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Fast, Robust, and Versatile Event Detection through HMM Belief State

Gradient Measures.

Shuangqi Luo, Hongmin Wu, Hongbin Lin, Shuangda Duan, Yisheng Guan, and Juan Rojas.

Abstract— Event detection is a critical feature in data-driven
systems as it assists with the identification of nominal and
anomalous behavior. Event detection is increasingly relevant
in robotics as robots operate with greater autonomy in in-
creasingly unstructured environments. In this work, we present
an accurate, robust, fast, and versatile measure for skill and
anomaly identification. A theoretical proof establishes the link
between the derivative of the log-likelihood of the HMM filtered
belief state and the latest emission probabilities. The key insight
is the inverse relationship in which gradient analysis is used for
skill and anomaly identification. Our measure showed better

performance across all metrics than all but one related state-
of-the-art works. The result is broadly applicable to domains
that use HMMs for event detection. Supplemental information,
code, data, and videos can be found at [1].

I. INTRODUCTION

Event detection is a key component of data-driven systems

where maintaining a belief about its state outcome (nominal

or anomalous) is imperative for long-term autonomy. In

robotics, event detection, is increasingly critical as robots

operate with greater autonomy in increasingly unstructured

environments.

Event detection has traditionally focused on anomaly

detection in industrial tasks such as parts assembly [2], [3].

With increasing access to data, robotics has turned to data

driven methods [4]. With increasing computation, sensor,

and actuator resources, continuous multi-modal signals are

used along with better robot and environmental modeling for

better event detection [5]–[10]. Recently, there has been in-

terest in not just identifying anomalies but also incrementally

classifying them and integrating recovery mechanisms into

their systems [9], [11]. The goal is to close loops between

high-level event detectors and low-level robot controllers that

can optimally adjust or recover from anomalous events. Not

much work has been done in the study of event detection in

the post-anomaly-recovery stage of a task [9], [12]. Little

quantitative and qualitative analysis is available for such

techniques, which are critical for long-term autonomy.

This paper studies the development of an event detection

measure useful for nominal and anomaly identification, and

one that is robust (even) in post-anomaly-recovery scenarios

where false-positives are easily triggered. Our contribution

presents a theoretical proof for an event detection metric

derived from the gradient computation of the natural loga-

rithm of the HMM filtered belief state (from hereon referred

to as the “forward gradient” measure) as well as a key

guarantee for the admissibility of the measure. The measure

provided very good identification accuracy, robustness across

task scenarios, and fast reaction times. Extensive quantitative

and qualitative analysis of the measure is also presented.

Our theoretical derivation establishes the link between the

derivative of the forward gradient and the latest emission

probabilities. The result uses a set of verifiable claims and

insights built on the nature of Viterbi paths and aided by the

log-sum-exp trick to establish a strong correlation between

observations and the forward gradient. The key insight was

the inverse relationship in which gradient analysis can be

used for skill and anomaly identification. We also incorporate

an automated threshold that requires no manual tuning and

one that is very robust under a wide variety of scenarios

including post-anomaly recovery.

A pick-and-place task, composed of five skills (basic robot

manipulation actions that act as sub-goals) and multiple

types of induced anomalies (deviations from nominal sen-

sorial experiences) were used to test the performance of the

measure. Anomalies were induced in varying ways across

the task, including during post-anomaly recovery stages in

the task. The gradient-based metric had an overall skill

identification average accuracy of 98.4%, an overall average

reaction time of 1.84% across skills (see Sec. VI-B), and

0 false-positive counts in pre- and post-recovery conditions

(see Sec. VI-C.1 and Sec. VI-C.2). It is notable that the

same gradient-based measure can be used across the board

for skill and anomaly identification and in post-anomaly-

recovery scenarios showing it to be very versatile. Our results

had a very strong performance compared with state-of-the-

art results across the board. The measure can be broadly

utilized if HMMs are used for event detection. Supplemental

information, code, data, and videos can be found at [1].

II. LITERATURE REVIEW

This review examines the approach and effectiveness of

techniques used for anomalous and nominal event identifi-

cation, anomaly characterization, and identification in post

anomaly-recovery.

For anomaly detection, we see that in [13], [14], support

vector machines (SVMs) identified tool breakage detection.

