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Abstract—Robotics systems usually comprise sophisticated sen-
sor and actuator systems with no less complex control appli-
cations. These systems are subject to frequent modifications
and extensions and have to adapt to their environment. While
automation systems are tailored to particular production pro-
cesses, autonomous vehicles must adaptively switch their sensors
and controllers depending on environmental conditions. However,
when designing and implementing the process control system,
traditional control theory focuses on the control problem at
hand without having this variability in mind. Thus, the resulting
models and implementation artefacts are monolithic, additionally
complicating the real-time system design.

In this paper, we present a modularisation approach for the
design of robotics process control systems, which not only aims
for variability at design-time but also for adaptivity at run-time.
Our approach is based on a layered control architecture, which
includes an explicit interface between the two domains involved:
control engineering and computer science. Our architecture
provides separation of concerns in terms of independent building
blocks and data flows. For example, the replacement of a
sensor no longer involves the tedious modification of downstream
filters and controllers. Likewise, the error-prone mapping of
high-level application behaviour to the process control system
can be omitted. We validated our approach by the example
of an autonomous vehicle use case. Our experimental results
demonstrate ease of use and the capability to maintain quality
of control on par with the original monolithic design.

Keywords-Software Architecture, Software Design, Operating
Systems, Robotics and Automation, Sensor Systems, Control
Engineering, Measurement System Data Handling

I. INTRODUCTION

Nowadays digital controllers are omnipresent in embedded
cyber-physical systems and control theory is a well-known
and well-understood engineering discipline. When designing a
controller, control engineers usually aim for the highest quality
of control achievable. Therefore, they typically try to model
the physical system as accurately as possible, integrating the
properties of the sensors and actuators as well as their interde-
pendencies in a global system model. In doing so, traditional
control theory, which still is the predominant paradigm for many
controllers, assumes that all inputs are sampled instantaneously
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Fig. 1: Decrease in quality of control replacing a sensor by
one of slightly different parameters.

and equidistantly, providing a temporally consistent snapshot
of the physical environment [1]. The resulting process control
system (PCS), which consists of digital signal processing
(DSP) and control, is therefore monolithic and structured in a
relatively simple manner – sample, compute, and act.

On the other hand, robotics systems cover a wide range
of application fields, such as industrial automation, medical
devices or autonomous vehicles. They are composed of
sophisticated mechanical, electronic and software components
and are therefore inherently complex systems. Moreover, they
have to adapt to their environment, introducing variability at
design as well as at run-time. Automation systems, for example,
are usually tailored to a specific manufacturing process and
will be maintained, modified and extended in conjunction with
this process. Likewise, autonomous vehicles may have to adapt
to their environment dynamically during operation.

Implementing such complex PCSs and integrating them into
a real-time system is anything but easy. Due to its cross-cutting
nature this task is interdisciplinary, involving control engineers
and computer scientists. Thus, even simple modifications almost
inevitably impact both PCS and real-time system. Replacing
a sensor, for example, by one of different bandwidth might
result in a subtle degradation of control quality.

Fig. 1 shows an example where the assumed sampling rate is
violated, which requires the PCS and real-time schedule to be
modified appropriately. Although being well-established and
suitable for cyber-physical systems with self-contained control
applications, this approach has disadvantages when it comes
to complex or even adaptive systems. To tackle this issue, a
common approach is to integrate the variability into the PCS
design by introducing configuration switches into the model.



This, however, not only moves a lot of application complexity
into the PCS by replicating system states and behaviour, but
also prevents the computer scientists from implementing a
modular real-time system. At this point, the monolithic design
of the PCS jeopardizes modularity, adaptivity and reuse.

We believe that an interface is missing between control
engineers and computer scientists that allows for a separation of
concerns. In this paper we therefore focus on the decomposition
of the monolithic PCS by introducing a layered control
architecture. We show the implications and pitfalls of this
kind of modularisation by the example of an unmanned aerial
vehicle (UAV) robot and show why it is worthwhile for
both sides. Experimental results substantiate the feasibility and
efficiency of our approach.

The paper is structured as follows: First, we discuss related
approaches in Section II. Section III details the proposed control
architecture and shows how to integrate interdependencies
despite its modular design. We demonstrate the feasibility of
our approach on the basis of the use case in Section IV. Finally,
we discuss the consequences and benefits of a modular control
architecture in Section V and conclude the paper.

