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Recovering from External Disturbances in Online Manipulation

through State-Dependent Revertive Recovery Policies.

Hongmin Wu, Shuangqi Luo, Hongbin Lin, Shuangda Duan, Yisheng Guan, and Juan Rojas.

Abstract— Robots are increasingly entering uncertain and
unstructured environments. Within these, robots are bound to
face unexpected external disturbances like accidental human
or tool collisions. Robots must develop the capacity to respond
to unexpected events. That is not only identifying the sudden
anomaly, but also deciding how to handle it. In this work, we
contribute a recovery policy that allows a robot to recovery
from various anomalous scenarios across different tasks and
conditions in a consistent and robust fashion. The system
organizes tasks as a sequence of nodes composed of internal
modules such as motion generation and introspection. When an
introspection module flags an anomaly, the recovery strategy is
triggered and reverts the task execution by selecting a target
node as a function of a state dependency chart. The new
skill allows the robot to overcome the effects of the external
disturbance and conclude the task. Our system recovers from
accidental human and tool collisions in a number of tasks. Of
particular importance is the fact that we test the robustness
of the recovery system by triggering anomalies at each node
in the task graph showing robust recovery everywhere in the
task. We also trigger multiple and repeated anomalies at each
of the nodes of the task showing that the recovery system
can consistently recover anywhere in the presence of strong
and pervasive anomalous conditions. Robust recovery systems
will be key enablers for long-term autonomy in robot systems.
Supplemental information including videos, code, and result
analysis can be found at [1].

I. INTRODUCTION

Human decision making implies awareness. Adult humans

are aware of their mistakes and learn to avoid making the

same mistake twice. Humans also evaluate whether they have

enough information before making a choice and if appropri-

ate to proceed. Their decision’s confidence is correlated with

outcome success [2]. In robotics, online decision making

and robot introspection have begun to receive more attention

recently [3]–[9]. The vision is to endow robots with the

ability to understand their actions and make timely deci-

sions to achieve their goals and have long-term autonomy.

Particularly, in unstructured environments (where robots are

expected to participate increasingly), external perturbations

are hard to model in low-level control systems and often lead

to failure. Robots must then discern nominal from anomalous

conditions and trigger responses to avert failure and recover

gracefully. Fig. 1, illustrates an accidental collision between

a human and a robot at the moment in which a robot picks an
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Fig. 1. Illustration of an external perturbation during a pick-and-place task.
A human collides with the robot arm just before the pick action leading the
robot to an anomalous situation. The robot introspection system identifies
the anomaly and the recovery strategy allows the robot to complete the task.

object. Normally, this situation would lead to failure, but our

system enables the robot to recover and continue execution.

This paper spans the areas of robot introspection, decision

making, and anomaly recovery in robot manipulation tasks.

In the literature, many works have not attempted an integral

approach. Some only model success vs. failure behaviors [3],

[6]; others do introspection or monitoring but not recovery:

[4], [8]–[10]. Kappler et al. in [7] present an integrated

system for robot introspection with online decision making

and some anomaly recovery. Their system was shown to be

robust against a human pulling at the robot arm. However,

they perform anomaly recovery at only one stage of a single

task and do not provide quantitative or qualitative analysis

of their method (Sec. II).

Our work studies the feasibility, speed, and robustness of

a recovery strategy that enables recovery from disturbances

like accidental human or tool collisions. We also study if

the robot can recover, not only at a single incident in the

task, but at different points in the task. There seem to be no

studies that examine and test anomalous recovery robustly

at multiple points in the task. Finally, we study the robot’s

ability not only to recover at multiple points in a task, but

also in situations where a disturbance happens repeatedly at

the same point in a task. That is, once the robot recovers,

if forced again into an anomalous situation, can the robot

recover repeatedly? I.e. can there be a smooth and continuous

ability to re-set and re-start a task? Our contribution is the

implementation of a fast and robust recovery strategy that

allows recovery from one or multiple anomalous situations

throughout the task.

