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Abstract—We consider the problem of extracting a specific
feature from a noisy signal generated by a multi-channels Remote
Field Eddy Current Sensor. The sensor is installed on a mobile
robot whose mission is the detection of anomalous regions in
metal pipelines. Given the presence of noise that characterizes
the data series, anomaly signals could be masked by noise
and therefore difficult to identify in some instances. In order
to enhance signal peaks that potentially identify anomalies we
consider an entropy filter built on a posteriori probability density
functions associated with data series. Thresholds based on the
Neyman-Pearson criterion for hypothesis testing are derived. The
algorithmic tool is applied to the analysis of data from a portion
of pipeline with a set of anomalies introduced at predetermined
locations. Critical areas identifying anomalies capture the set of
damaged locations, demonstrating the effectiveness of the filter
in detection with Remote Field Eddy Current Sensor.

I. INTRODUCTION

The world is witnessing an increasing demand on water and
energy, mainly delivered through large networks of distribution
pipelines. Disrupting the flow in these pipelines for mainte-
nance or repairs may lead to a higher stress on other parts of
the network and even to economic losses and disturbances in
the consumer market in case it yields a shortage of supply.
This is in addition to the severe short- and long-term effects
an oil spill may have on the environment, for instance. With
such a very limited downtime margin, millions of miles of
pipelines already operational worldwide, and thousands more
either planned or under construction [1], automating their
inspection process is becoming a pressing and urgent necessity.
This manuscript contributes to the efforts of advancing the
state of the art of gas pipeline inspection by fusing Eddy
Current Remote Field sensing technology and an entropy filter.

Sensors used in pipeline inspections are generally referred
to as conventional pipeline inspection systems (PIGs) or in-
line-inspection (ILI) tools. Several types of PIGs have been
proposed in the literature [2]. Acoustic and ultrasonic sensors
were tested in [3]–[6]. A rotating optical geometry and infrared
sensors were adopted in [7] and [8], respectively. Despite
their promising performance, they remain limited by the short-
comings naturally inherited from image-processing techniques,
in general, such as relatively high cost and computational
complexity, and dependence on the lighting condition inside

the pipe.
Magnetic sensors, such as magnetic flux leakage [9], Eddy

current [10], magnetic particle, and Hall-effect sensors, have
been widely adopted in commercial ILI tools, taking advantage
of the abundance of metallic utility pipes. This type of sensors
are capable of detecting, both, internal and external defects,
and are therefore suitable for nondestructive inspection meth-
ods [11], [12]. A comparative study between magnetic- and
ultrasonic-based inspection techniques is reported in [13].

Magnetic PIGs magnetize the pipe as they travel through
it. A magnetic field-related signal is then captured by an
array of transducers uniformly distributed around the circum-
ference inside the pipe wall. A difference in the transmitted
and received magnetic-dependent signals usually indicates the
existence of a flaw within the vicinity of that point [14],
[15]. The flaw can be, for instance, due to corrosion, weld,
crack, fatigue, or deformation. When noise levels are high,
the collected sensory data requires filtering and possibly other
signal processing techniques. For instance, artificial neural
networks were used in [16], [17] for this purpose. Wavelet-
based filtering approaches were adopted in [18]–[20]. The
authors in [21] proposed and compared three machine learning
approaches, namely, support vector machine, kernelized prin-
cipal component analysis, and kernelized partial least squares.

In this paper, we investigate the problem of extracting
features from data generated by a multi-channel Remote
Field Eddy Current Sensor. Sensory data is characterized
by low signal to noise ratio, and therefore relevant signals
associated with features to be identified may be buried in
noise. Several works in the literature have developed the
idea of using Shannon entropy [22] to filter noisy signals in
order to discriminate structures from background noise [23]–
[27]. We extend such idea to the class of data generated
by Remote Field Eddy Current Sensors and we delineate a
procedure to characterize sensor noise and anomalies signals
within the Neyman-Pearson [28] decision making framework.
The effectiveness of the algorithm is assessed by detecting
known critical regions on a pipeline with lab data. The specific
data set used for illustration purposes does not limit the
applicability of the analysis, which extends to data sets with
comparable characteristics in terms of signal to noise ratio.