II. RELATED APPROACHES

The main tool of computer science for dealing with complex-
ity is dividing systems into manageable modules. This approach
relies on abstraction, separation of concerns and well-defined
interfaces, as described by Parnas [2], and can be used for the
modularisation of a PCS in general. Kopetz’s Time-Triggered
Architecture (TTA) [3], for example, is widely used for control
applications. It is based on static schedules, which in principle
can be reused in new projects and therefore constitute modules.
However, the TTA focuses on temporal precision and isolation,
rather than addressing PCS specific issues.

Older design models for sensor systems did not focus on
modularity: the JDL model [4], the waterfall model [5], the
LAAS architecture [6], and the Omnibus model [7] are process
models for the creation of data fusion systems. They propose
a general workflow when designing such systems but offer
no guidelines w. r. t. the structural details of the architecture.
Therefore these models are orthogonal to our approach.

Durrant-Whyte [8] shows that in principle modularization
of filters and observers is possible, however, this is not the
intuitive way of designing such algorithms and the reasons for
modularity in control engineering are fundamentally different
from those in computer science. According to Chong [9],
when modularizing, control engineers aim for cost reduction,
load distribution or redundancy. Groves [10] provides a survey
of the different ways control engineers may design modular
observers and filters. These approaches convincingly show that
modularisation is possible from a control engineering point
of view. However, real-time aspects of the execution and the
interdisciplinary cooperation are not part of the picture.

Interesting architectures similar to our approach are the
sensor fusion architectures proposed by Elmenreich [11], [12],
Zug et al. [13], or Hightower et al. [14]. Elmenreich’s
approach was developed in the context of the TTA [3] and is

therefore specifically tailored to the time-triggered paradigm.
The resulting architectural simplifications impede its general
use for example in event-triggered systems.

Zug et al. focus on fault detection in distributed sensor
systems. Their architecture provides building blocks for reliable
sensor systems communicating through messages.

Hightower’s approach is inspired by the ISO/OSI model [15]
and divides the DSP system into multiple layers (sensors,
measurements, fusion, . . . ). While this segmentation is help-
ful, Hightower’s approach does not target real-time systems,
rendering it inappropriate for our purposes.

III. CONTROL ARCHITECTURE

We believe a control architecture is missing that facilitates
the modification and extension of individual parts of the
process control system and bridges control engineering and
real-time system design. To gain an optimal system design,
a fine-grained mapping of the PCS modules onto real-time
system artefacts is desirable. This further allows for effectively
isolating components, easing reintegration and reconfiguration.
We therefore propose to unravel the traditional monolithic
design by introducing a layered architecture.

A. Architectural Concepts

The architecture’s building blocks are the outcome of the
PCS’s basic structure: sample, compute, and act. The manda-
tory components are data acquisition (sample), processing
(compute), and output (act). Each data flow in the PCS is
implemented by a sequence of basic components. We decided
to use the measurand’s unit and value as well as the valid
range as a preliminary interface between these components.

When composing the PCS, it is one of the main goals to
achieve efficient rejection of various types of disturbances. The
impact of disturbances on the overall control loop plays an
essential role for choosing the execution rate of the controllers.
Compensator concepts involving Kalman-type filtering [16]
allow for a design that takes disturbances into account quantita-
tively. In particular, the measurement uncertainty (MU) [17],
which results primarily from sensor noise, is an important
parameter for the design of the PCS. Consequently, separating
the components and data-flows requires the measurement
uncertainties to be explicitly represented and integrated into
the interface. We are convinced that MU is the common
ground between control engineer and real-time expert since
most temporal properties can be directly derived from it.

In contrast to the monolithic case, additional delays may be
introduced by the fine-grained scheduling on component-level.
For example, the temporal distance between two – formerly
consecutive – sampling instants may increase because of other
components executed in-between. These delays are usually
neglected, as they are constant and limited to the execution
time in the monolithic design. To allow for compensation, the
interface therefore includes the delay as well. In consequence,
a fourth component is necessary to compensate for the MU
and the delay, which we refer to as data integration. This task
is performed by the actual controller.



Finally, to facilitate switching components of a data-flow at
run-time (e.g., induced by a mode transition), we propose a
state transfer interface providing access to the internal state
of the components involved. Thereby, the activated component
can operate on the current state instantaneously, preventing
transient oscillation that may impair the MU.

B. Layered Architecture

Based on these concepts, we propose the layered architecture
exemplified in Fig. 2. It basically extends the well-known input-
process-output model by inserting additional fusion layers that
separate the non-functional properties of the sensor and actuator
system from the actual controllers. In the following paragraphs
we detail the resulting five layers.