In [15], SVMs identified failure in simple pick actions. The

same work was rendered probabilistic later [16] and triggered

retry actions. In [8], an HMM with an execution-variable

threshold was used to identify anomalies in manipulation

tasks. Deep motor learning policies like [17] do not explicitly

identify anomalies though they provide inherent robustness to

many perturbations. The policies still failed when significant

visual differences were included in the scene.

Beyond anomaly detection, some have worked to identify

manipulation skills during execution. In [6], uses a state-

http://arxiv.org/abs/1709.07876v3


based autoregressive HMM to model the skills and transitions

of a task. In [12], two independent naïve Bayes classifiers

are run to identify skills and anomalies simultaneously. In

[18], multimodal signals were segmented into a grammar

via a heuristic. The grammar was fed into an online prob-

abilistic multi-class SVM to identify skills and anomalies.

In [7], a nonparametric sticky Hierarchical Dirichlet Process

Vector Autoregressive HMM was used to identify skills and

anomalies in snap assemblies and pick-and-place tasks.

In [19], artificial neural networks (ANNs) are used with

radial basis functions to characterize insertion failures for

self-tapping threaded fastenings. In [20], a probabilistic

model was used to characterize different failure types in snap

assemblies. In [5], used nonparametric Bayesian hierarchical

Hidden Markov Models to learn possible failure types in an

alignment task. In [8], a multi-layer perceptron composed

of a temporal and a convolutional component were used to

identify 12 anomalies in robot-assisted feeding.

Only a couple of these works effect recovery techniques

after an anomaly is detected. In [12], the online decision

making system is able to recover from external perturbations

like human collisions. The recovery however, is performed

only once for a single task and no quantitative analysis is

provided for the robustness of the identification method post-

recovery. This is a critical point in assessing the robustness,

accuracy, versatility, and reaction speed of the technique,

as conditions can change drastically in a post recovery

environment from that used in training for the original

identification tasks. In [9], skill identification and anomaly

detection were implemented through nonparametric HMM

models. A generic recovery system was implemented and

event detection studied after recovery actions. Our work

presents a more robust technique, and one that is specially

useful in post-recovery actions. We also present a theoretical

proof along with a guarantee and quantitative analysis of the

accuracy, robustness, and reactivity of the measure.

III. PROBLEM FORMULATION

In this section we introduce Hidden Markov Models

(HMMs) and how they are used for skill and anomaly iden-

tification in robotic tasks. We present weaknesses in current

approaches and the motivation to find better measures.

A. Hidden Markov Models Overview

HMMs are a doubly stochastic and generative process used

to make inference on temporal data [21]. The underlying

stochastic process (latent states or modes) is not directly

observable and represents sub-skills or actions in manipu-

lation tasks. Latent states are observed through another set

of stochastic processes that produce the sequence of observed

symbols. In robotics, such observations are usually produced

by noisy sensor signals (often multimodal observations).

Parametric HMMs contain a finite and fixed number of

latent modes which generate observations via mode-specific

emission distributions (nonparametric HMMs use Bayesian

techniques to learn the number of modes [7]). Transition

distributions control the probability of transitions across

latent modes over time given an initial transition probability.

HMMs assume conditionally independent observations given

the generative latent state. Though Markov Jump Linear

Systems can model more complex dynamics and can be

integrated into the HMM [7].

B. Training

For this work, single HMMs are used to model individual

robot skills. HMMs can use the Baum-Welch algorithm to

infer model parameters that maximize the probability of an

observation given a model (many other techniques are also

available see [22]). The notation below is used to describe

the HMM based on continuous observations:

Zt, the latent random variable at time t. Zt ∈ {1, ..., N}
zt, the hidden state at time t
πi, the initial state distribution P (Z1 = i)
Aji, the transition probability P (Zt+1 = i | Zt = j)
Yt, the observation random variable at time t
yt, the observation at time t
bi(yt), the emission probability P (Yt = yt | Zt = i)
Π, the HMM model composed of πi,Aji, bi(yt)
αi(t), the belief state P (Zt = i | Y1:t = y1:t,Π)
Lt, observation’s log-likelihood log P (Y1:t = y1:t | Π).

We simplify notation by omitting random variable declara-

tions: P (Z1:t = z1:t | Y1:t = y1:t) is written as P (z1:t | y1:t).

C. Skill Identification Methodologies

In [5], [7], HMM scoring L is used for skill identification.

