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Abstract—Visual Simultaneous Localization And Mapping,
(VSLAM) algorithms exploit the observation of scene naturally-
existing distinct features to infer the camera motion and build
a map of a static environment. There is an increasing inter-
est towards building efficient VSLAM algorithms mainly from
computational perspectives; however, there may be insufficient
clues to solve for SLAM parameters efficiently. In this paper,
deliberate camera oscillations are superimposed on the camera
main motion (robot motion), mostly in a lateral direction to give
sufficient physical clues for the solution. Filtering methods exploit
correlation to infer the motion parameters, and since oscillation
introduces more local changes, it can enhance the estimation
by correlation. Simulation results are presented showing the
effects of oscillation parameters on visual SLAM performance
in different motion scenarios. The results showed significant
improvement of accuracy for oscillating camera over the steady
camera case, and in several cases errors are reduced to less than
half its value. These simulation results can be the basis to design
a real experimental system.

Keywords; Visual SLAM, Camera Oscillation, Camera Vibra-
tions.

I. INTRODUCTION

Visual SLAM means the Simultaneous Localization And
Mapping using visual information obtained from single [1],
[2] or stereo cameras [3], [4]. The SLAM algorithms had
gained much popularity due to its importance for mobile robot
applications into unstructured environment. Visual SLAM is
attractive because it uses the available on-board cameras to
complete the SLAM task. The current successful VSLAM
implementations use Extended Kalman Filter, (EKF) [5], [6]
or Bundle Adjustment, (BA) [7], [8] to solve the problem.
There are many differences in computations side, but on
the accuracy side, filtering techniques may reach comparable
accuracy as that of BA [9]. The general interest in visual
SLAM research is towards investigation of the computational
aspects of the problem, overlooking the physical aspects which
set the bounds for algorithm errors [9], [10]. The accuracy per
time cost is a useful measure for VSLAM success for mobile
robot applications, and in order to reach the good measure,
both physical and computational layers should be considered.

The problem is usually interpreted as follows: given that
a camera is attached to a robot and given a set of salient
features in the scene; it is required to estimate the robot
location and a map for the discovered features [11]. This
interpretation forced the researchers to think of the problem

in the computational sense only, while it has both physical
and computational aspects. Focusing on computational issues
of the SLAM problem helps improving the performance but
considering physical aspects can be more effective since it de-
fines the ceiling of the computational improvements. Although
SLAM systems are intended to work as measurement systems
and mostly will not interact with the robot motion decision
making modules, physical clues could be gained from actively
superimposing local camera oscillations that do not affect the
average motion. This idea stems from two well-known facts.
First, the fact that during the human walk the head moves from
left to right [12], [13], and this is even more noticeable with
aged people [14]. Second, the fact that human eyes oscillate
at 90 HZ [15], [16]. Oscillating retina had been used for edge
detection [17] and to improve stereo range finding accuracy
[18], [19]. Cameras making lateral motions have also been
used to help with the correspondence problem [20]. Fusing
information from multi cameras was used to add more physical
clues to the SLAM system [21].

In this paper, we propose a new acquisition system that uses
an oscillating camera to actively increase the estimation clues
of camera motion relative to scene features. The oscillation
parameters and their effect on the VSLAM performance are
investigated through computer simulations. Although camera
vibrations may cause the feature extraction to be more difficult,
it can be quite beneficial to increase physical clues to extract
robot motion and consequently enhance the convergence speed
of VSLAM algorithm. It is assumed that features are extracted
and presented to the VSLAM algorithm, and this stage will be
considered separately since typical methods can be found in
the literature [22], [23].

This paper is organized as follows: the next section outlines
the basic probabilistic framework for visual SLAM algorithm.
Then, in section III, the oscillating camera system design
criteria are discussed. Section IV then describes the simulation
conditions and the effect of oscillations on the accuracy of
VSLAM algorithm. The discussion is presented in section V,
and conclusions are finally given in section VI.