1) Sensor Layer: Contrary to the monolithic system, each
sensor applicable to the system is implemented by a dedicated
input component. Besides the actual device driver, an input
component is defined by its maximum sampling rate and the
best MU achievable in the given setup. Thus, the engineer can
focus on the implementation at hand and need not concern
himself with internal details of other control components.

Each sensor can be operated at its optimum sampling
rate, simplifying the mapping to real-time tasks and avoiding
pointless oversampling due to the formerly unified period. In
consequence, the component implementation has to be extended
by a rate conversion filter, adapting it to the subsequent layer.

2) Sensor Fusion Layer: It aggregates and processes data
flows to provide the control layer with all necessary measurands.
This incorporates fusion of functionally equivalent sensors or
estimation of unmeasurable states by observer components.
Great care is taken to hide data flows of individual sensors
from the observer inputs. The MU of the resulting merged data
flow is adapted accordingly. Thus, the developer can disregard
the details of the input components and focus on the individual
fusion and possibly further filter algorithms.

Preprocessing sensor signals in generic rate conversion filters
results in non-static transfer behaviour since the outputs then
depend on the history of sensed signals. Since controllers are
dynamic systems as well, the interaction of rate conversion,
sensor fusion and control may have undesirable effects. It
is possible that a combination of rate conversion filters and
controllers may affect the performance of the overall control
systems in an undesired way. Clearly, the benefits of arranging
sensor fusion and controllers in two separated layers can
be exploited only if this interaction is avoided. It is crucial
to design rate conversion filters such that the dynamics
corresponding to their errors are homogeneous. Errors may be
excited by disturbances only but not by the system response to
the control commands. This can be ensured by using observer-
type filters, with the side-effect that system states needed in the
control layer for the feedback law are generated accidentally.
In summary, the sensor fusion layer consists of blocks without
internal state and therefore static behaviour, and of observers
for filtering and state reconstruction.

Due to the separation of sensor fusion and control layer the
outputs of fusion blocks are available not only to the controllers

(as in a monolithic setup) but also to additional applications like
diagnostics, superordinate control, or mission-specific tasks.

3) Control Layer: Finally, the developer can focus entirely
on the specific control application since all sensor and pro-
cessing specifics are hidden by the preceding layers. Instead
of dealing with these details, the controller’s requirements
are specified in terms of its physical inputs and maximum
acceptable MU. Individual controllers may run at their optimum
rates, which is an important difference from a monolithic PCS,
where the most demanding part of the system determines the
global execution rate, resulting in a waste of computation time.
The separation of concerns, introduced by our architecture,
improves reconfiguration of the control layer by means of
additional controllers or dynamic adaptation at run-time.

4) Actuator Fusion Layer: Analogous to the sensor fusion
layer, on the actuator side this layer facilitates abstraction from
details of actual hardware. On the one hand, it aggregates
the controllers’ outputs. On the other hand, it distributes the
setpoints to the actual actuator system. Hence, the controllers
remain independent of the hardware- and rate-independent
physical representation of the setpoints. Thus, reconfiguration
of the actuators does not require adjustments to the controllers
and often simplifies their design process and validation. Similar
to the Sensor Fusion Layer, actuator fusion must be dynamically
separated as well. However, we think that confining actuator
fusion to purely static input-output-behaviour is not a difficult
restriction, since it just means that the actuator fusion is free of
internal states, so that interaction of dynamics is not an issue.

5) Actuator Layer: Finally, the actuator layer provides the
output components by means of actuator device drivers, which
are operated at a rate determined by the respective actuator
fusion component.

C. Design Flow

At first glance, the workflow of the modular architecture
appears considerably more complex. However, a large portion
of the complexity was hidden inside the monolithic controller
design. Most of the additional elements, such as rate conversion,
can be derived automatically once MUs are known.

At the price of a slightly more complex interface description,
control engineers may continue to use their accustomed design
tools. They must, however, annotate sensors and controllers
with the provided or required MU. The additional work required
to create these annotations will, however, be negligible, since
the necessary information is already available as part of the
controller and observer design process. On the pro side, the
new interface eliminates the need for tedious derivation of
temporal properties for a monolithic PCS.

IV. UAV USE CASE

To evaluate our architectural approach, we used the
I4Copter [18], a family of quadrotor robots, as an example
of complex autonomous robotics systems. It consists of many
variants featuring different microcontroller architectures, sensor
settings, as well as diverse propulsion systems. In the remainder
of this section we will first introduce the system, describe the
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Fig. 2: The controller architecture decouples the crosscutting controllers by introducing additional sensor and actuator fusion
layers. They ensure the temporal isolation and independence of the dedicated components and thereby facilitate mission-specific
modifications and extensions.

transformation of its formerly monolithic PCS and detail the
run-time adaptivity. Finally, we show the effectiveness by the
example of two experimental setups.