Given S trained models for S robot skills, scoring yields the

log-likelihood of a sequence of observations at time t for a

trained model s ∈ S. Scoring is defined as:

Ht,s = log P (y1:t | Π). (1)

After scoring the models, skill selection selects the most

likely candidate: i.e. given a test trial r, the (cumulative)

log-likelihood HT,s is computed for test trial observations

conditioned on all available trained skills’ model parameters

log P (yr1:rt |Π)
S
s . The skill with the highest log-likelihood

is selected:

s∗ = argmax
s∈S

[HT,s]. (2)

D. Anomaly Identification Methodologies

Motion skill encoding is based on the premise that similar

skills yield similar sensory-motor signatures [7], [8], [23]–

[25]. As such, an HMM model Πs is derived from training

data for a robot skill s. Optimized models (those whose

scores improve as a function of selection of covariance model

for Gaussian observations and latent state complexity) elicit

narrower distributions. For trials belonging to the same class,

the log-likelihoods of observations of the same skill yield

curves that are parallel to the expected log-likelihood E(HT ).
From these results, an anomaly threshold is devised. Often

an anomaly threshold for a given skill F1sc can be set as

an offset from HT : F1sc = µ(H)− k ∗ σ(H), where k is a

real-valued constant that can be multiplied by the standard



deviation of the expected log-likelihood to change the thresh-

old. An anomaly is flagged if the likelihood of a test trial

r crosses the lower threshold: if log P (yr1:rt | Πcorrect) <
F1sc : anomaly, else nominal. However, such thresholds are

not robust in post-recovery actions [7], where numerous

false-positive are triggered. At the beginning of a skill, the

standard deviation σE(L) is small. So, small test observation

deviations from trained observations lead to large threshold

changes that trigger the false alarm.

A second threshold definition was designed to overcome

this situation (see [9] for details). The new threshold com-

puted the derivative of the difference between the log-

likelihood and the original anomaly threshold: F2sc = d |
H − F1sc | /dt. This measure is robust to false-positives in

post-recovery actions [9]; however, when the HMM model is

not properly optimized, the log-likelihood curves can diverge

considerably from the expectation (not parallel). The large

differences in the curves affect the gradient and lead to false-

positives. This work derives a more robust measure. The

measure is devised from insights into the gradient of the

log-likelihood function.

IV. THEORETICAL PROOF FOR EVENT DETECTION

BASED ON THE GRADIENT COMPUTATION OF HMM

LOG-LIKELIHOOD DATA

We presents a summary of the Forward algorithm and

the Viterbi algorithm before presenting the gradient-based

measure theory.

A. HMM Data Log-Likelihood Computation

Given an HMM model Π and an incoming time series Y1:t,

the natural logarithm of the filtered belief state (see 17.4.1

[22]) associated with the forward model for latent state i can

be represented according to Eqtn 3.

Lt = log

N∑

i=1

αi(t) = log

N∑

i=1

exp(logαi(t)). (3)

To compute Lt, we first compute logαi(t). According to the

forward-algorithm, we have:

αi(1) = πibi(y1),

αi(t+ 1) = bi(yt+1)

N∑

j=1

αj(t)Aji. (4)

From Eqtns. 3 & 4, we know that logαi(t) can be computed

recursively through logα∗(t− 1). Expanding the log in Eqtn.

3 we have:

logαi(t) = log bi(yt)+log

N∑

j=1

exp(logαj(t− 1) + logAji)

(5)

B. Viterbi Path in HMMs

The Viterbi algorithm, expanded in Eqtn. 6, attempts to

estimate the most likely state sequence. Viterbi uses dynamic

programming to estimate the underlying state sequence ẑ1:t
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Fig. 1. This figure presents 3 plot types generated by one HMM model
with three hidden states. Each hidden state is represented by red, purple,
and green respectively. The first plot shows the results from the Viterbi
algorithm. Each row represents a time-step in the trial. With each succeeding
row, a Viterbi path corresponding to the y-axis time grows. Notice, the
Viterbi paths grows in a time-consistent way; that is, each Viterbi path
expands on the previous one. Black pixels represent no data since the path
has not grown that long. The second plot shows emission probabilities
P (Yt = yt | Zt = i) for the 3 hidden states over time t. The third
plot is the gradient of log-likelihood of the data computed over time t. The
black curves in the third plot are the maxima of the second plot, which
intuitively suggests that the gradient is related to the emission probabilities.