II. THEORETICAL FRAMEWORK

In this work, Extended Kalman Filter, (EKF) SLAM is
used as the core probabilistic framework. The EKF state vector
contains robot and landmarks states, modelled as a Gaussian
variable using the mean vector and the covariance matrix of� � �



the state vector. This state vector is maintained using EKF
through a prediction/correction loop. The state vector can be
described as follows:
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where R is the robot state and M is the map landmarks state.
The covariance matrix is defined as:

P =

[

Prr Prm

Pmr Pmm

]

(2)

The goal of EKF-SLAM is to keep the state vector and
the covariance matrix updated. The robot position represented
by X-Y-Z position, and the robot orientation represented by
quaternion q construct the robot state vector. The landmarks
state vector represents all the landmark positions. Each land-
mark may be represented using different parameterization
[24]. In this work, the Euclidean or anchored homogeneous
parameterization is used to represent the landmarks [1], [24].

R = [ X Y Z q1 q2 q3 q4 ]
T

(3)

The EKF prediction step:

x← f(x, u, n) (4)

P← FxPFx
T + FnNFn

T (5)

where u is the control vector, f() is the generic time update
functions, Fx , Fn are the Jacobian matrices and N is the
covariance matrix of the perturbation n.

The EKF correction step:

z= y − h(x) (6)

Z= HxPHx
T + R (7)

K= PHx
TZ−1 (8)

x← x+Kz (9)

P← P − KZKT (10)

where y is the noisy measurement, x is the full state, h()
is the observation function, Hx is Jacobian matrix, R is the
covariance matrix of the measurement noise and K is the
Kalman gain. Equations 6 and 7 are the innovation mean and
covariance matrix.

III. SYSTEM DESIGN

The convergence rate of depth estimation is very important
in visual SLAM systems, especially in the monocular camera
case [10]. Depth features can be recovered from the camera
motion, but its computation depends on the type of motion.
It is well known that the lateral motion is the best motion to
compute features depth. On the opposite side, forward and wild
turning motions are difficult cases for depth computations [9],
[25]. To overcome this problem, deliberate camera oscillations
are introduced to add small lateral motion beside the basic
motion which augments the clues for depth computing. These
camera oscillations are independent of the robot motion and in
a direction perpendicular to the robot motion. The major ob-
jective is that oscillation should be conditioned to provide the
maximum clue gain per oscillation change. There are however,
a huge number of both design and operational parameters that
can be tested. In this paper we will consider a class of such
parameters we believe is enough to start realizing a real system,
and through hypothesis generation, it can be incrementally
improved. It is then clear that the design should benefit from
the simulation results that will be described in the next section.
However, we can state facts about the trend of “what to do”
and “what not to do”

• Camera oscillation will be beneficial for the conver-
gence of the points in the direction of the optical axis
since such points have the least clues to derive their
depth estimate from camera forward motion.

• Camera oscillation will be beneficial for the fast
convergence of the limited visible time features in the
curved motion.

• The increase of the camera amplitude of lateral trans-
lational oscillation will increase available clues for all
scene points convergence.

• Near points should benefit more from the local camera
oscillations compared to distant points.

• Regarding the frequency, the camera frame rate, in our
case, is 10 fps, which will limit the frequency to about
5 Hz, to have around 2 frames per oscillation cycle.

• Increasing the robot linear velocity in the direction
of motion will by itself increase the geometrical clue
of features and then in such case, measurements will
need no more motion clues as for the case of low
velocities.

Intuitively, rotation around the camera focal point will
induce no clues for point geometry in terms of triangulation
[26], [27]. This is well known in the literature, and hence we
are advised not to rotate about the projection center.

Based on the previous considerations, we made a simu-
lation of a robot going through unknown environment and
equipped with a camera oscillates in a lateral direction of the
moving robot. The camera displacement X can be described
by:

X= A.sin(2πft) (11)

where A is the amplitude, f is the frequency and t is the time.� � �



TABLE I. SIMULATION CONDITIONS

Sensor

Image Size 640 x 480 pixel

Field of View 90o

Number of Frames 160 frame

Frame Rate 10 fps

Intrinsic Parameters [u0 vo au av]

[320 240 320 320]

Robot
Motion Increment 0.05 m

Motion Error [X Y θ]

[0.005 0.005 0.05]

Oscillation Parameters
Amplitude 0.05 m

Frequency 3 Hz

Sample Time 0.1 sec

General Options

Number of Features 162

Features for Update 10 features

Features Initialization [first frame other]

[10 1 ]

IV. SIMULATION RESULTS

The objectives of the simulation are to answer the following
questions:

• How the camera oscillation affects the depth estimate
convergence rate for scene features?