http://arxiv.org/abs/1708.00200v2


M I M I M I

Recov

Start Finish

Introspection

z2

Y2

z1

Y1

z3

Y3 YT

zT

Nominal

Cont Recover

Anomaly

Decision

To Graph

sensors

model

Motion

PID

DMP

Motion

Planning

Interpolat

skill

Fig. 2. Our robot introspection framework for decision making in anomaly
recovery organizes specific tasks as a directed graph. Each node in the graph
enacts a learned: (i) manipulation skill and (ii) introspection model based
on the nominal sensory-signals for such a skill. If an anomaly is present, the
system triggers a generic recovery policy that reverts the system according
to a node-dependency criteria.

Tasks are modeled as a directed graphical model, where

nodes within the graph play a dual role: it establishes both a

robot skill execution and a trained model for robot introspec-

tion (based on nonparametric Bayesian Markov switching

processes, see Sec. V). Node connections define successor

nodes. During the execution of a node, the robot introspec-

tion system identifies the current skill and any anomalies that

may occur therein (Sec. V-A). If an anomaly is identified, a

generic recovery strategy is enacted. We opted for a generic

strategy that works despite commonly large anomaly spaces

that are hard to identify. Our recovery strategy reverts the

task execution to a target node that is selected according to

a node-dependency criteria (Sec. VI). The recovery system is

tightly connected to the lower-level control system, issuing

commands to recover or allowing the system to continue.

The framework is presented in Fig. 2.

We measure the robustness and flexibility of the recov-

ery strategy in a pick-and-place experiment as well as a

open-and-close drawer experiment, both of which where

subjected to external disturbances like human collisions

and tool collisions. Anomalies were induced under different

conditions; namely: one anomaly caused during each of the

nodes of a task, and a repeated number of anomalies caused

during each node of the task. F-score, micro- and macro-

precision-recall statistics are computed for all experiments

and conditions, where F-scores indicates the robot’s recovery

rate. An average recovery rate of 88.18% was achieved for

all experiments and conditions indicating the utility of the

a recovery strategy on top of an introspection system to

increase robustness and extend autonomy for robot systems

in unstructured environments. Robots are still prone to fre-

quent failure in unstructured environments. Unless they can

gracefully recover in a predictable fashion, it will remain

challenging for humans to accept robots as reliable partners.

Supplemental information, code, data and videos can be

found at [1].

II. LITERATURE REVIEW

Our work integrates robot introspection, decision making,

and anomaly recovery in robot manipulation tasks. Past

works mostly focus on single issues with few works attempt-

ing integrated solutions. In [3], Rodriguez et al. , designed an

“Abort and Retry” solution to the problem of bin-picking us-

ing a simple hand. This is an early work that models success

vs. failure classification and uses a type of Markov chain to

identify a discrete set of moments in which an abort-and-retry

attempt should be enacted. The work is limited in a number

of ways: it only works at a discrete set of moments; if there is

an anomaly, the task must be restarted from the beginning;

and it only discerns between success and failure and not

between other modes of nominal or anomalous behavior. In

[10], Nakamura et al. present a theoretical error recovery

system that works across types of manipulation classes.

The paper organizes manipulation tasks hierarchically with

primitives in the bottom, and compound tasks higher up.

The work suggests recovery solutions through forward or

backward correction steps. Backward correction steps revert

execution to the beginning of one of the hierarchical layers.

Forward corrections execute minimal adjustments that help

finalize a manipulation step. The theoretical work is useful,

particularly when there is a well defined graph of behaviors

for a task. However, no experimental work was offered in

this work. In [11], Chang et al. devised an error recovery

system based on Petri Nets learned from demonstration. Er-

ror conditions are defined based on object location: if objects

are not located in expected states, an error is triggered. An

interesting aspect of the work is that recovery is learned from

a human demonstrator. The downside is that the system needs

to maintain a growing list of expected object locations. The

work does not consider errors that arise from other causes.

