning system which uses only camera images to learn to
control the individual system’s correct position within the
formation.

Mnih et al. created AIs playing video games utilizing the
same visual input as a human player by employing convo-
lutional neural networks for automatic feature extraction on
images. This published work inspired us to employ a similar
approach for processing the camera images and controlling the
robot.

We repeat the same experiment with two completely different
camera positions. The results for both positions are very similar
and such demonstrate the flexibility of the presented approach.

I. INTRODUCTION

We are interested in solving the problem of formation
control using reinforcement learning algorithms. With this
approach, we want to create a flexible framework that can
autonomously adapt to varying environment conditions and
to different agents. We hope to solve problems like formation
control of robotic wheelchairs, which are accompanied by
human caregivers [1], or multi-robot formations in shared
rescue missions [2] using semi-automatic training instead of
an individually tailored solution.

In our previous work [3], we investigated whether rein-
forcement learning can be used to let a follower learn to
stay in line formation behind its leader. We solved this by
employing the GQ(λ) reinforcement learning algorithm. We
also introduced an update buffering technique, which allowed
a certain degree of asynchronicity between the learning
algorithm and the execution of the robots’ commands. This
technique yields significant performance improvements in
simulations and is important for real applications as we have
to carefully control timing between different actions and
changes of the environment and the learning algorithm itself
otherwise.

Our approach also showed some issues, the most important
one being that our solution had to carefully observe the
specific properties of the considered robots. This becomes
most obvious in the state-space we used. Directly using the
values of the proximity sensors creates a state-space that
cannot be processed anymore (40962). Therefore, we had to
map the raw values from the proximity sensors onto a lower
dimensional space. The projected values are than used as an
input to our algorithm. The problem is that this mapping
already includes knowledge about the meaning of values

1Corresponding author: Martin.Knopp@tum.de
All authors are with the Department of Electrical and Computer Engi-

neering, Technical University of Munich, 80333 Munich, Germany

(e.g. linearity of the sensors, correspondence of values to
concrete areas of observation, all possible observation areas
have the same size) and it heavily depends on the used
distance sensors and the concrete formation we investigated.

Keeping this in mind, we require two characteristics for a
new solution: first, it has to either process a high dimensional
state-space or infer a suitable lower-dimensional representa-
tion on its own. And second, it has to adapt to changes in
the environment in a flexible way without requiring manual
adjustment of parameters.

Inspired by the work of Mnih et al. ([4], [5]), we present
an end-to-end deep reinforcement learning approach for
formation control that does not depend on specific distance
sensors, but uses conventional camera images to learn how
to control its movements in order to stay in the desired
formation. In contrast to our previous work, the state-space is
not hand-crafted for the problem at hand, but approximated
internally by a Deep Q-learning Network (DQN).

In the next section, we introduce the specific properties
of DQNs that make them suitable for creating end-to-end
control systems and how they solve specific problems, which
are usually problematic when trying to employ reinforcement
learning on a task like ours.

As an explanation of reinforcement learning itself is far be-
yond the scope of this paper, we stick to explaining the ideas
on a conceptual level, which we hope is comprehensible
for readers both familiar and unfamiliar with reinforcement
learning. For a thorough explanation of the ideas, concepts,
and algorithms of reinforcement learning, we refer to Richard
Sutton’s book [6] on this topic.

After these considerations, we look at the specific forma-
tion control experiments we did and how they are performed
by such an end-to-end deep learning approach.

II. DEEP Q-LEARNING

In recent years, big improvements in computer vision,
speech and text processing (e.g. [7], [8], [9], [10], [11]) have
been made possible by the usage of deep neural networks
and similar techniques which can utilize a lot of parallel
computations. They are extremely powerful in regard to
feature extraction and classification. Mnih et al. [4] used
such a classification network, more precisely a Convolutional
Neural Network (CNN), in the core of a framework playing
five different Atari 2600 video games in a way very similar to
a human player. That is, by reacting to images on the screen
instead of depending on some knowledge about the internal
state of a game which is what standard artificial opponents
in video games are doing.

https://doi.org/10.1109/ROMAN.2018.8525765

In our previous work, we had to quantise the values of two
distance sensors into a 9×9 grid, a common technique that is
often referred to as tile-coding, to create a state-space which
we then used to train a follower to stay within formation.
The problem with this approach is that it is highly inflexible
and has to be repeated for different robots, different sensors,
or changing computational capabilities.