through MAP computations given a sequence of observations

y1:t (17.4.4 in [22]):

ẑ1:t = argmax
z1:t

P (z1:t | y1:t)

= argmax
zt

( bzt(yt)

arg max
z1:t−1

(Azt−1ztP (z1:t−1, y1:t−1)) )

= argmax
zt

(bzt(yt)

argmax
zt−1

(Azt−1ztbzt−1
(yt−1)

. . .

argmax
z1

(Az1z2πz1bz1(y1)) . . . ))

(6)

C. The Hidden Markov Model Forward Gradient

First, we introduce simplified notation for the Viterbi

algorithm, where a node j has a maximal belief state δt(j) =
maxz1:t P (z1:t = j | y1:t) with associated traceback ẑt.

Theorem 1 For an incremental time series Y , a good HMM

model outputs an incremental Viterbi path that stably ex-

pands on the previous one. The stable expansion of the

Viterbi path is as follows: given a Viterbi path "11223" for an

input Y [1:t], then the path at Y [1:t+1] becomes "11223*",

where * is the newly appended hidden state.

Comment Good models are those that predict their data as

accurately as possible and can be achieve through two steps:

(i) HMM parameters optimization: the Baum-Welch BW)

algorithm given a proper initialization (17.5.2 in [22]) or

similar algorithm incrementally optimize HMM parameters

until a local maximum of likelihood is reached; minimizing

the perplexity of the model. (ii) Model selection optimization:

this consists in selecting the number of hidden states and val-

ues for observation models. Many techniques exist including

BIC, MCMC, Variational Bayes, or non-parametric HMMS

(17.5.5.1 [22]).



Proof: Consider, without loss of generality, a Viterbi

graph where we examine two consecutive time-steps (t−1, t)
along two possible latent states l, k (the analysis generalizes

to HMMs with more states). We also assume ∀i, i =
argmaxj Aij ; that is, all hidden states states tend to self-

transition. Also at time t− 1:

δt−1(l) > δt−1(k). (7)

We also define the following symbol:

wji(t) = Aji ∗ bi(yt). (8)

Due to our first assumption, we have: maxj wji(t) = wii(t).
Then, at time t, the δ values are:

δt(l) = max(δt−1(l) ∗ wll(t), δt−1(k) ∗ wkl(t)) (9)

δt(k) = max(δt−1(l) ∗ wlk(t), δt−1(k) ∗ wkk(t)) (10)

According to 7 and our max weight formulation, the max

function in 9 is: δt(l) = δt−1(l) ∗ wll(t). So, the max state

l at time t − 1 will contribute to itself instead of k at time

t. Therefore, there is only one condition under which the

Viterbi sequence breaks:

δt(k) = δt−1(k) ∗ wkk(t) and δt(k) > δt(l)

In other words, given our original assumption, the Viterbi

sequence breaks if the following inequalities are met:

δt−1(k) ∗ wkk(t) > δt−1(l) ∗ wlk(t)

and

δt−1(k) ∗ wkk(t) > δt−1(l) ∗ wll(t)

In ratio form:

wkk(t)

wlk(t)
>

δt−1(l)

δt−1(k)
(11)

and

wkk(t)

wll(t)
>

δt−1(l)

δt−1(k)
(12)

If an observation is emitted by state l and it is not

undergoing a state switch, (δt−1(l) > δt−1(k) and wll(t) >
wkk(t)), inequality 12 fails and the Viterbi sequence does

not break.

When we transition from state l to k and begin emitting

wkk(t) > wll(t). However, the momentum in δt(k) and δt(l)
prevent their inequality relationship to switch. Nonetheless,

after p time steps, the inequality δt−1(l) > δt−1(k) becomes

δt−1+p(l) < δt−1+p(k). The latter is reasonable when state

k has been emitting for some time. It is before this time

t − 1 + p that inequalities 11 and 12 are met. To see why,

one will notice the left hand side inequalities in 11 and 12 are

larger than 1 while the right hand side ratios become smaller

than 1 at time t − 1 + p, thus their inequality relationships

must’ve swapped before this time. Note that the order in

which inequalities 11 and 12 are met matters. If 12 is met

but 11 is not, a clean cut occurs since we have:

δt−1(k) ∗ wkk(t) < δt−1(l) ∗ wlk(t) (13)

and

δt−1(k) ∗ wkk(t) > δt−1(l) ∗ wll(t) (14)

Eqtn. 14 asserts a switch from l to k. Eqtn. 13 states that

δt−1(l) contributes to δt(k), implying the previous max state

contributes to the next max state. And since the max state has

changed, the roles of l and k swap and inequality 12 begins

to fail and renders sequence break unattainable. This yields

a clean transition cut. If 11 and 12 are met simultaneously, a

sequence break occurs. But since 12 is met, the states switch

and the roles of l and k swap and preclude a further sequence

break.