The listed works assume that anomalies are caused by

internal representation errors, i.e. : sensing, modeling, and

planning. While these error types are certainly relevant,

robots now also face a threat from external disturbances such

as unintended collisions with human partners, objects, or the

environment. Such anomalies may even lead to a further

presence of anomalies.

In [4], DiLello et al. used a non-parametric Bayesian

Hidden Markov Model in an alignment task to identify

specific failure modes when extraneous objects where placed

in the workspace preventing the robot to achieve a proper

alignment. His work showed the identification of failure

modes using wrench signals. The work however did not

attempt recovery measures. In our work, we also use non-

parametric Bayesian techniques with multi-modal signals,

but in our case, we develop robust recovery techniques

across tasks and conditions. The work of Park et al. in [8]

studied the effects of multi-modal sensory signatures in a

hidden Markov model (HMM) for anomaly identification.

Their work identified anomalies in pushing tasks (doors



and switches) and feeding tasks. The anomaly threshold

was updated according to the progress of the task, but

the work did not test any kind of recovery. As in this

work, we too use Bayesian priors, but we make use of a

nonparametric form that allows us to learn the complexity

of each mode according to the data, allowing us to generate

more expressive identification models which directly affects

our task recognition and recovery rates [12]. The work of

Salazar et al. in [13] introduced anomaly recovery by using

human mind signals in real-time to alert the robot if it had

made a mistake. The work used EGG Error-Related Potential

(ErrP) signals as well as secondary interactive error-related

potential signals that further alerted the robot if the human

caught a second mistake. The approach is compelling as the

human is able to influence the robot’s behavior but also the

robot influences the human behavior. The work did not study

how to help the robot learn from experience. One of our goals

is to grow a library of motion/identification models that the

robot accumulates over time to learn new behaviors.

Finally, the work in [7] devices a supervised machine-

learning framework for online decision making in manip-

ulation tasks. The system closes a loop between a high-

level decision making system with a low-level loop. The

high-level system makes use of two classifiers to identify

nominal behaviors and failure. The system learns new skills

online, including recovery skills and is able to save them

as Dynamic Motion Primitives (DMPs) in the low-level

layer. This work advanced the state-of-the-art significantly

by integrating robot introspection, failure characterization,

decision making, and anomaly recovery. However, the work

did not provide quantitative results for recovery and only

showed one recovery for one task at one moment in the

task. We are interested in further studying the robustness of

recovery behaviors. That is, can a system recover multiple

times from disturbances? Can it do so at different points in a

task or across multiple tasks? Our goal is effective recovery

from disturbances at any location in the task any number of

times.

III. PROBLEM FORMULATION

Motion’s inherent structure is composed of a sequence of

primitive or compound skills Sm similar to that of language

grammar [7], [9], [14], [15]. Just as grammar has rules

and order, motion is also organized by rules and order

that yield discernible patterns in the sensory-motor action

space. Based on this premise, we use a directed graphical

model G composed of tasks B, which are interconnected

by edges E such that G : {B, E},B = {1, .., , BE}, Es,t =
{(s, t) : s, t ∈ B}. Behaviors in turn consist of nodes

N and edges E , such that: B = {N , E}. Nodes can be

understood as phases of a manipulation task. In our work,

we prefer to name them milestones N i = (1, ..., NI), as

they indicate particularly important achievements in a task.

Nodes are composed of nodes with dual roles to define

motion generation and motion identification. Any task graph

is bootstrapped by a simple linear structure that grows as

more skills and identification models are learned over time.
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Fig. 3. A motion library example composed of motion generation and
motion identification models. The number of models in the library can
grow over time. Motions can be designed or learned according to the
preferred motion generation scheme. Identification models record sensory-
motor patterns for training. Fig. 2 shows an illustration of the task graph,
where nodes call specific motion and identification models.

Motion generation modules can be encoded by any given mo-

tion generation algorithm (smooth joint-interpolation, motion

planning, or point attractor systems [16], [17] or Probabilistic

encoding [18]). In this work, motion interpolation is used

to encode skills necessary for various tasks like pick-and-

place and open-and-close-a-drawer. Motion identification

uses Bayesian non-parametric Markov (switching) models

[12] to learn nominal models and consequently generate

corresponding failure identification (Sec. V). Fig. 3 illustrates

a library with motion generation and motion identification

modules, both of which get called simultaneously by nodes

in the graph.

During node execution, robot introspection uses multi-

modal robot sensory inputs to build nominal skills models

and then define failure identification models (Sec. V). We

limit ourselves to failure identification and do not attempt

failure classification (which remains an open research ques-

tion as the variability and number of possible failures can be

prohibitively large in unstructured scenarios). The recovery

system is triggered when an anomaly is detected, at which

point, the strategy reverts the task to a node determined based

on task dependencies (Sec. VI). The dependency is set by

humans and indicates a stable node in the graph where a

skill can be re-issued such that the reverting can be safe and

stable. Finally, the introspection system is tightly connected

to the lower-level system, which executes the arbitration:

running the current skill and its successor, or the recovery

skill and the appropriate skill after reverting. The framework

is illustrated in Fig. 2.

IV. MOTION SKILLS

Motions are encoded using Dynamical Motion Primitives

(DMPs) [19]. The DMP framework uses a set of nonlinear

differential equations whose point attractor system is defined

by a nonlinear forcing function, and which in turn depends

on a canonical system for temporal scaling. The derivation

of DMPs can be found in [19] and is not included here

for brevity sakes. Motion skills are trained as individual

skills and stored within the motion module of a node in the

task. As with Associative Skill Memories [7], sensory-motor



experiences are used to learn introspection models [7], [20]

necessary for anomaly identification.

V. ROBOT INTROSPECTION

The robot introspection model uses non-parametric

Bayesian priors along with a Hidden Markov model (HMM)

and either Gaussian or Autoregressive emission models.

First, HMMs are a doubly stochastic and generative process

used to make inference on temporal data. The underly-

ing stochastic process contain a finite and fixed number

of latent states or modes zt which generate observations

Y = {y1, ..., yt} through mode-specific emission distribu-

tions b(yt). These modes are not directly observable and

represents sub-skills or actions in a given node of a task.

Transition distributions, encoded in transition matrix Aji,

control the probability of transitioning across modes over

time. The model assumes conditionally independent obser-

vations given the generating latent state. Given a set of

observations, the Baum-Welch algorithm is used to infer

model parameters Π = (A, b). The fixed-modes assumption

in HMMs limits the model’s expressive power as it is unable

to derive natural groupings. Bayesian nonparametric priors

extend HMM models to learn latent complexity from data

[21], [22]. We use Fox’s et al. sticky-Hierarchical Dirichlet

Process (sHDP) prior with an auto-regressive switching sys-

tem [21] to model nominal skills as in our previous work

[12] and derive more robust failure identification methods in

manipulation tasks, specially in recovery scenarios.

Bayesian statistics are combined with the sHDP prior to

both learn model complexity k from the data but also to

model the transition distribution of an HMM. The sticky

parameter in the prior discourages fast-mode-switching oth-

erwise present. Consider a set of training exemplars X t =
{x1, , ..., xT } of observed multi-modal data τ consisting of

Cartesian pose and wrench values. Then, a mode-dependent

matrix of regression coefficients A
(k) = [A

(k)
1 · · ·A

(k)
r ] ∈

R
d×(d∗r)] with an rth autoregressive order and d dimensions

is used along with a measurement noise Σ, with a symmetric

positive-definite covariance matrix. The generative model for

the sHDP-AR-HMM is summarized as:

G0 =

∞
∑

k−1

βkδθk β|γ ∼ GEM(γ).

θk|G0 ∼ G0. (1)

Gj =

∞
∑

k−1

πjkδθk πj |α, β ∼ DP (α, β).

The probability measure Gj , which models the transition

distribution of the modes πj determines the weights (proba-

bilities) of transitioning between modes δθk . To avoid fixing

the mode complexity, Gj uses a prior G0 that is unbounded

and can grow with the complexity of the data. While Gj

uses the same set of modes as G0, Gj introduces variations

over those points. G0 provides support for a possibly infinite

space, but due to the Dirichlet’s process properties (i.e. the

Chinese Restaurant Process), a finite set of modes is selected.

In fact, we can understand the hierarchical specification as

Gj = DP (α,G0).

Different observation models can be included into the

HMM. A Gaussian distribution with different covariance

models (full, diagonal, and spherical) are considered. For

Gaussian models, mode specific means and standard devi-

ations are used θzt = N (µ, σ2). Additionally, the sHDP-

HMM can be used to learn VAR processes, which can model

complex phenomena. The transition distribution is defined

as in the sHDP-HMM case, however, instead of indepen-

dent observations, each mode now has conditionally linear

dynamics, where the observations are a linear combination

of the past r mode-dependent observations with additive

white noise. A prior on the dynamic parameters {A(k),Σ(k)}
is necessary. A conjugate matrix-normal inverse Wishart

(MNIW) was used to this end. The generative process for

the resulting HDP-AR-HMM is then found in Eqtn 2.

Observation Dynamics: yt =

r
∑

i=1

A
(zt)
i yt−i + et(zt).

et ∼ N (0,Σ). (2)

Mode Dynamics: z
(i)
t ∼ π

(i)

z
(i)
t−1

.

By using the model over a set of multi-modal exemplar data

X t, the sHDP-AR-HMM can discover and model shared

behaviors in the data across exemplars. Scalable incremental

or “memoized" variational coordinate ascent, with birth and

merge moves [22] is used to learn the posterior distribution

of the sHDP-HMM family of algorithms along with mean

values for the model parameters θ of a given skill, hence

θSm
= {Π,A}Sm

.

A. Anomaly Identification

The robot introspection system simultaneously detects

nominal skills and anomaly events. Models are trained for

individual skills to capture dynamics from multi-modal ob-

servations through vector τm. τm consists of end-effector

pose and wrench values. Scalable incremental or “memoized"

variational coordinate ascent, with birth and merge moves

[22] is used to learn the posterior distribution of the sHDP-

HMM along with mean values for the model parameters Π
of a given skill s. Hence Πs = {π,A}: the transition matrix

and regressor coefficients.

1) Nominal Classification: Given S trained models for

M robot skills, scoring is used to compute the ex-

pected cumulative likelihood of a sequence of observations

E
[

log P (Y |Πs)
]

for each trained model s ∈ S. Given a test

trial r, the cumulative log-likelihood is computed for test trial

observations conditioned on all available trained skill model

parameters log P (yr1:rt |Π)
S
s at a rate of 200Hz (see Fig.

4 for an illustration). The process is repeated when a new

skill m is started. Given the position in the graph sc, we can

index the correct log-likelihood I(Πs = sc) and see if its

probability density of the test trial given the correct model
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is greater than the rest:

log P (yr1:rt |Πcorrect) > log P (yr1:rt |Πs)v

∀s(s ∈ S ∧ s 6= sc).

If so, the identification is deemed correct, and the time

required to achieve the correct classification recorded. At the

end of the cross-validation period, a classification accuracy

matrix is derived as well as the mean time threshold value

(these results were reported in [12], in this paper we limit

ourselves to report on the recovery robustness of the system).

2) Anomalous Identification: Anomaly detection assumes

that the cumulative log-likelihood L of a set of nominal

skill exemplars XS share similar cumulative log-likelihood

patterns. If so, the expected cumulative log-likelihood de-

rived in training can be used to implement an anomaly

threshold F1. Initially, we consider a likelihood curve gen-

erated from training data for a given skill s. Then, for each

time step in an indexed skill sc, the anomaly threshold

is set to F1sc = µ(L) − k ∗ σ(L), where k is a real-

valued constant that is multiplied by the standard deviation

to change the threshold. Here, we are only interested in

the lower (negative) bound. Then, an anomaly is flagged if

the cumulative likelihood crosses the threshold at any time:

if log P (yr1:rt | Πcorrect) < F1sc : anomaly, else nominal.