Mnih et al. also had to cope with an extremely large
state-space (the dimension of the images) and handled this
high dimensional state-space by training a CNN to directly
approximate the Q-function (simplified: a mapping between
states, actions, and rewards) out of images from the games. In
contrast to common CNNs, the networks used for Q-learning
do not contain max pooling layers, which are prevalent
in classification tasks. In classification tasks, they provide
a certain degree of translational invariance, which is very
beneficial for classification, but unwanted for state represen-
tations. Applied to our case, we do not need information
whether the player’s avatar or the formation leader can be
found in the image at all, but need to infer knowledge about
their location in the image for the purpose of our algorithm.

Apart from efficiently coping with large state-spaces, the
CNN approach also has another significant advantage: it is
highly flexible regarding the composition of the image. Its
single requirement is that information about the current state
is somehow contained in the image. The algorithm decides
by itself which parts of the image are important and which
information can be gained out of them.

A straightforward approach on directly training the neu-
ral network to approximate the Q-function leads to many
problems, the most important one being the huge correla-
tion between consecutive states in a common reinforcement
learning process. The huge correlations cause the learning
algorithm to get stuck in local maxima and large variances
in the updates occur in every time step. Often these problems
become so severe that the learning algorithm diverges and
does not learn anything useful at all.

To cope with these problems, Mnih et al. introduce expe-
rience replay in their algorithm, a technique, which stores
previous tuples of state, action and reward into a replay
buffer. Instead of using the current observed state, action,
and reward to update the Q-function, a uniformly sampled
episode from the replay buffer is used instead. This breaks
the correlation between states and enables batch training of
the neural network. It is also efficient regarding data usage as
each episode gets used for multiple updates without requiring
the agent to visit the same state again.

In our and Mnih’s work, the replay buffer is implemented
as a ring buffer, that is, when the replay buffer is full
and new experience is added, the oldest one is removed
from the buffer. This process does not distinguish between
the importance of different samples to the learned knowl-
edge. Assessing this importance would be very difficult,
but fortunately, the simple ring buffer approach works well
enough and is motivated directly from an implementation
perspective.

A minor consideration of using random episodes instead

of the current one is that it also limits the choice of the
reinforcement learning algorithm to the class of off-policy
algorithms as the learned policy is different to the one the
agent currently executes. This is why Mnih et al. chose to
employ Q-learning, a common off-policy algorithm.

Usually, the Q-function maps the current state-action pair
to a certain reward, that is, it estimates the quality of a certain
state-action pair. From a human perspective, an admissible
state is the position of the player’s avatar in a video game
or the relative position of the leader to the follower in our
formation control scenario. The idea behind Deep Q-learning
is not to use these hand-crafted state representations but to
take the raw sensor data (images) and let the neural network
figure out on its own a feasible mapping from pixel values
onto an internal state representation. The output of the net-
work represents a quality assessment of every possible action
the agent could execute. Due to the connection structures
within the network, one training sample not only improves
its own action assessment, but the complete prediction of all
actions.

Using this Deep Q-learning network, we achieve an ap-
proximation to tell the agent which action is feasible to
take depending on an image input. Similar to many other
reinforcement learning processes, this information is utilized
by an ε-greedy policy to balance between exploration and
exploitation. Instead of the action with the highest expected
reward, ε-greedy policies chose a random action with proba-
bility ε instead. This probability is reduced over the learning
process, in our case linearly from an initial 0.4 to 0.01 over
the first 100 000 steps. The reward estimates are initialized
arbitrarily, so we want to ensure a good coverage of the
entire state-space and we hence need a broader exploration
in the beginning. After some time the estimates become more
reliable and following the suggested action leads to a good
reward.

Continuously updating the Q-network and using this in-
formation in the next time step to decide which action to
take leads to an accumulation of errors and the divergence
of the whole network [12]. To avoid this problem, the Deep
Q-learning algorithm of Mnih et al. uses two networks: a
slowly updated target network, which is only used in forward
direction to calculate the current Q-values and the resulting
loss of the network. And a primary Q-network, which is
trained by this loss and whose parameters are copied onto
the target network after a certain number of steps.

III. SCENARIO

This section describes the concrete scenario we investi-
gated and what parameters we chose regarding the Deep Q-
learning algorithm.

A. Environment, Robots, and Tasks

We consider e-pucks [13], small tabletop robots, which
are simulated in V-REP [14], a physics simulator designed
for robotics. Our simulation includes two robots: a leader
following a predetermined path and a follower which is
controlled by our learning algorithm. The first robot, the

leader, is statically configured to follow a line on the ground
(Figure 1). Its speed is determined by multiplying a randomly

Fig. 1. The arbitrary path the leader uses in our experiments. It represents
a non-trivial path which could be found in reality. Its closed-loop design
allows the experiment to run continuously.

factor between −0.5 and 1 with the desired velocity. In this
way the leader can also go backwards which makes the
task harder to solve, but also more robust. This behaviour
represents a non-trivial and realistic movement pattern which
can also be found in reality like a human or a robot with
SLAM based navigation planning.

