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Towards Multidimensional Textural Perception and
Classification Through Whisker
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Abstract—Texture-based studies and designs have been in focus
recently. Whisker-based multidimensional surface texture data is
missing in the literature. This data is critical for robotics and
machine perception algorithms in the classification and regression
of textural surfaces. In this study, we present a novel sensor de-
sign to acquire multidimensional texture information. The surface
texture’s roughness and hardness were measured experimentally
using sweeping and dabbing. Three machine learning models
(SVM, RF, and MLP) showed excellent classification accuracy for
the roughness and hardness of surface textures. We show that the
combination of pressure and accelerometer data, collected from a
standard machined specimen using the whisker sensor, improves
classification accuracy. Further, we experimentally validate that
the sensor can classify texture with roughness depths as low as
2.5um at an accuracy of 90% or more and segregate materials
based on their roughness and hardness. We present a novel
metric to consider while designing a whisker sensor to guarantee
the quality of texture data acquisition beforehand. The machine
learning model performance was validated against the data
collected from the laser sensor from the same set of surface
textures. As part of our work, we are releasing two-dimensional
texture data: roughness and hardness to the research community.

Index Terms—Textural perception, Surface exploration,
Whisker sensor, Texture classification, Multidimensional texture

I. INTRODUCTION

The sense of touch is crucial in determining surface texture.
Rats exhibit a significantly different sense of touch compared
to primates who use their fingers predominantly. Whiskers
are used extensively for examining, exploring, and navigating
through environments by rats [/1]]. The spatiotemporal informa-
tion is captured at the base of the whisker and subsequently
encoded in the barrel cortex of the rat brain. Inspired by
whisker-dependent touch sensing, researchers are increasingly
concentrating on developing novel sensing technologies for
textural perception.

Rats can distinguish textures as small as 30um [2].There-
fore, sensor designs inspired by rat whiskers are built ac-
cordingly with at least 30um resolution to discriminate be-
tween the rough and slippery surfaces. Studies show that a
single whisker can discriminate texture roughness by capturing
temporal features [3]]. As texture can only be acquired by
relative movement between sensor and surface: temporal data,
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spectrogram of the temporal data, and velocity spectrogram are
crucial for decoding the sensor information [4]. The relative
motion between the sensor and the surface causes micro-
movements at the whisker base due to surface coarseness. The
slip-stick mechanism is widely accepted as a cause of these
micro-movements, which encode the frequency information
of the texture [5]. Previous works have focused only on
determining texture roughness [3]l, [6]]. However, the literature
has not adequately addressed the multi-dimensional nature (see
Fig. [T) of texture [[7].
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Fig. 1. Dimensions of texture, adapted from [7]]

Few studies have designed a whisker sensor for texture clas-
sification based on roughness alone [8]], [9]. The mean speed
of temporal information captured by the whiskers is used for
texture classification. Recently, terrain classification has been
implemented using a simple IMU accelerometer-based whisker
sensor [10]. A bayesian nonparametric approach, similar to the
Dirichlet process, is used for texture perception spanning 28
different surfaces [|11]]. However, the multi-dimensional texture
perception is not addressed in these studies, except for the
roughness

The main aim of this study is threefold: (1) to design a
lightweight whisker sensor for capturing multi-dimensional
texture data: roughness and hardness; (2) to evaluate texture
roughness and hardness classification using whisker sensor
data; and 3) to make the whisker sensor texture data available
for the research community. This will help develop test cases
for robotics and machine perception algorithms, in addition
to studying multivariate time-series data in the domain of
classification and regression.

We present a novel design of the whisker sensor based on a
pressure sensing mechanism with an accelerometer at the base
for collecting multi-dimensional texture data. We show that
the combination of pressure and accelerometer data results in
improved texture roughness classification over a surface with



grain size as small as 2.5um. We also introduce a simple
metric to be considered while designing a whisker sensor
that ensures the quality of texture data. The lack of whisker-
based surface texture data hinders further research in the field.
As a part of our work, we also release texture data in two
dimensions: roughness and hardness.