The rest of the paper is organized as follows: in Section II
we characterizse sensory data in terms of related discrete
probability density functions, which is the necessary preamble
to apply the entropy filter. In Section III we briefly describe
the entropy filter, and we determine thresholds for hypothesis
testing within the Neyman-Pearson decision making frame-
work with statistical parameters intrinsically related to noise
and to anomalies to be detected. The algorithm is illustrated
in Section IV by its effectiveness of detecting critical regions
associated with known anomalies. Section V is left for con-
clusions and ongoing and future work.

II. STOCHASTIC CHARACTERIZATION OF THE SENSOR
APPARATUS

We consider the problem of extracting signals embedded
in noisy data series characterized by low signal to noise
ratio. The signal reveals a specific feature to be detected, and
therefore its extraction defines the task associated with the
system. Specifically, we refer to data series generated by a
Remote Field Eddy Current Sensor [29] mounted on a mobile
robotic platform which performs non-destructive inspection
of gas pipelines. Sensor measurements are correlated to the
thickness of the pipeline. Multiple channels distributed along
the circumference of the pipe allow for discretized coverage
of the surface.
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Fig. 1. Time series of the output from a channel of the Eddy Current Sensor.
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Fig. 2. Histogram of the sensor data in Fig. 1.

An example of a single channel data series is given in
Fig. 1 in which it is shown the output of the sensor. The
data series refers to a portion of a pipeline with no significant
defects, except for the extremities in which peaks associated
with joints appear. By considering the data set to be the sample
space one can build the corresponding discrete distribution by
normalizing the histogram of the data series. For the series
in Fig. 1 the histogram is plotted in Fig. 2, showing the
expected white noise characteristic behaviour. For a single
channel labelled with the integer i the discrete density function
is built by dividing the sample space into Ns subintervals
{ϕij , ϕij+1}Ns

j=1 and by counting the number of occurrences
of elements of ϕi normalized with respect to the cardinality
of ϕi and the size of the bin ∆ϕij = ϕij+1 − ϕij . For the
data series in Fig. 1 and Ns = 100 the discrete probability
density function is plotted in Fig 3. As expected the curve is
the normalized histogram of Fig. 2.
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Fig. 3. Discrete probability density function for the data set in Fig. 1.

III. THE ENTROPY FILTER

A. Description of the filter

In the original framework delineated by Shannon [22],
entropy is a measure of the quantity of information [30].
Given a scalar data set {ϕij}Ni

j=1, as for example the series
plotted in Fig. 1, let pi(ϕ) be the related discrete probability
density function obtained as explained in Section II. For
ϕ ∈ {ϕij , ϕij+1} the mass probability P (ϕ = ϕij), that is the
probability of a sample ϕ taking the value ϕij is calculated as

P (ϕ = ϕij) = pi(ϕij)∆ϕij (1)

For every sample ϕij the output of the entropy filter is

H(ϕij , ℓ) = −
j∑

k=j−ℓ+1

P (ϕ = ϕij) lnP (ϕ = ϕij) (2)

where the integer ℓ defines the size of the window used to
compute the entropy.

Filtered data of Fig. 1 is plotted in Fig. 4, where the
computation in (2) is performed with ℓ = 200. Since the
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Fig. 4. Filtered data of Fig. 1 with ℓ = 200, normalized with respect to ℓ.

natural logarithm was employed the unit of entropy is nat.
The mean of the normalized entropy

µH
i =

1

N

N∑
j=1

H(ϕij , ℓ)

ℓ
(3)

allows for the characterization of the sensor noise as evinced
from the plot in Fig. 5, where it is evident that such value
is nearly independent of ℓ and it represents the value of the
Shannon entropy of the data set

H = −
N∑
j=1

P (ϕ = ϕij) lnP (ϕ = ϕij) (4)

which for the series in Fig. 1 equals 0.18 nats.
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Fig. 5. Mean of the normalized entropy versus ℓ for ℓ ∈ [40, 320].