• How the oscillation parameters (Amplitude and Fre-
quency) affect the accuracy of visual SLAM?

• How the oscillating camera affects accuracy of robot
motion estimation during forward, lateral and curved
motion?

We simulate a robot performing different types of motion
in an area of 16 m x 16 m. This environment consists of 162
landmarks configured into two layers of landmarks. The same
features configuration is used through all experiments to cancel
the scene features composition effect [28], [29]. A modified
version of 6-DOF EKF-SLAM TOOLBOX [30] is used in this
simulation. Table I summarizes the simulation conditions.

A. Effect on Depth estimate Convergence Rate

Two experiments have been made for the robot moving
forward for 8 m, exploring scene features. In the first experi-
ment, the normal steady camera was used, while in the second,
oscillating camera was used. Figures 1, 2 show the map
of landmarks, the localization errors and uncertainty using a
steady and oscillating camera. Localization error refers to error
in position and orientation. The position error is represented
by the Euclidean distance of the position errors Eeuc.:

Eeuc. =
√

ex2 + ey2 (12)

where ex is the error in x direction and ey is the error in y
direction. In oscillating camera case, a fast convergence rate
of the features was observed in comparison with the case with
no oscillation, therefore, the error was decreased significantly.
In steady camera case, there are some features that did not
converge even until the end of the robot motion, as a result
the errors increased in that case.

Figure 3, 4 show the depth estimate of features selected
from regions A and B, which represent the regions that benefit
from the oscillation as defined in Fig. 5. It is observed
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Fig. 1. Steady camera case, (a) Map of landmarks, (b) Localization errors.
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Fig. 2. Oscillating camera case (amplitude = 0.05 m & frequency = 3 Hz),
(a) Map of landmarks, (b) Localization errors.� � �
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Fig. 3. Depth uncertainty convergence for selected features in region A using
steady and oscillating camera (amplitude = 0.05 m & frequency = 3 Hz).
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Fig. 4. Depth uncertainty convergence for selected features in region B using
steady and oscillating camera (amplitude = 0.05 m & frequency = 3 Hz).

Fig. 5. Schematic diagram showing the regions, that benefit from camera
oscillations.

that camera oscillations accelerate the depth convergence rates
especially for region A features. This is attributed to the new
clues that were added to the system.

B. Effect on the Localization Accuracy of Visual SLAM

1) Amplitude Effect: In this experiment, the camera os-
cillates with amplitudes varying from 1 : 10 cm for different
velocities (0.25, 0.5, 1) m/Sec. The experiments are performed
in the forward and the curved motion. The results are shown
in Fig. 6 and Fig. 7, where it is observed that:

• Increasing the amplitude decreases the position error
significantly and in particular for low robot velocities.

• The error change in the case of high velocity motion
is small, because the motion in the forward direction
with high velocity gives strong clues that reduce error
in this case and the lateral displacement adds little
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Fig. 6. Effect of oscillation amplitude in the forward motion and using
frequency = 3 Hz in case of, (a) Euclidean error of position, (b) Orientation
error
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Fig. 7. Effect of oscillation amplitude in the curved motion and using
frequency = 3 Hz in case of, (a) Euclidean error of position, (b) Orientation
error

(a) (b)

Fig. 8. Schematic diagram showing oscillation amplitude compared to main
motion displacement at , (a) Low robot velocity, (b) High robot velocity

clues that are of small effect compared to the forward
motion clues. Figure 8 shows a schematic diagram
showing oscillation amplitude effect in case of low
and high velocity.

• For the oscillation amplitudes from 5 : 10 cm the error
is almost the same, which means that there is no need
to increase the amplitude for achieving further error
reduction.

• For the orientation error, by increasing the amplitude
the error decreases in the case of low and medium
velocity, but this is not the case for higher speed
where the error increases slightly by increasing the
amplitude.