II. EXPERIMENTAL SETUP

A simple whisker sensor has been designed that is capable
of acquiring multidimensional surface texture data. Inspired by
the macrovibrissae and previous design [12]], we built a new
whisker sensor board for terrain texture mapping. The new
whisker board houses an MPU9250, which is a 9DOF IMU.
To further reduce the sensor’s cost and simplify the fabrication
process, we have used silicone rubber of shore 20A hardness
for load pad instead of polyurethane. It exceeds the design
requirements specified in the previous work and, with a new
micro-controller (STM32F412CGU6), can accommodate more
sensors if needed.
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Fig. 2. Whisker sensor setup and reference frame. (A) The pressure sensor,
accelerometer and carbon fibre based whisker sensor, (B) 120° basis reference
frame and Cartesian reference frame for the whisker sensor, (C) Cartesian
reference frame for the accelerometer embedded inside MPU9250. Z-Axis is
perpendicular to the plane of the paper

The whisker sensor fabricated can be seen in Fig[2(A). The
coordinate frames of pressure sensors in cartesian space and
the accelerometer are given in Fig.22(B) & (C), respectively.
A custom XYZ linear stage with 1pm resolution is used for
experimental data collection. An Optical NCDT laser sensor
by micro-epsilon captures textural roughness as a ground truth
sampled at 50kH z for . The distal range of Optical NCDT
ranges from 24 — 26mm with a resolution of 0.03xm. This is
a class-2 laser with a red beam that operates at 670nm.

A. Experimental constraints

Texture being a perceptual quantity, necessitates multimodal
data to be captured. This data can then be used for texture
classification and regression tasks. In order to acquire multi-
dimensional texture information, we discuss a few experimen-
tal constraints on our data collection setup.
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Fig. 3. A schematic representing the experimental setup and associated
constraints. Speed of the linear stage, sensor sampling rate play a critical
role in determining minimum measurable texture grain size.

Let N;, N,, and N; denote data rates of the whisker,
accelerometer, and laser sensor, respectively. V; indicates the
speed of the linear stage over the texture. As shown in Fig[3]
the minimum distance between two consecutive macro grains
of the surface texture is given by d,.p. A sensor moving in
the linear stage covers a distance D ( refer eq. [T) between
two consecutive samples. Accordingly, an important constraint
placed on sensor and the linear stage for capturing high quality
texture data is: D < %dsep.

D=+ (D

Although the laser sensor is capable of capturing surface

roughness at higher linear stage speed Vs, it is set to match

the experimental case of whisker sensor. Special care is taken

not to introduce external vibration to avoid noise in range of
M measurements.

B. Standard Material selection

The materials selected for this task include standard milled
and turned metal surfaces with small grain sizes ranging from
2.5 pm to 50 pm, as shown in Fig.[d This machined specimen
by RUBERT & Co. LTD., England, is considered as a standard
for surface roughness. The specimen includes three classes of
surface roughness: abbreviated with "H’ for horizontal milling,
'V’ for vertical milling, and T’ for turning in this work. Each
class has six subclasses of roughness. These eighteen classes
of specimens comprise both micro and macro roughness. A
grain size above 100um is considered a macro, and below is
considered a micro.



The average peak-to-valley range Rz (Fig. [) is the arith-
metic mean of the single roughness depths of successive
sample lengths. The mean roughness, Ra is arithmetic mean
of the roughness profile ordinates’ absolute values. It provides
a general description of the surface’s height variability. Ra is
given in expression [2] Where L is the length of the specimen
and Z(z) is the roughness profile ordinate [13].
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Fig. 4. A specimen for textural roughness. The peak-to-valley height Rz
ranges from 2.5 um to 50 um with Ra values ranging between 12.5 ym to
0.4 pm. It contains 3 classes (vertical milling, horizontal milling and turning)
of steel surface. Each class has six subclasses of roughness.

TABLE I
The speed of sensor attached to the linear stage and the sampling rate are
key factors in enabling the sensor for obtaining textural roughness
information(T).

Vs = 50 mm/min Vs = 100 mm/min

Sensor Wpe | N YD 15 0um) [ duepum) | D) | dacy ()
Pressure Sensor 157 5.31 10.62 10.62 21.23
Accelerometer 1000 0.83 1.67 1.67 3.33
NCDT Laser 2500 0.33 0.67 0.67 1.33

For our experiments, we have chosen a multi-textured
surface with a minimum grain size of 2.5/m. From Table ] we
found that the pressure sensor and accelerometer combination
is enough to capture the detailed texture of the surface under
test. We have also collected data using the laser sensor with
N; = 2500H =z for a comparative reference.

The other dimension of texture addressed in this study is the
hardness of a specimen that can be classified according to the

measure of hardness in ascending or descending order [14].
We have considered a set of six nonstandard materials (soft
foam, a cotton cloth, a mouse pad, double-sided foam tape,
cellophane tape, and a painted aluminum sheet) as textural
hardness specimens (Fig. [3).

The slip-stick mechanism responsible for capturing texture
roughness is no longer applicable for determining surface
hardness. We use the dabbing method to analyze a material’s
hardness. Fig. [6] shows the ideal temporal response of the
whisker sensor when it makes a vertical dabbing mode of
contact with the surface. The response from the sensor during
hard surface dabbing reaches the steady state faster than the
soft surface. For a hard surface, the rise time is relatively short
and higher for a softer surface.

Mouse Pad

Fig. 5. A subset of specimens for textural hardness: (A) Soft foam (hardness-
1), (B) Table-top mouse pad (hardness-2), (C) Acrylic glass surface (hardness-
3)
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Fig. 6. Representation of sensor response for: (A) Hard material, (B)

Relatively softer material. ¢4,5 is the dabbing time starting from whisker
making contact to loosing contact with the specimen. For a given fixed dabbing
time 44, the rise time ¢, & the fall time ¢ are higher for a relatively softer
surface.

C. Data Collection & preprocessing

We collected the data by placing the sensors (whisker
and laser) on the linear stage, followed by sweeping and
dabbing the specimens for surface texture roughness and
hardness, respectively. The constraints described in section
II-A are ensured for accurate time-series data. The whisker
sensor board streams multivariate data to the PC at 1000
samples/sec. Three sweeps for each class of surface have been
collected as a minimum number of three sweeps is required
for the classification process [15]. The contacts are made
by dabbing and sweeping vertically over different class of
surfaces spanning multiple texture dimensions. Fig. 3 shows
the setup for data collection with a linear moving stage.



III. EXPERIMENTAL METHODOLOGY

The experimental setup aims to collect texture data with the
lightweight whisker and use the data in textural classification
on roughness and hardness.

A. Notations

Let N samples/sec be the data rate of the sensor. Let
x € R” represent the k-dimensional feature collected by the
sensor for each sample. The tensor X = {x1,x2,...,2p}
represents the time-series data collected over a surface in
a sweep. Training machine learning models with the entire
sweep data can lead to higher training and inference times
hence, we split the tensor X into smaller temporal windows
of size W, where Xi;, = {z;,2j41,...,2j4-w_1} as shown in
Fig.[/l The window size W is a hyperparameter, and an optimal
value is found through experimental analysis (Fig. [I0).
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Fig. 7. Schematic representation of the time-series data and the temporal
window blocks that are fed to the machine learning algorithms.

B. Textural roughness classification

Texture data can be used to measure the textural roughness
with machine learning models [10], [16]. We implement three
machine learning models for texture roughness classification.
To evaluate the quality of data captured by the new sensor,
we also compare the performance of machine learning models
trained on data from both whisker and laser sensor.

1) Machine Learning Model Setup: Three machine-
learning methods have been selected for the classification
task: 1) Support Vector Machine classifier (SVM), 2) Ran-
domForest classifier (RF), and 3) Multi-Layer Perceptron
classifier (MLP). All the models are trained on 0.7/0.2/0.1
train/validation/test split. We have used SVM and RF imple-
mentations out of the box from the scikit-learn package [17].
We used the TensorFlow [18] package to implement the MLP
model. The MLP has been designed with a stack of dense
layers, each with a ReLU activation function; a dropout layer
follows each layer to avoid overfitting [19]]. The input to this
network is flattened, followed by a LayerNormalization opera-
tion [20]. The number of perceptrons in the final layer equals
the number of classes to predict. This layer has a softmax
activation such that it outputs a probability distribution of the
model belief on the class of the texture. The MLP-based model
is trained using gradient descent with Adam optimizer [21]].
We train the model for 300 epochs with a learning rate set to
0.001. EarlyStopping [22]] mechanism has been used to avoid
overfitting the training data.

C. Textural hardness classification

Similar to the Texture roughness classification, surface hard-
ness information helps map the environment alongside visual
data. Hardness is measured by vertically dabbing the surface.
Since there exists no bench-marking device, we categorize the
surface based on human perception. For our study, we have
considered six specimens of day-to-day life surfaces: acrylic
glass, soft cotton, spongy double-side tape, mouse pad, and
soft foam.

We used the same machine learning model architecture
described in for textural hardness classification with
changes in number of classes for prediction.

IV. RESULTS AND DISCUSSION
A. Test cases

1) Textural roughness classification: The designed whisker
sensor has a pressure sensor attached to the base of the
whisker, which directly records surface texture due to whisker
movement. In contrast, the accelerometer, which isn’t con-
nected to the whisker, captures an indirect measurement of
the surface texture due to induced vibrations resulting from
the sweep. Therefore, there is a certain amount of correlation
between the data from these two sensors. Based on table [I} it
is clear that the pressure sensor is inadequate to capture the
minimum grain size of 2.5um of the standard specimen. At
the same time, the accelerometer has a much higher resolution.
We propose combining pressure and accelerometer data to fill
this gap in capturing the texture information. We evaluate three
machine learning models discussed in section for the
texture classification task. To establish the importance of the
combination of both pressure sensor (P) and accelerometer (A)
data, we show results in three cases: 1) P, 2) A, and 3) PA.

Table |lI| demonstrates that the machine learning models
trained on whisker sensor data produces promising texture sur-
face classification results, with excellent classification across
all categories as shown in Fig. [§] We see that the PA combi-
nation performs the best across all models, indicating that the
combination of pressure sensor and accelerometer data yields
a much higher textural roughness classification accuracy. It
is also crucial to note that as the speed of the linear stage
increases (V;), the distance covered by the sensor over the
texture between two consecutive samples increases, resulting
in a performance decrease across all models.

2) Effect of window size: The temporal window (W)
introduced in section plays a critical role in model
performance. The length of surface captured in one window is
given as L = D = W. Intuitively, a smaller window will have
lower dimensional features leading to better machine learning
model performance [23]]. However, having a smaller W leads
to higher training and inference time due to the increased
number of samples for training the model. Therefore, this leads
to a trade-off between model performance and inference time,
both critical for real-life applications. We evaluate the effect
of variation of temporal window size (W) on model accuracy,
training time, and inference time, as shown in Fig. [0 and Fig.
[I1l Table [ & [ shows the effect of window size.



TABLE 11

Textural Roughness Classification Results

Vs = 100 Vs =50
window size | Classifier P PA P PA

b o? t o? p o? 1 o? u o? u o? u o? u o?

SVM 77.67 | 0.07 | 3485 | 0.26 | 83.88 | 0.14 | 36.88 | 0.31 | 82.51 | 0.18 | 62.09 | 0.16 | 92.60 | 0.13 | 37.36 | 0.09

50 RF 84.64 | 036 | 4142 | 0.08 | 86.61 | 0.08 | 2446 | 0.54 | 88.19 | 0.02 | 60.64 | 0.09 | 89.25 | 0.20 | 26.02 | 0.07
MLP 4697 | 4.55 | 50.61 | 0.69 | 71.64 | 0.30 | 87.28 | 0.58 | 54.71 | 0.41 | 68.18 | 1.11 | 80.93 | 0.53 | 90.47 | 1.01

SVM 77.14 | 1.43 | 28.85 | 0.87 | 80.93 1.18 | 37.38 | 0.34 | 82.18 | 0.51 | 56.61 | 0.52 | 91.37 | 0.05 | 37.12 | 0.24

100 RF 84.30 | 032 | 36.01 | 2.27 | 84.40 | 0.57 | 23.73 | 0.50 | 86.87 | 0.20 | 54.52 | 1.31 87.95 | 0.38 | 24.64 | 0.75
MLP 47.21 1.51 | 47.13 | 2.03 | 58.41 1.61 | 9242 | 1.64 | 55.79 | 0.34 | 6586 | 0.75 | 77.92 | 0.99 | 92.85 | 0.64
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Fig. 9. Hardness confusion matrix

3) Validation with Laser Data: A comparison between
textural roughness classification accuracy of models trained on
whisker and laser sensor data reveals equivalent performance.
We list configuration for best classification accuracy below:

o Whisker Sensor (PA) — W = 50, Vs, = 50 : Reported

Accuracy (SVM classifier) - 92.60%

Fig. 10. Effect of window size over roughness classification accuracy and
inference time.

e Laser Sensor — W = 100, Vy, =
Accuracy (MLP classifier) - 92.85%
Machine learning model performance on data collected
from the whisker sensor is at par with that of laser. We
also see that the PA combination performs best in all cases
compared to P and A. These observations are summarized in
the following expression.