B. Determination of the threshold

The anomaly detection with the entropy filter is completed
with a threshold to discriminate the noise from relevant peaks.
The threshold is determined by using the Neyman-Pearson
criterion which assigns the threshold value corresponding to
the maximum detection probability achievable for a given false
detection rate [23], [28].

We consider a simple binary hypothesis test, and define
H0 and H1 to be respectively associated with anomalies and
with noise. In probabilistic terms, we introduce the density

functions f0(H) and f1(H) defined on the sample space of the
output of the entropy filter applied to a data series {ϕij}. Let
ρ1 be the decision region for H1, that in the present framework
has to be determined given a constraint on the false detection
rate. The probability of false detection and the probability of
detection are related through ρ1 as

PF =

∫
ρ1

f0(H)dH (5a)

PD =

∫
ρ1

f1(H)dH (5b)

Given PF, and assuming f0,and f1 to be continuous, the
detection region ρ1 is the set of

H : Λ(H) =
f1(H)

f0(H)
> η (6)

where η ≥ 0 is determined by solving (5a) with assigned PF.
In order to characterize the density f0 we consider the

entropy distribution associated with data acquired on a portion
of a pipeline with no relevant anomalies. The data in Fig. 2
is a good candidate upon discarding the first portion which
is related to a weld. For ℓ = 200 the plot of the normalized
entropy, H/ℓ, of the series in Fig. 1 with borders discarded
is shown in Fig. 6. The application of the Neyman-Pearson
criterion in the form outlined above is based on the assumption
that the probability density functions for the two hypotheses
are continuous. For the entropy data set chosen to characterize
the sensor noise, the plot in Fig. 7 shows the discrete prob-
ability density function (dots) obtained from the normalized
histogram. The continuous line in the same plot is the normal
probability density function N (µ0, σ0) with

µ0 =
1

N

N∑
j=1

H(ϕij , ℓ)

ℓ
, σ2

0 =
1

N

N∑
j=1

(
H(ϕij , ℓ)

ℓ
− µ0

)2

(7)

In view of the plot in Fig. 7 we consider the Gaussian density
to be a acceptable approximation of the actual discrete density,
and therefore assume f0 = N (µ0, σ0) with µ0 = 0.185 nats
and σ0 = 0.0179 nats2
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Fig. 6. Normalized entropy of the data set in Fig. 1 with borders discarded
in order to derive the probability density function characterizing the entropy
of the sensor noise.
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Fig. 7. Discrete (dots) and Gaussian (continuous line) probability density
functions for the entropy data set associated with sensor noise.

The characterization of the density f1 follows the same
steps, except that in this case it is considered a data set related
to sensor measurements from a portion of pipelines in which
there are known anomalies. An example of the filtered data
from a single channel output across a region involving several
anomalies in given in Fig. 8. We assume that f1 is normal with
estimated parameters µ1 = 0.196 nats and σ1 = 0.0738 nats2.
The discrete distribution from the normalized histogram of
the anomaly data and the approximating Gaussian density are
plotted in Fig. 9, validating the Gaussian model for the data.
Parameters in f0 and f1 are summarized in Table I.

TABLE I
PARAMETERS FOR THE PROBABILITY DENSITY FUNCTIONS f0 AND f1 IN

HYPOTHESIS TESTING.

µ0 µ1 σ0 σ1

0.185 0.196 0.0179 0.0738
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Fig. 8. Normalized entropy of a single channel output across a region
containing known anomalies.

Based on the assumptions for the densities f0 and f1, the
likelihood ratio for hypothesis testing can be explicitly be
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Fig. 9. Discrete (dots) and Gaussian (continuous line) probability density
functions for the entropy data set associated with known anomalies.

written as

Λ(H) = exp

(
−1

2

(
H − µ1

σ1

)2

+

(
1

2

H − µ0

σ0

)2
)

> η
σ1

σ0

(8)

Taking the ln of both sides we obtain a quadratic inequality
in H that defines the detection region (critical region) as a
function of η(

H − µ0

σ0

)2

−
(
H − µ1

σ1

)2

− 2 ln η
σ1

σ0
> 0 (9)

Let

a =
1

σ2
0

− 1

σ2
1

(10a)

b = −2

(
µ0

σ2
0

− µ2
1

σ2
1

)
(10b)

c =
µ2
0

σ2
0

− µ2
1

σ2
1

− 2 ln η
σ1

σ0
(10c)

so that the left-hand side of (9) can be rewritten as aH2 +
bH + c. Let H−(η) and H+(η) be the roots of this quadratic
function of H , with H− ≤ H+. The detector in (9) therefore
dictates the following detection region

ρ1(η) =

{
H < H−(η) ∪H > H+(η) if a > 0
H−(η) < H < H+(η) if a < 0

(11)

The value of the threshold η is found by numerically solving
(5a) with the bisection method with assigned PF. For discrete
values of PF ∈ [0.02, 0.8] the values of H− and H+ are
given in Fig. 10, along with the least square fitting second
order polynomials:

H− = 0.144P 2
F + 0.0930PF − 0.0623 (12a)

H+ = 0.225P 2
F − 0.0930PF + 0.0623 (12b)
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Fig. 10. Thresholds H− (dots) and H+ (triangles) and relative fourth order
fitting curves in (12) versus PF.

IV. ILLUSTRATION OF ANOMALY DETECTION

In order to illustrate the application of the entropy filter
explained in Section III we apply it to a data set acquired in
a portion of a pipeline with known anomalies introduced in a
controlled way. For a false alarm rate PF = 5% the thresholds
are computed from (5a) to be

H− = 0.149, H+ = 0.219 (13)

which correspond to a probability of detection PD = 64%.
Filtered data is considered to belong to a critical region
identifying a potential anomaly if H(ϕij)/ℓ ≤ H−. Gray
circles represent approximate locations (centres) of known
anomalies which are well captured by the entropy filter (dark
regions). The density plot in Fig. 11 is obtained by linearly
interpolating data from contiguous channels to reconstruct a
two dimensional profile whose support is the surface defining
the pipeline. The entropy filter clearly captures the critical
regions identified by the dots. This result suggests that the
algorithmic tool can be effectively used to post-process data
from Eddy Current Sensors characterized by low signal to
noise ratio.

For a single channel in the region in Fig. 11 the normalized
entropy data is plotted in Fig. 12. The dashed line represents
the threshold: values below the threshold are identified as
belonging to critical regions.

V. CONCLUSION AND FUTURE WORK

We have applied the entropy filter to the detection of anoma-
lies with a multi-channel Remote Field Eddy Current Sensor.
Sensory data and entropy filter outputs are characterized
in a probabilistic framework, which allows for thresholding
based on Neyman-Pearson decision making criterion. Critical
regions for a binary test in a Gaussian framework with the
hypotheses characterized by different moments are derived.
The effectiveness of the algorithm is illustrated by detecting
several anomalies from a multi-channel data set acquired from
a portion of a pipeline with damages introduced in a controlled
way.
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Fig. 11. Application of the entropy filter to a multichannel data set from a
portion of a pipeline with known anomalies (gray circles). Dark regions are
critical with respect to the entropy filter.
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Fig. 12. Normalized entropy data (continuous line) from a single channel
across a region with known anomalies, and threshold value used with the
entropy filter (dashed line).

Ongoing work include the introduction of multi-channel
cross correlation. Characterization of different types of anoma-
lies with the introduction of multiple hypothesis testing is
currently being modelled and investigated. Future work will
include refined description of a-posteriori probability density
functions which generalize the Gaussian framework, and the
investigation of the eventual increase of accuracy versus in-
crease of complexity with respect to the Gaussian model.
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