2) Frequency Effect: Through these experiments the fre-
quency effect is explored. Oscillation frequency takes values
from 1 : 4 Hz by 0.5 Hz steps. The simulations are done
in two motion types, forward motion and curved motion. It is
well known that frequency values are bounded by the sampling
time which in our case is Tsample = 0.1 Sec. From Nyquist–� � �
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Fig. 9. Effect of oscillation frequency in the forward motion and using
amplitude = 0.05 m in case of, (a) Euclidean error of position, (b) Orientation
error
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Fig. 10. Effect of oscillation frequency in the curved motion and using
amplitude = 0.05 m in case of, (a) Euclidean error of position, (b) Orientation
error

Shannon sampling theorem:

Tsample=
1

2f
(13)

therefore the maximum theoretical frequency is f = 5 Hz,
but it has been observed that it is f = 4 Hz, and this can be
attributed to the motion model noise.

The results are shown in Fig. 9 and 10, from which we
observe the following:

• Oscillation frequency has pronounced effect in low
velocity case rather than high velocity, because the
cycle’s number increases with frequency, but the sam-
ples in each cycle will decrease and this makes the
lateral motion dominant based on the samples place.

• The frequency should be selected based on robot
velocity, so we can choose a reasonable frequency
based on the velocity.

For the optimal parameters of oscillation corresponding to
the least localization error, we choose oscillation amplitude =
0.05 m and oscillation frequency = 3 Hz, for our particular
system.

C. Effect of different robot motion types

Experiments were made for forward, lateral, and curved
robot motion. Table II shows the RMSE errors for localization
and orientation errors for each type of motion. The curved
motion and the forward motion enjoyed a significant reduction
in the localization error, while minor effect is observed for the
lateral motion. Figure 11 shows the curved robot path, as an
example, using steady and oscillating camera against ground
truth.

TABLE II. THE EUCLIDEAN ERROR OF POSITION AND ORIENTATION

ERROR FOR DIFFERENT MOTION TYPES

Type of Motion Error Types Steady Camera Oscillating Camera

Forward Motion Euclidean Error 11.0293 cm 5.0937 cm

Orientation Error 0.1553 deg 0.1026 deg

Curved Motion Euclidean Error 11.1495 cm 3.9308 cm

Orientation Error 0.1170 deg 0.1465 deg

Lateral Motion Euclidean Error 3.6709 cm 3.6163 cm

Orientation Error 0.2119 deg 0.1766 deg
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Fig. 11. Robot path using steady and oscillating camera (amplitude = 0.05
m & frequency = 3 Hz) against ground truth in case of curved motion

V. DISCUSSION

The idea of this paper has been built on the facts of the
head motion during the human walk and the biological retina
oscillations, which were believed to have a functional benefit.
Despite, the need to have a robust method to detect distinctive
feature, from vibrating blurred retina, there is a significant
increase in the physical clues that can help the visual SLAM
methods to recover feature depth faster and more accurately.
Our simulation experiments confirmed the effectiveness of
the camera oscillations in particular for curved routes where
features are only visible for a limited time. Benefits were also
confirmed for the difficult forward motion and this is useful in
practice, since it is common and expected during the course
of robot motion.

The goal of these synthetic experiments is to validate the
idea. We realize that it may not be practical to shake the camera
for 5 cm amplitude and this will be considered in the future.
The amplitude was shown through experiments to be the most
significant factor to benefit from camera oscillation. Issues like
resolution, focal length and possible use of wide field lenses
will be considered in the future. However, it was also shown
that only the position errors were reduced, while orientation
errors did not benefit from our oscillation pattern.

VI. CONCLUSIONS

This paper introduced a novel acquisition system for visual
SLAM system in which the camera oscillates to gain more� � �



clues about the scene feature depth and hence improve robot
localization. This is done in contrast to passive cameras
watching scene features and employs whatever motion clues
that may be passively available to solve the SLAM problem.
Camera oscillations, and in particular in the lateral direction
of heading orientation, improved the feature depth estimation
very fast and hence increased the SLAM accuracy significantly.
Various oscillation parameters of the camera together with
motion variables of the mobile robot were investigated and
the following conclusions can be made:

• Oscillations increase feature depth convergence rate
for some near features while it has little or no effect
elsewhere.