In Fig. 4, note the 4 probabilistic models. Given an indexed

position in the graph, an anomaly threshold corresponding

to that skill’s expected cumulative log likelihood. The figure

also illustrates how at the end of a skill, all data is reset and

restarted.

Upon our initial exploration of recovery schemes we

noticed that after resetting the cumulative log-likelihood

observations in the HMM model, false-positive anomalies

were triggered at the beginning of the skill. Further exami-

nation revealed that the standard deviation of cumulative log-

likelihood graphs during training began with small variances

but grew over time as shown in Fig. 5). Given that variances

are small at the beginning of the task, small variations in

observations can trigger failure flags. A second threshold

definition was designed to overcome this situation and used

in our work instead of F1. As the difference between L

and F1 is minimal at first the new anomaly threshold F2
(for an indexed skill) is focused on computing the derivative

of the difference: F2sc =
d|L−F1sc |

dt
. Fig. 6, illustrates the

derivative signal crossing the empirical anomaly threshold as

anomalies are triggered by external disturbances.

VI. ANOMALY RECOVERY

The Anomaly recovery policy is generic such that unique

policies can be easily and flexibly used across tasks. Design-

ing proper recovery policies is challenging. A robot system

as part of an unstructured environments must understand not

only its state (what he is doing), but also the state of the

world and that of the objects of interest, i.e. how should

I respond when the state of the objects of interest and the

world change? Decision making may change across different

anomaly types, different tasks, and even robots of different

morphology.

Our recovery scheme is designed to revert the task execu-

tion to a stable skill (or node) in the task and then re-attempt

the execution of a behavior with updated goal parameters.

The policy does not simply replay a action. The replaying

of a skill is not a passive action, instead the skill encodes

the manner of performing an action, and it requires current

goals to execute properly. The key is to determine how

many skills to revert? We use a state-dependency criteria

that determines if a current skill depends on a previous

one for safe execution. Safe execution is defined as giving

the robot a pose and skill that can overcome the external

disturbance currently experienced. Dependencies in nodes

are currently annotated manually. Dependencies are also

recursive. Consider a pick action fails due to a perturbation.
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tion grows as observations show greater variance due to the accumulation
of error.
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Re-attempting the skill directly would likely fail as the

end-effector pose or target object location might have been

modified. The system identifies that the pick node has a

dependency pointing to the pre-pick node and so reverts

to that target node. The system then examines if the pre-

pick node has a dependency, if it does it would revert again;

otherwise, the system resumes task execution.

In conclusion, the system flows as follows: If the system

state is nominal, the current skill executes until termination

and transitions to the successor. If an anomaly is detected,

a state-dependency is extracted and reverted is enacted.

The new skill issues low-level control commands to try

to overcome the current disturbances. Note that, currently,

during the recovery stage–in which the manipulator returns

to the goal pose of a previous skill–the robot introspection

is shut-down preventing us to introspect at this stage. This

is left as future work.

VII. EXPERIMENTS AND RESULTS

Three manipulation experiments are designed to test the

robustness of the online decision making system for anomaly

recovery. We use accidental human collisions as disturbances

for a pick-and-place and open-and-close-drawer tasks, and

tool collisions for a pick-and-place task. For each of the

three experiments, we test four separate conditions: (i) no

anomalies, (ii) anomalies without recovery, (iii) one anomaly

caused at each executed skill and (iv) multiple anomalies

caused at each skill. The pick-and-place task consists of 5

basic nodes (not counting the home node and the recovery

node): pre-pick, pick, pre-pick (returns to an offset posi-

tion), pre-place, and place. The open-and-close-drawer task

consists of 5 nodes: pre-grip, grip, pull-to-open, push-to-

close, and go-back-to-start. The direction and intensity of

the human collisions was random but all executed under

the sense that these are accidental contacts as a human user

reaches into the workspace of the robot without noticing the

robot’s motion. We note that while the tasks are simple,

the main focus of the work is placed on the robustness

of the recovery systems given different external disturbance

scenarios. A dual-armed humanoid robot -Baxter- was used.

All code was run in ROS Indigo and Linux Ubuntu 14.04

on a mobile workstation with an Intel Xeon processor, 16GB

RAM, and 8 cores.

For motion generation, two techniques were used for the

different tasks. For the pick-and-place task, we used Baxter’s

internal joint trajectory action server which uses cubic splines

for interpolation. The goal target is identified online through

image-processing routines. For the open-and-close-a-drawer

task, we trained dynamic movement primitives using kines-

thetic teaching [17].

In terms of robot introspection, the sHDP-HMM code

with “memoization” variational coordinate ascent, with birth

and merge moves was implemented using BNPY [23] and

wrapped with ROS. Training used 10-trial batches. Observa-

tions used 13 dimensional vectors composed of 7 DoF pose

values (position and quaternion) and 6 DoF wrench values. A

baseline HMM algorithm was implemented through HMM-

Learn [24] and wrapped with ROS. The anomaly threshold

for each skill was computed through leave-one-out cross-

validation.

Fig. 7, shows a representative image of the Baxter

robot attempting a pick operation. A human collaborator

accidentally collides with robot before a pick action. Note

that collisions were strong enough to to move the current

pose significantly from the intended path and sometimes

collide with other parts of the environment. The robot

introspection system identifies an anomaly and triggers a

recovery behavior. The lower left part of the image shows

the anomaly F2-metric flagging the anomaly. The system

then begins recovery as seen in the directed graph on the

right (implemented in ROS-SMACH). Video and auxiliary

data for the three experiments under the four conditions

are available in [1]. For results reporting, two markers

are provided: (i) A success recovery rate for the recovery

policy and (ii) an F-score, precision, and recall numbers

for assessing anomaly identification. In particular, these

markers are used under experimental conditions (iii) and

(iv) conditions described at the beginning of Sec. VII. The

first two conditions are use as a baseline and compare with

the generic recovery behavior success rates.

1) Human Collisions

Condition 3: One anomaly per node: 27 test trials were

used for the pikc-and-place task and 24 test trials were

used for the open-and-close drawer task. Given that both

of the tasks have 5 nodes, a total of 5 anomalies were

induced in the task, 1 per node. Table I, shows the recovery

success rate of the task (represented by the F-score) and

the robustness of the identification system through the

precision-and-recall quantities for both micro and macro

settings. The pick-and-place recovery had an average success

rate of 85% with a maximum of 88%. The precision was

100% (for both macro/micro) indicating strong resistance

to false positives. The recall was ∼82% (for macro/micro)

indicating the existence of some false-negatives. This might



Fig. 7. Two examples (pick-and-place and open-and-close-drawer) in which a human collaborator accidentally collides the robot. The introspection system
identifies an anomaly (see bottom left plots) and triggers a recovery behavior (see the fluorescent node in the graph on the right).

indicate that there might have been some collisions that

were of lower magnitudes than the ones we might have

trained with and were not detected by the system. For the

drawer task, the recovery success rate was 91.67%. The

precision was 95% (macro/micro) and recall was ∼84.5%.

As with the human collision, weaker contact signals in tests

compared to training might be the reason for the presence

of false-negatives in our system.

Condition 4: Multiple anomalies per node: Under

this scenario the pick-and-place task ran 42 test trials and

the drawer task ran 30 test trials. Five anomalies were

induced repeatedly one-after-the other for each node. The

pick-and-place recovered 85% of the time with a precision

of ∼95% and a recall of ∼84.5% (micro/macro). The

drawer task recovered 93.3% of the time with a precision

of ∼100%, and a recall of ∼93% (micro/macro).

2) Tool Collisions

For the tool collision experiment, we only tested recovery in

the pick-and-place task. The results for this scenario were

similar to that of human collision. The recovery success rate

was ∼88.89%, the precision 100%, and the recall 88.89%.