If, let’s say at time ta, inequality 11 is met but 12 is

not, a future sequence break is destined to happen at the

future moment when 12 is met, let’s say at time tb. When

that sequence break occurs, the history between ta and tb
flips and after the sequence breaks the state transitions from

l to k. Again, roles switch and no further sequence breaks

occur. Above all, we can safely conclude that the during the

execution of the stable period of a hidden state, no sequence

break will occur. It is only during state transitions that a

sequence could break and even if it does, it only last for a

single time step–the time step when inequality 12 is met. The

analysis extends to HMM models with more than 2 hidden

states, so long as we we apply the analysis to pairs of hidden

states composed of the current max state and another non-

max state.

Theorem 1, is amply supported by our HMM models

dynamics and evidenced in the color-coded Viterbi path plot

of Fig. 1a where Viterbi paths grow stably over time (rows).

During state transitions, negligible sequence breaking occurs

for one time-step and quickly returns to the stable growth

of Viterbi paths. Fig. 1 shows three well formed triangles

indicating 3 skills with stable dynamics and clean transitions.

Data and analysis supporting our finding is included in our

supplemental document in [1].

Corollary 2 Given Theorem 1 the gradient of the log-

likelihood of the forward algorithm (from now on referred

to as the forward gradient) will depend solely on the latest

emission probabilities and the transition matrix.

Comment This corollary is supported by our HMM model

as evidenced in Fig. 1b,c. In Fig. 1b, the 3 colored curves

represent the emission probabilities of corresponding hidden

states. They are clearly distinct. Furthermore, the 3 curves’

maxima match with the forward gradients as seen in Fig.

1c. This relationship manifests that the forward gradient is

directly related to the latest emission probabilities.

Proof: According to the log-exp-sum trick [22], the

approximation log
∑N

i=1 exp(yi) ≈ maxi∈{1,··· ,N} yi is best

approached for larger values of yi. Applying this approxima-

tion to Eqtn. 3 and Eqtn. 5, which is supported by Theorem

1, we have:

Lt ≈ max
i∈{1,··· ,N}

(logαi(t)) (15)

logαi(t) ≈ log bi(yt)+

max
j∈{1,··· ,N}

(logαj(t− 1) + logAji)
(16)
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Fig. 2. Identification ability of the HMM log-likelihood curve and the
forward gradient. We consider 5 HMM models (color-coded) to represent
one skill using 1 trial time series data. Background colors indicate true
skill execution periods. The HMM log-likelihood curve does not correlate
to skill execution periods, whilst the forward gradient curve shows strong
correlations to skill execution periods.

Substitute Eqtn. 16 into Eqtn. 15, rename i and j to zt and

zt−1, then recursively decompose logα, we have:

Lt = max
zt∈{1,··· ,N}

(logαzt(t))

= max
zt∈{1,··· ,N}

(log bzt(yt)+

max
zt−1∈{1,··· ,N}

(logAzt−1zt + logαzt−1
(t− 1)))

= max
zt∈{1,··· ,N}

(log bzt(yt)+

max
zt−1∈{1,··· ,N}

(logAzt−1zt + log bzt−1
(yt−1)+

. . .

max
z1∈{1,··· ,N}

(logAz1z2 + log πz1bz1(y1)) · · · ))

(17)

Eqtn. 17 is the log version of Eqtn. 6. This suggests that, after

approximations by equations 15 and 16, the computation

of the log-likelihood is the same as the computation of the

Viterbi path using the Viterbi algorithm.