The second robot is the designated follower we want to
train. It has a forward-looking camera with an image angle of
45◦ and a resolution of 84 × 84 pixels. An example image
from this camera can be seen in figure 2. The resolution
of this camera seems very low at first glance, but larger
resolutions increase the computational load dramatically and
the results from using the same resolution as Mnih et al. did
for Atari games are already very satisfying.

Fig. 2. One camera frame from our first trial: An 84×84 pixel view from
the follower to its leader.

As our approach should allow end-to-end training without

requiring changes to hyperparameters, we set up a second
experiment to test this capability where we moved the camera
to a bird’s-eye position above the follower. This camera is
placed about 55 cm above the robot (roughly 5 times the size
of the robots themselves), looking downwards. An example
of this view can be seen in figure 3.

Fig. 3. One camera frame from our second trial: An 84× 84 pixel view
fixed above the follower.

The task of the second robot is to stay directly behind
its leader at a distance of 15 cm (about three times its own
radius). In each episode the robot achieves this goal, the
learning algorithm receives a reward of r = 1. The following
robot may deviate from this position by up to 6 cm and 20◦,
resulting in a lower reward scaled proportionally to the error.
If the second robot leaves this region, the current episode will
end and a negative reward of −10 is given. It will then be
moved back to the optimal position behind the leader (15 cm,
0◦) and a new episode starts. An illustration of the formation
between both robots and the error measures can be seen in
Figure 4.

B. Image Processing and Network Architecture

Before feeding the camera images into the network, we
convert the RGB frames to greyscale to reduce the compu-
tational demands of the algorithm by a factor of three.

Changes of the leader’s position are connected by a chain
of movements of the leader. To allow the algorithm to learn
these connections and base its decisions on velocity and
trajectory while avoiding to feed inputs of arbitrary length
into the network, we always take the last four consecutive
frames to create one sample. The input to our neural network
is therefore an array of four 84 × 84 greyscale images.
Our neural network adheres to the original design in [5]
and utilizes three hidden convolutional layers and two fully-
connected layers. The first hidden layer convolves the input

x

y

Follower e-puck

Leader e-puck

−→
d

oF

oL

|−→d |
oerr

Fig. 4. Illustration of the error measures
∣∣~d ∣∣ and oerr for our leader-

follower scenario (taken from our previous paper [3]).

images with 32 8×8 kernels with stride 4 and uses a rectifier
activation function. The second one uses 64 4×4 kernels with
stride 2 and also a rectifier function. The final convolutional
layer uses 64 3 × 3 kernels with stride 1. The output is
reshaped into an array and fed into a fully-connected layer
consisting of 512 rectifier units. The mapping onto the 25
different actions is done by the second fully connected layer.
Our 25 actions are all possible combinations of 5 different
motor speeds for forward and backward movement as well
as stopping and 5 different turn rates (chosen in a similar
manner).

As described in the section about concepts of Deep Q-
learning, we use two different networks to improve training
stability. The parameter update from the primary Q-network
onto the target network happens every 2000 steps.

Our network does not use batch normalization, which
makes the batch size an important parameter. In our exper-
iments, we use a batch size of 128 episodes for our initial
tests in a synchronous environment and 256 episodes for the
asynchronous environment presented here.

IV. RESULTS AND DISCUSSION

The initial learning phase of the algorithm takes around
60 000 steps. We define the initial phase as the period where
the algorithm regularly requires the start of a new episode,
that is, it loses track of the leader and has to be put back into
a starting position from where it can continue. After around
100 000 steps, the overall reduction of the error slows down
significantly and converges asymptotically.

The errors of frontal and top-down view show a very
similar development, which confirms the flexibility of the
approach and which supports its applicability for end-to-end
control directly from camera input to motor speeds.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

80

Steps

A
bs

ol
ut

e
D

is
ta

nc
e

E
rr

or
[m

m
]

Frontal view
Top-down view

Fig. 5. Maximal distance error for frontal and top-down view over time.
New episodes are started when the error surpasses 60mm (red horizontal
line). Convergence slows down significantly after 100 000 steps.

The remaining distance error averages around 1–2mm,
which is about 1% of the required distance and 2% of
the size of the robots. The progression of the maximal
encountered error during the simulation is shown in figure 5.
The orientation error usually stays below 1◦ after the initial
phase and the development of the maximal encountered
orientation errors during the experiment can be seen in
figure 6.

0 0.2 0.4 0.6 0.8 1

·106

0

5

10

15

20

25

Steps

A
bs

ol
ut

e
O

ri
en

ta
tio

n
E

rr
or

[◦
]

Frontal view
Top-down view

Fig. 6. Maximal orientation error for frontal and top-down view over time.
Progression is very similar to the distance error. New episodes start when
the error surpasses 20◦ (red horizontal line).

Although the top-down view allows for a lower overall
error, it produces some spikes occurring up until 500 000

steps. The lower total error could be the result of the
independence of position and orientation information in the
top-down view. A left-right shift by a certain amount of
pixels in the frontal facing image corresponds to different
orientation errors depending on the size of the robot within
the image. This relation does not exist in the top-down view,
orientation and distance can be inferred independently of
each other and the size of the robots in the image always
stays the same.

On the other hand, this could be the reason for the
observed error spikes, as the smaller size of both robots in the
top-down image leads to a lower resolution of the inferred
position and orientation information.

Another explanation for the errors could be the asyn-
chronous update buffering technique, which decouples the
learning algorithm from the simulation environment. By
slightly delaying the update calculations of the learning
algorithm into the time span when the simulator does the
calculations for the next time step, we can remove the need
to explicitly synchronize both tasks (for details, see our pre-
vious paper [3]). While this allows for a large performance
improvement by removing waiting periods, it is based on
the assumption that simulation steps are steady and both
tasks do not get delayed unexpectedly. If this assumption
is violated by a background task or something similar, and
the robot following the leader did some corrections at the
very moment, its new position might be even worse than
before.

For our goal of learning end-to-end formation control,
the precise error bound is less important than the fact that
the follower is able to reach a phase where it can continue
its episode indefinitely. This usually happens after 60 000
steps and works reliable after 100 000 steps. Combined with
the comparable results from the experiment with the second
position of the camera, this shows the flexibility of our
approach.

The next logical step is to extend this approach to different
formations. We did some initial experiments on varying the
follower’s angle which show similar results. But modifying
the followers angle also required a lot of tuning to the
reward and reset function. Therefore the results cannot be
compared to those detailed throughout this section and need
thorough investigation on generalizability and quantitative
performance.

V. CONCLUSION

Our results show that applying Deep Q-learning to the
problem of formation control successfully deals with large

input state-spaces. It also removes the tedious work of
creating a meaningful representation by hand and is able to
adapt to different settings in a flexible way.

REFERENCES

[1] M. Arai, Y. Sato, R. Suzuki, Y. Kobayashi, Y. Kuno, S. Miyazawa,
M. Fukushima, K. Yamazaki, and A. Yamazaki, “Robotic wheelchair
moving with multiple companions,” in The 23rd IEEE International
Symposium on Robot and Human Interactive Communication, 2014,
pp. 513–518.

[2] J. Saez-Pons, L. Alboul, J. Penders, and L. Nomdedeu, “Multi-
robot team formation control in the GUARDIANS project,” Industrial
Robot: An International Journal, vol. 37, no. 4, pp. 372–383, 2010.

[3] M. Knopp, C. Aykın, J. Feldmaier, and H. Shen, “Formation Control
using GQ(λ) Reinforcement Learning,” in 26th IEEE Int. Symp. Robot
and Human Interactive Communication (RO-MAN 2017), Lisbon,
Portugal, Aug. 2017, pp. 1043–1048.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing Atari with Deep Re-
inforcement Learning,” NIPS Deep Learning Workshop, 2013, arXiv:
1312.5602 [cs.LG].

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” Advances in Neural
Information Processing Systems 25, pp. 1097–1105, 2012.

[8] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face
recognition: a convolutional neural-network approach,” IEEE Trans.
Neural Networks, vol. 8, no. 1, pp. 98–113, 1997.

[9] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks,” Advances in Neural
Information Processing Systems 21, pp. 545–552, 2009.

[10] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent
Pre-Trained Deep Neural Networks for Large-Vocabulary Speech
Recognition,” IEEE Trans. Audio, Speech, and Language Processing,
vol. 20, no. 1, pp. 30–42, 2012.

[11] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP 2013), May 2013, pp. 6645–
6649.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 4th Int. Conf. Learning Representations (ICLR 2016),
2016, arXiv:1509.02971 [cs.LG].

[13] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in Proc. 9th
Conf. Autonomous Robot Systems and Competitions (Robotica 2009),
Castelo Branco, Portugal, May 2009, pp. 59–65.

[14] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: a versatile
and scalable robot simulation framework,” in Proc. IEEE Int. Conf.
Intelligent Robots and Systems (IROS 2013), Tokyo, Japan, Nov. 2013,
pp. 1321–1326.

	Introduction
	Deep Q-Learning
	Scenario
	Environment, Robots, and Tasks
	Image Processing and Network Architecture

	Results and Discussion
	Conclusion
	References