A. Target System

The I4Copter demonstrates typical problems engineers
encounter when developing robotics systems. It combines
elements of real-time systems and control engineering and has
a complex behavioural model. Problems usually encountered
in interdisciplinary projects are aggravated by the fact that it
is developed by multiple specialist teams.

Since the I4Copter is a research project, a high degree
of flexibility at design time is necessary. For example, the
family model is ranging from the I4Nano miniature quadrotor,
based on an ARM® Cortex™-M3 microcontoller, featuring four
sensors, to a high-reliability variant [19], based on an Infineon
TriCore®, offering a redundant setting with up to 12 sensors.

Further, the system includes various behaviour modes that
are switched at runtime. For example, being on the ground calls
for different behaviour than during take-off or level flight. On
the ground and during take-off the distance sensor will be used
to determine the vehicle’s height, while in flight the distance
sensor is unavailable and pressure sensors are employed for
altitude measurement. These mode changes originate from
different parts of the system – not only control – and are
therefore an inherent part of the application logic.

B. Modularisation

When originally implementing the PCS in a monolithic way,
a cascaded control scheme was used, the inner control loop

being responsible for the stabilization of the vehicle’s attitude1

and setting the thrust. Additionally, an outer control loop was
used for altitude control. In both cascades a Luenberger [20]
observer and state feedback control created an observer-based
compensator. Incoming sensor signals with the same physical
meaning were combined by internal fusion blocks. It turned out
that a good quality of the observer estimates can be achieved
at an execution rate of three milliseconds. The monolithic
controller directly provided the four engine setpoint signals.

In the following, we describe the transformation of this
monolithic design to its modular version. The resulting layered
control architecture is depicted Fig. 2.

Porting the sensor device drivers to the Sensor Layer
was straightforward and incorporated their extension by rate
conversion filters and annotation of bandwidths and MUs,
representing the sensor performance within the given system.
With this individual representation sensor components can be
flexibly mapped onto real-time tasks.

The Sensor Fusion Layer was obtained from the monolithic
PCS by splitting fusion blocks from observers. It has been
emphasized in Section III-B that components of the sensor
fusion layer that depend on internal states must be separated
dynamically from the control layer. This requirement was
satisfied using Luenberger observers [21] for the fused signals
(the angles about the three axes as well as its altitude and
height). More specifically, for the purpose of noise suppression,
these are implemented as Kalman filters, whose covariance
matrices are derived from the MUs of the sensor layer.

1Yaw, pitch, and roll angles of the aircraft in regard to the body frame



Since the observers and the fusion of corresponding sensor
signals are now separated from the control layer, it only consists
of the actual attitude and the altitude controller that implement
state feedback control with integral part. Due to the inertia of
the vehicle a satisfying control performance is now achieved
at an execution rate of nine milliseconds. Hence, compared to
the monolithic setup, only one third of the execution rate is
necessary for the controller, yielding computation-time savings.
The controllers’ outputs are demand signals for the torques
about the three axes as well as thrust. Thus, they have a
physical meaning, rendering it easy to interpret the controller’s
behaviour by inspecting its outputs. For the controller design
it is important to note that executing the control layer and the
sensor fusion layer in different tasks has the consequence that,
compared to the monolithic PCS, an additional time delay is
inserted into the signal flows. This delay was taken into account
by appropriately extending the controller’s system model.

The Actuator Fusion Layer maps the nominal signals onto
the engine setpoints. For this task the inverse characteristics of
the engines was implemented so that the engine specifics are
hidden from the control layer. Note, that the actuator fusion
does not contain dynamics, as claimed in Section III-B.

C. Run-time Adaptivity

As described before, two different physical quantities can be
used for estimating flight levels: The height above ground
level (AGL) describes the distance between ground and
quadrotor. This quantity can be precisely measured with time-
of-flight distance sensors (e. g., sonar, infrared), which have
low sampling rates (50ms). The relative height (RH) indicates
the vertical distance between the vehicle and its starting point
and can be measured at high sampling rates (3ms) by very
sensitive pressure sensors. During normal operation, RH is used
due to the lack of disturbance caused by terrain. In contrast,
take-off and touch-down demand for AGL measurement, since
there is no way to determine the distance to ground by RH. In
consequence, in-flight adaptivity is necessary to switch between
AGL and RH controllers depending on the situation.