Now, since Theorem 1 shows that in general the Viterbi

path at time t, ẑ1:t, expands on the Viterbi path at time t−1,

ẑ1:t−1, we have:

Lt = max
zt∈{1,··· ,N}

(log bzt(yt)+

max
zt−1∈{1,··· ,N}

(logAzt−1zt + logαzt−1
(t− 1)))

= log bẑt(yt) + logAẑt−1ẑt + Lt−1. (18)

Then, the forward gradient can be derived from Eqtn. 18 as:

∇Lt = Lt − Lt−1 = log bẑt(yt) + logAẑt−1 ẑt . (19)

Eqtn. 19 supports Corollary 2, where the forward gradient

depends on the latest emission probability bẑt(yt) and transi-

tion probability from hidden state ẑt−1 to ẑt. Also, given that

good HMM models have strong inertia (high probabilities of

self-transitions), state-switching should be sparse and then

ẑt−1 will equal to ẑt most of the time.

V. EVENT DETECTION BASED ON THE FORWARD

GRADIENT

A. Detect Normal Events: Skill Identification

Corollary 2 led us to design a new method for skill

identification. If we use n HMM models to represent n robot

skills, with observations coming from a certain skill, the

HMM model corresponding to that skill m̂, should output a

value-increasing forward log-likelihood curve that is greater

than the rest of the HMM models. This also means model

m̂ will output a larger forward gradient value compared to

other models.

The forward gradient depends on the latest emission

probabilities, which in turn depend on the latest observation.

The largest probabilities and thus gradients will belong to

the HMM model of a currently executing robot skill. The

key insight however is the inverse relationship: the use

of the forward gradients to infer the currently executing

skill. Fig. 2 validates the strong correlation between the

forward gradient and skill observations. This is contrasted

with the log-likelihoods of the observations log P (Y1:t|Π)
do not. The forward-gradient measure for skill identification

is defined as follows: given p skills s1 : sp, we have HMM

models ms for s ∈ {1, · · · , p} and an input time series Y ,

then the most probable skill ŝ generating Y [t] is inferred as:

ŝ = arg max
s∈{1,··· ,n}

(∇Lms

t (Y )) (20)

where, ∇Lms

t (Y ) is the forward gradient output by model

ms at time t computed using time series Y .

B. Anomaly Detection

We now build on the premise established in Eqtn. 20.

Furthermore, consider a set of nominal observations for an

executing skill, we know that the corresponding skill HMM

model will output a value-increasing forward log-likelihood

curve, and hence, a stable positive forward gradient. So,

when an anomaly occurs, the forward gradient decreases

significantly as illustrated in Fig. 3. Given that anomalies

influence the forward gradient value, we propose a gradient-

based metric for HMM anomaly detection.
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Fig. 3. The log-likelihood gradient can be used for anomaly identification.
Top plot: nominal task with a steadily increasing log-likelihood that yields
a positive gradient (ours ranges from 10-45 units in this trial). Bottom plot:
trial with one anomaly per skill execution. Anomalies occur shortly after
red vertical lines. Notice gradient drops after anomaly occurrence (range
from -100’s to -1000’s).



Fig. 4. The Baxter humanoid robot performing a pick-and-place task.
5 independent skills used to perform the task. Executed skill motions are
sketched with red arrows.

Consider an HMM model m representing a skill s with

n time-series trials Yi for i ∈ {1, · · · , n} collected from

successful executions of skills s ∈ S. To detect anomalies in

a new time series Y we can first derive:

∇Lmax = max
i∈{1,··· ,n}

( max
t∈{1,··· ,Ti}

(∇Lm
t (Yi))),

∇Lmin = min
i∈{1,··· ,n}

( min
t∈{1,··· ,Ti}

(∇Lm
t (Yi))),

∇Lrange = ∇Lmax −∇Lmin,

where Ti is the time length of trial Yi and ∇Lm
t (Yi) is

the forward gradient output by model m at time t computed

using time series Yi. Then, we use an empirically-derived

test to trigger an anomaly for Y :

∇Lm
t (Y ) < ∇Lmin −

∇Lrange

2
. (21)

This test detects if the gradient is an outlier compared with

gradients of successful skill executions.

VI. EXPERIMENTS AND RESULTS

As for experimental setup, a dual armed humanoid Baxter

robot was used to perform a pick-and-place operation. The

robot consisted of a Robotiq force-torque sensor and standard

Baxter fingers. 5 nominal trials were used for training

the HMM model. In testing, 5 trials were used for skill

identification and anomaly detection respectively. The pick-

and-place task consists of 5 skills: (i) hover over the picking

position, (ii) grasp the object, (iii) lift the object, (iv) hover to

the placing position, and (v) place the object. Fig. 4, shows

the experimental setup and the execution of the five skills.

For training, the observation vector concatenates a 7-

dimensional Cartesian end-effector pose and a 6-dimensional

wrench. For each skill, we train corresponding HMM models

using the Baum-Welch algorithm. The number of hidden

states is selected such that emission probabilities are maxi-

mized leading to distinct and uniquely grouped hidden states.

TABLE I

SKILL IDENTIFICATION CONFUSION MATRIX FOR PICK-AND-PLACE

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5

Skill 1 1.00 0.00 0.00 0.00 0.00
Skill 2 0.00 0.99 0.00 0.00 0.01
Skill 3 0.00 0.00 1.00 0.00 0.00
Skill 4 0.00 0.00 0.01 0.99 0.00
Skill 5 0.00 0.04 0.02 0.00 0.94

For results reporting, we use the three factors identified

by Pettersson’s survey on Event Detection [4]. Namely:

classification accuracy, robustness (false-positive rate), and

reaction time (the time it takes to identify a skill from

the beginning of a skill execution). Note that for anomaly

identification, internal and external perturbations are used

including: unexpected movement of target object, object

absence, slippery picks, and human collisions.

A. Skill Identification Performance

Table I presents The skill identification confusion matrix.

Skills 1 and 3 were recognized with 100% accuracy, 2 and

4 with 99% accuracy, and skill 5 with the largest surface

contacts with 94% accuracy. Overall accuracy was 98.4%.

B. Reaction Time Performance

In terms of reaction time, a percentage is computed to

assess the time it takes for the identification to execute from

the beginning of a skill. The reaction percentage, using t

as “true”, is computed as: offset = predicted-t_beginning,

length=t_end-t_beginning, and reaction=offset/length. The

closer the reaction percentage is to 0% the better the

identification method. A negative reaction percentage means

the predicted start occurs earlier than ground truth, while

a positive percentage implies a delayed identification. We

assess two forms to determine the beginning of a skill as

illustrated in Fig. 5: (i) use the “first skill” occurrence, or (ii)

use the “fist 10 successive skill” occurrences. The reaction

percentage for these two formats is found in Table II.The

average reaction time for absolute values (i.e. looking at the

average time difference of the prediction, whether early or

late) the “first skill” is 2.70% across all skills and the average

reaction time for the “first 10 skills” is 0.97%. Between the

two measures, we have a total average of 1.84%.

TABLE II

REACTION TIME AS A DURATION PERCENTAGE OF A SKILL.

Method
Average Reaction Percentage

skill 1 skill 2 skill 3 skill 4 skill 5
first skill occurrence 0.00% 0.23% -3.23% 0.28% -9.77%
first 10 occurrences 0.00% 0.23% -2.36% 0.65% 1.61%

C. Anomaly Detection Performance

For anomaly detection performance of our gradient-based

method, we use two environments: (i) anomaly identification

as it occurs and any false-positives before an actual anomaly

occurs, and (ii) an external collision is given to the robot

to trigger a recovery. Then, when the robot completes its
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Fig. 5. Two ways to determine the beginning of a skill while performing
skill identification: (i) use the first skill occurrence, or (ii) use the first 10
successive occurrences. For each plot, the upper half shows the true skill at
time t and the lower half shows the prediction. Vertical dotted black lines
mark the beginning of a skill. Predicted beginnings for the red skill vary
significantly between the two criteria: the first plot determines that red skill
begins as soon as one red skill estimation occurs even though that estimation
is not stable.

recovery behavior, we count how many false-positives are

triggered before moving to the next skill execution. The robot

recovery behavior is detailed in [9]. Five nominal and five

anomalous trials are used for the analysis. The results are

compared with two other baseline methods: the magnitude-

based metric from Sec. III-C, and the derivative-of-difference

metric from Sec. III-D.

The five anomalous trials contain a total of 14 anomalies,

consisting of: (i) one anomaly caused by the displacement

of the target object (ii) one anomaly caused by no target

object (iii) two anomalies caused by slippery picks (iv) five

anomalies caused by human collisions to the robot gripper

during each skill execution (v) five anomalies caused by

human collisions to the robot arm during each skill execution.

1) Pre-Recovery Performance: For pre-recovery perfor-

mance computation, during each trial, we record the anoma-

lies triggered by the testing metric and count its true posi-

tives, false positives and false negatives as illustrated in Fig.

6. Our result summary is shown in Table III. The result
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Fig. 6. Two trials: nominal on the left and anomalous on the right.
Detection metrics: gradient-based, derivative-of-difference, and magnitude-
based arranged by row. Blue curves show metric values, red dashed lines
thresholds, and black circled markers triggered anomalies. Markers occur
from the beginning to the end of a skill. Vertical red line are false positives
(no anomaly). Markers to the right of the red vertical line are true positives
and render markers remaining within the skill as trivial. If no marker is
shown to the right of the vertical line, it is treated as a false negative. For
successful trials, closely located markers are grouped as a false positive.

TABLE III

ANOMALY DETECTION METRICS PERFORMANCE COMPARISON

detection metric
Micro

F-score Precision Recall

Proposed forward-gradient
measure

100% 100% 100%

Derivative-of-difference
measure

82.35% 70% 100%

Magnitude-based
measure

60.47% 44.83% 92.86%

TABLE IV

SKILL AND ANOMALY IDENTIFICATION, AND REACTION TIME

COMPARISON FOR STATE-OF-THE-ART EVENT-DETECTION METHODS.

technique ID Accuracy

AFF/DCC/CSM/SVM [26] 84.66% 1

sHDP-HMM [5] 89.50%
RCBHT w/ multiclass SVM [18] 97.00%
HMM w/GradientBased Measure [current] 98.40%
Tool breakage SVM [13] 99.38%

technique anomalyID Accuracy

HMM,varying threshold [24] ∼ 80.00%
MLP [8] 83.27%
sHDP-VAR-HMM,mag metric [7] ∼ 85.00%
sHDP-HMM [5] 87.50%
RCBHT w/ multiclass SVM [18] 97.00%
HMM, gradient metric (current) 100.00%

technique reaction time

sHDP-VAR-HMM,mag metric [7] 3.70% 2

HMM, gradient metric (current) 1.84%

shows our proposed forward gradient detected all anomalies

and triggered no false positives or false negatives. The other

two baseline methods suffer from false positives though they

deliver high true positives.

2) Post-Recovery Performance: For post-recovery per-

formance metrics, we trigger an intentional anomaly, after

recovery is completed, we count any false-positives before

next skill execution. Both the forward gradient method and

the derivative-of-difference method had not false-positives.

Whilst the magnitude-based metric had more than 10 and

prevented the system from continuing its task execution.

3) Comparison with Related Works: Comparisons across

works is challenging as results use different formats across

experiments. Table IV is an effort to harmonize results across

related papers. The comparison should be done loosely as

different tasks (small levels of contact vs. large levels of con-

tacts, structured environment vs. unstructured environment)

present different challenges to event detection. For skill

identification, our current approach ranks 2nd behind the tool

breakage work that identified anomalies in structured milling

processes. Our work did better than [18] and [5], albeit

these works modeled more complex dynamical phenomena.

Similar statements can be made about anomaly identification.

As for reaction times, our approach offers about double the

speed-up compared to the only other work that reported

this number. In conclusion, based on internal and external

evidence, we hold that our measure is the most robust, stable,

and fastest measure reported to date.



VII. DISCUSSION

This work presented a theoretically derived event detec-

tion measure useful for nominal and anomalous behavior

identification, even in post-recovery actions. Our results

showed very strong performance compared with state-of-the-

art results across the board. More experimental validation

is certainly necessary: both in number of trials and robotic

tasks. This work also remains to be tested in the area of

anomaly classification. The latter is concerned not only with

the identification problem with the grouping of anomaly

types which is more challenging. We anticipate working

in conjunction with machine or deep learning models for

the classification of this signals. Some works [5], [8], [20]

already provide some characterizations.

VIII. CONCLUSION

We presented an accurate, robust, fast, and versatile mea-

sure for skill and anomaly identification. The gradient-based

measure devised through a theoretical proof established the

link between the derivative of the HMM logarithm of the

filtered belief state and the latest emission probabilities.

We established that the latest emissions directly affect the

gradient and that the key insight was the inverse relationship,

which enabled nominal and anomalous identification with

strong guarantees. The measure had strong performance for

skill and anomaly identification including in post-anomaly-

recovery scenarios. The measure proved to be both versatile

and fast-acting and broadly applicable to event-detection if

using HMM-based methods.
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