VIII. DISCUSSION

This work showed the ability of a system to recover from

unmodeled and accidental external disturbances that can’t

be anticipated. Such disturbances will be more common

in shared human-robot workspaces. Our work demonstrated

that our recovery strategy in connection with our previous

introspection framework recovered 88% of the time from ac-

cidental human and tool collisions under single-anomaly and

multiple-anomaly scenarios per node. The results indicate the

system can recover at any part of the task, even when it is

abused and multiple anomalies occur consecutively. From the

videos in [1], we can see that even when in cases where the

robot is in constant duress, the robot recovers consistently.

Such robustness will play a role in enabling robots have

increasing levels of long-term autonomy.

Not many works have explored the subject of recovery

with real robots in unstructured environments under the

presence of significant and varied external perturbations.

In [7], [25], there are examples of recovery from external

disturbances, but no attempt is done to quantitatively assess

the extent to which the recovery system might work.

TABLE I

RESULTS FOR ACCIDENTAL HUMAN AND TOOL COLLISIONS. RECOVERY STRATEGY SUCCESS RATES ARE PRESENTED BY THE F-SCORE, AND

ROBUSTNESS OF THE ROBOT INTROSPECTION SYSTEM FOR ANOMALY IS SHOWN IN THE RECALL AND PRECISION SETTINGS. WE ALSO COMPARE THE

PERFORMANCE OF THE MORE EXPRESSIVE SHDP-HMM MODEL WITH AN HMM THAT SERVES AS A BASELINE. GENERALLY, THE SHDP-HMM

MODEL ALLOWED FOR BETTER INTROSPECTION AND THUS BETTER RECOVERY RATES AND BETTER RECALL.

HMM sHDP-HMM

Micro Macro Micro Macro
F Recall Precision Recall Precision F Recall Precision Recall Precision

Human Collision

Pick & Place

(1 An. / skill) 88.00% 88.00% 95.65% 88.00% 96.67% 82.00% 81.48% 100% 82.00% 100%
(Mult. An. / skill) 84.06% 82.93% 97.14% 83.50% 97.14% 85.00% 84.09% 94.87% 85.06% 95.28%
Open Drawer

(1 An. / skill) 80.00% 80.00% 100% 80.00% 100% 91.67% 90.00% 81.82% 90.00% 85.33%
(Mult. An. / skill) 72.34% 71.79% 100% 72.34% 100% 93.33% 93.33% 100.00% 93.33% 100.00%

Tool Collision

Pick & Place 71.43% 71.43% 100% 71.43% 100% 88.89% 100% 88.89% 100% 88.89%



We by using a more expressive model to do robot in-

trospection, our recovery ability also increased. We will

continue to explore improved models that can better cap-

ture spatio-temporal relationships of high-dimensional multi-

modal data. As well as looking for representations that scale

over time in order to acquire a useful and practical library

of skill identification and motion generation.

Yet there is much work to be done. Manual annotations

for state-dependency are an important weakness. Crucially

we wish to move towards modeling human understanding

for decision making in the midst of robot-object-environment

interactions. Scalability is an important factor in this domain

as the system must scale to ever growing number of learned

tasks. Learning how anomalies and recovery decisions are

made and re-used across similar scenarios will be important.

The manual approach will not scale. Adaptability and not

only reverting is also important. Incremental learning is also

key. The current work is limited to reverting. By simply

revering we don’t model recovery behaviors and also do not

learn how to adapt. We also cannot handle new scenarios.

We must develop action-confidence metrics that let us learn

new scenarios on demand.

IX. CONCLUSION

This work presented a robust and generic online manip-

ulation recovery system that handles external disturbances.

Robust anomaly identification is required to assist the system

in flagging anomalies in uncertain and unstructured environ-

ments (typical in human-machine interaction). Our system

leveraged non-parametric Bayesian HMMs to train a robust

anomaly identification metric, which when flagged, triggers

the recovery system. The recovery system uses a revertive

policy based on a state-dependency criteria that selects a

previous skill from a task-graph along with updated goals to

overcome the external disturbances.
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