50 : Reported

(PAaccuracy ~ (L)accuracy) > Paccu'r‘acy > Aaccuracy (3)

4) Hardness Classification: Table [I1I| shows the results for
texture hardness classification, with excellent classification
across all categories as shown in Fig. [9] Previously, we saw
that combining accelerometer and pressure sensor data was
helpful for texture roughness classification. However, we see
that for texture hardness classification, accelerometer data does
not aid in improved model performance, leading to perfor-
mance degradation in some cases. The slip-stick mechanism
was responsible for transferring whisker tip information to
the base where the accelerometer is located. However, in
the dabbing method, the slip-stick mechanism is absent. This
leads to very little information about the specimen hardness
being transferred to the accelerometer. Therefore, combining
accelerometer and pressure sensor data does not lead to
increased performance in texture hardness classification. We
list configuration for best classification accuracy below:

o Whisker Sensor (PA) — W = 50: Reported Accuracy

(RF classifier) - 96.42%

It is clear from Table that combining accelerometer

with pressure sensor data doesn’t yield improved model



TABLE III
Textural Hardness Classification Results

window size | Classifier £ 5 Lt 5 B 5
“w o “w o " o
SVM 41.82 2.10 72.59 | 2.61 | 67.66 | 1.18
50 RF 38.48 2.68 96.23 | 0.39 | 96.42 | 0.05
MLP 26.14 | 97.06 | 68.02 | 4.61 | 77.96 | 2.35
SVM 46.10 3.46 67.58 | 5.04 | 70.96 | 3.93
100 RF 46.06 6.05 9526 | 095 | 93.77 | 0.32
MLP 20.28 5.48 6595 | 0.50 | 73.17 | 7.18
100 35.00
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Fig. 11. Effect of window size over hardness classification accuracy and

inference time

performance. The observations can be summarized in the
following expression.

(Paccuracy ~ (PA)accuracy) > Aaccuracy (4)

5) Effect of Downsampling: The combination of pressure
and accelerometer data used for training the machine learning
model was captured at 1000H z. It is important to note that
repetition in the pressure sensor data was introduced since Np
is limited to 157H z. The accelerometer captures information
about the texture at a higher temporal resolution. A critical
insight is using the accelerometer and the pressure sensor data
for texture classification. It allows the machine learning model
to discover the missing gaps in texture information leading to
better classification performance. To evaluate the premise that
a higher texture roughness classification accuracy is due to the
higher sampling rate of the accelerometer, we downsample the
data to: 1) 1000H z, 2) 500H 2, 3) 333H z, 4) 250H z, and 5)
200H z. Fig. (12| shows the accuracy for the five different data
rates; we have used V, = 50 and W = 50 based on Table
From Table || and Figure we can observe that combining
the pressure and accelerometer data at a higher sampling rate
allows richer texture information to be captured. It results in
higher classification accuracy from around 91.96% to 96.52%
for the SVM classifier. A similar trend is observed for other
classifiers as well.

6) Limitations: A drawback of all contact-based texture
data acquisition systems is that abrupt texture changes can lead
to excessive vibrations captured alongside the texture data.
This study did not consider external noise introduced in the
texture data due to the environment or the textured surface. The
added noise can thus degrade the SNR, resulting in a reduction
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Fig. 12. Effect of sampling over the overall accuracy

of classification accuracy. A way to circumvent this problem
is to have multiple whiskers of varying specifications and to
have a voting mechanism between their classification results to
determine the correct texture of the specimen. Further, we have
considered only symmetric surface texture in our study, and
the models are yet to be tested on real terrain. Finally, machine
learning models that exploit the texture data’s temporal nature
should be explored. Previous studies have considered models
of whisker-like tactile sensors [24], these abstract models can
help design an interface between the raw whisker data and the
machine learning model.

V. CONCLUSION

In this study, we introduced a new whisker sensor to capture
rich multi-dimensional texture information: roughness and
hardness. An experimental setup was designed to capture the
surface texture roughness and hardness by sweeping and dab-
bing methodology. The performance of three machine learning
models (SVM, RF, and MLP) showed excellent classification
accuracy for surface texture roughness and hardness. Com-
paring the classification accuracy of three machine learning
models trained on whisker data with that of the laser data
showed equivalent performance, validating the reliability of the
collected whisker sensor data. The results show that the com-
bination of pressure sensor and accelerometer data performs
best for textural roughness classification. In contrast, pressure
sensor data showed equivalent performance for texture hard-
ness classification. The results also show that accelerometer
data contributes to increased classification accuracy due to a
higher sampling rate, allowing it to capture surface texture
information at a higher temporal resolution.

In future, multiple whiskers of varying specifications and a
voting mechanism could perform better for asymmetric texture
surfaces. Finally, machine learning models could be explored
to exploit the temporal nature of the texture data.
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