In the original monolithic design controllers, the observers
for AGL and RH, and the state machine for tracking the
operational mode were combined in the overall system model.
The entire PCS had to be executed at the highest sampling
rate leading to unnecessary execution time overhead. Any
change in the vehicles’s behavioural state machine also implied
modification of the control models.

In our layered variant, we separated the observers. Each of
them is now running at the same rate as the corresponding
sensor (i.e., 3ms for the pressure and 50ms for the distance
sensor). We merged both, previously dedicated, controllers for
AGL and RH into one universal state feedback controller for
altitude, running at a rate of 20ms.

Since the redesigned altitude controller is modelled without
internal states, its inputs can be switched in every step, as long
as the new input state (in our case vertical position, vertical
velocity and vertical acceleration) is observed with a suitable
(i. e., low enough) MU. In other words, we can arbitrarily
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exchange the underlying observer, depending on the system
mode, as long as its corresponding MU is acceptable.

However, in the modular design, the observers are executed
only when necessary. Thus, their internal states are likely to
differ when changing the mode. Subsequently, the activated
observer would have to settle, probably leading to a violation
of the MU threshold. We therefore leveraged the state transfer
interface provided by the architecture to synchronise the internal
states of the two observers during mode change.

Finally, neither the observers nor the altitude controller
implement a dedicated state machine but can rely on the
application-level behavioural model, simplifying the design.

D. Experimental Results

To demonstrate the feasibility and the effectiveness of our
approach we compared our concept of a modular PCS with
a classical approach for sensor fusion, controllers, and actor
fusion combined in one monolithic block.

In a first experiment we examined the attitude control,
the most challenging control application of the I4Copter.



The transformation of the monolithic PCS to the modular
concept requires only small adjustments of the control layer
design, besides the bare rearrangements. The behaviour of both
implementations is compared in Fig. 3. It shows the resulting
trajectories of the vehicle’s pitch axis angle that correspond
to an acceleration process. Apparently, the difference between
the operation of both PCS is marginal, confirming that the
modularisation does not affect the closed-loop performance.

Next, we focused on the run-time adaptivity. Fig. 4 shows the
plot for the described mode switch. At t = 2.5s the controlled
quantity is switched from AGL to RH. Though the observed
values differ at switching time, the state transfer ensures the
motion to remain stable and continuous.

Moreover, by executing only those observers actually needed,
a lot of processing time can be saved. In our experiments one
combined observer running at the more pessimistic sampling
rate caused almost twice as much processor load.

Additionally, the development of the height observers was
straightforward since the output of other observers (in this case
the attitude observer) could be reused. The integration of the
observers into the existing system was strongly supported by
using the existing actuator layer as the only feedback interface
to the attitude controller. In the new architecture the existing
attitude controller could be reused without any modification.

V. DISCUSSION AND CONCLUSION

In this paper, we presented a modularisation approach for
the design of robotics process control systems, aiming not only
for variability at design time but also for adaptivity at run-time.
We implemented our approach by means of a layered control
architecture that provides a separation of concerns in terms of
independent sensor, filter and fusion, controller and actuator
components. A tailored interface – comprised of measurement,
measurement uncertainty, and delay – allows for reintegrating
complex interdependencies that are naturally considered in a
holistic and monolithic design approach. Our approach not only
facilitates a modular design of the PCS but also a fine-grained
mapping to the real-time system. Thus, we bridge the gap
between computer science and control engineering.

However, modularisation does not come for free. Computer
scientists have to consider more aspects of the PCS. In addition
to their usual tasks, they have to derive timing properties from
MU and determine delays due to fine-grained PCS scheduling.
Control engineers, on the other hand, have to adhere to the
interface and to provide the MUs. Dynamics introduced by
the additional rate conversion filters have to be eliminated or
considered during observer design. The additional interfaces for
state-transfer have to be provided in case of run-time adaptivity.

We consider it worth the effort and, in our experience, for
both sides the overhead caused by our architecture is minimal.
The benefits, however, are manifold. Application logic such as
state machines is no longer part of controllers and observers,
avoiding its tedious and error-prone reimplementation. Thus,
the PCS as well as the real-time system become much simpler.
Our interface allows for development of controllers, observers

and system software like hardware drivers and the real-
time system by independent teams, fostering interdisciplinary
system development. We believe that using MU as a common
ground between real-time and control systems opens up new
opportunities for run-time adaptivity in future designs. We are
also exploring ways of providing a control-aware adaptive real-
time architecture [22] complementing the control architecture
presented in this paper.
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