• Oscillations improved the self-localization errors in
terms of positioning, and amplitude has the most
significant effect while frequency has only slight effect
at low robot velocities.

• The improvement in robot positioning was high for
curved and forward robot motion, while it has a slight
effect on lateral motion which already enjoys low
errors due to rich clues generated by its motion.

• Orientation errors were only slightly affected by the
oscillation.

The results will help to design a full experimental system and
to tune its performance.
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der, and P. König, “Human eye-head co-ordination in natural explo-
ration,” Network: Computation in Neural Systems, vol. 18, no. 3, pp.
267–297, 2007.

[14] J. A. Honaker and N. T. Shepard, “Age effect on the gaze stabilization
test,” Journal of Vestibular Research, vol. 20, no. 5, pp. 357–362, 2010.

[15] A. L. Yarbus and L. A. Riggs, Eye movements and vision. Plenum
press, 1967, vol. 2.

[16] B. W. Tatler, N. J. Wade, H. Kwan, J. M. Findlay, and B. M.
Velichkovsky, “Yarbus, eye movements, and vision,” I-Perception,
vol. 1, no. 1, pp. 7–27, 2010.

[17] M. O. Hongler, Y. L. de Meneses, A. Beyeler, and J. Jacot, “The
resonant retina: exploiting vibration noise to optimally detect edges
in an image,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 25, pp. 1051–1062, 2003.

[18] D. Geiger and A. Yuille, “Stereo and eye movement,” Biological

cybernetics, vol. 62, no. 2, pp. 117–128, 1989.

[19] N. Maru, A. Nishikawa, F. Miyazaki, and S. Arimoto, “Active detection
of binocular disparities,” in ’IEEE/RSJ International Workshop on

Intelligence for Mechanical Systems, Proceedings IROS’, 1991, pp.
263–268.

[20] M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 15, no. 4,
pp. 353–363, 1993.

[21] J. Sola, A. Monin, M. Devy, and T. Vidal-Calleja, “Fusing monocular
information in multicamera SLAM,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 958–968, 2008.

[22] L. A. Vese and S. J. Osher, “Modeling textures with total variation
minimization and oscillating patterns in image processing,” Journal of

Scientific Computing, vol. 19, no. 1-3, pp. 553–572, 2003.

[23] Q. Tian, N. Sebe, M. S. Lew, E. Loupias, and T. S. Huang, “Image
retrieval using wavelet-based salient points,” Journal of Electronic

Imaging, vol. 10, no. 4, pp. 835–849, 2001.

[24] J. Sola, T. Vidal-Calleja, J. Civera, and J. M. M. Montiel, “Impact of
landmark parametrization on monocular EKF-SLAM with points and
lines,” International journal of computer vision, vol. 97, no. 3, pp. 339–
368, 2012.

[25] M. Hasan and M. Abdellatif, “Experimental verification of direct
depth computing technique for monocular visual SLAM systems,” in
International Conference on Innovative Engineering Systems, 2012, pp.
142–147.

[26] L. Wang, S. B. Kang, H.-Y. Shum, and G. Xu, “Error analysis of pure
rotation-based self-calibration,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, no. 2, pp. 275–280, 2004.

[27] P. H. Torr, A. W. Fitzgibbon, and A. Zisserman, “The problem of
degeneracy in structure and motion recovery from uncalibrated image
sequences,” International Journal of Computer Vision, vol. 32, no. 1,
pp. 27–44, 1999.

[28] M. Heshmat and M. Abdellatif, “The effect of feature composition on
the localization accuracy of visual SLAM systems,” in the International

Conference on Computer Vision Theory and Applications, VISAPP,
2012, pp. 419–424.

[29] M. Abdellatif, “Monocular visual SLAM: Improvements from the object
side,” in The 13th Mechatronics Forum International Conference, 2012,
pp. 393–398.

[30] J. Sola, D. Marquez, J. Codol, and T. Vidal-Calleja,
“EKF-SLAM toolbox for matlab,” [Online]. Available:

http://www.joansola.eu/JoanSola/eng/toolbox.html, Accessed: April
2013.� � �


