Proceedings of the International Workshop on Rapid System
Prototyping, pages 40-46, Montreal, Canada, June 2005.

Porting DSP Applications across Design Tools Using
the Dataflow Interchange Format

Chia-Jui Hsu and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,
University of Maryland at College Park, USA
ljerryhsu, ssb}@eng.umd.edu

Abstract

Modeling DSP applications through coarse-grain data-
[flow graphs is popular in the DSP design community, and a
growing set of rapid prototyping tools support such data-
flow semantics. Since different tools may be suitable for
different phases or generations of a design, it is often desir-
able to migrate a dataflow-based application model from
one prototyping tool to another. Two critical problems in
transferring dataflow-based designs across different proto-
typing tools are the lack of a vendor-independent language
for DSP-oriented dataflow graphs, and the lack of an effi-
cient porting methodology. In our previous work, the data-
flow interchange format (DIF) [5] has been developed as a
standard language to specify mixed-grain dataflow models
for DSP systems. This paper presents the augmentation of
the DIF infrastructure with a systematic porting approach
that integrates DIF tightly with the specific exporting and
importing mechanisms that interface DIF to specific DSP
design tools. In conjunction with this porting mechanism,
this paper also introduces a novel language, called the
actor interchange format (AIF), for transferring relevant
information pertaining to DSP library components across
different tools. Through a case study of a synthetic aperture
radar application, we demonstrate the high degree of auto-
mation offered by our DIF-based porting approach.

1. Introduction

Dataflow semantics are widely used in many design and
rapid prototyping tools for DSP systems [1]. These tools
generally support different sets of dataflow models, DSP
libraries, and target platforms. Developing or migrating
designs across multiple tools often becomes desirable
because different tools may have complementary features
(e.g., simulation vs. synthesis, hardware vs. software sup-
port, etc.), and different generations of designs may be best
suited to different types of tools. Therefore, even though
the heterogeneous semantics, libraries and platform sup-
port make it very challenging, portability is an important
concern in the use of DSP design tools. Note that portabil-
ity of DSP designs across DSP design tools, when it is

comprehensively supported, is equivalent to portability
across all underlying embedded processing platforms and
DSP code libraries supported by them.

Our initial efforts to address these goals focused on
transferring dataflow technology across design tools. A
critical issue arises here due to the lack of a standard and
vendor-independent language, and associated intermediate
representations together with efficient implementations of
algorithms for operating on these representations. The
dataflow interchange format (DIF) and the associated DIF
package, a Java package that provides dataflow-based rep-
resentations and algorithm implementations, have been
developed for these purposes of specifying and working
with DSP applications across the evolving family of data-
flow-based design tools.

In this paper, we introduce our further progress with the
DIF language and the DIF package for porting DSP appli-
cations across dataflow-based design tools. Such porting
typically requires tedious effort and is highly error-prone.
This portability can be a powerful capability if it is attained
through a high degree of automation, and a correspond-
ingly low level of manual or otherwise ad-hoc fine-tuning.
This motivates a new porting approach that we have devel-
oped through the dataflow information captured by the DIF
language, and through additional infrastructure for con-
verting dataflow-based application models to and from
DIF, as well as for mapping tool-specific actors based on
the information specified by the actor interchange format.

This paper presents a summary of the new porting capa-
bilities in DIF. For more complete development of these
capabilities, we refer the reader to [6].

2. The Dataflow Interchange Format

The dataflow interchange format [5] is a language for
specifying mixed-grain dataflow models for digital signal
processing (DSP) systems and other streaming-related
application domains. It provides designers a unique, inte-
grated set of semantic features that are relevant to dataflow
modeling and dataflow-based DSP application program-
ming. Specifically, it is designed to describe graph topolo-
gies and hierarchies as well as to specify dataflow-related

and actor-specific information. The dataflow semantics of
a DSP application have a common representation in DIF
regardless of the particular tool used originally to enter the
application specification. DSP applications specified by
the DIF language are referred to as DIF specifications.
Interchanging information between general software
tools through meta-modeling has been investigated by sev-
eral works, e.g., CDIF [3] and MOF [9]. In contrast, DIF is
specifically designed for the emerging dataflow-based DSP
prototyping tools. DIF is not based on XML, which is more
for pure data exchange applications and is not particularly
suited for programming dataflow-based applications.

2.1. Dataflow Modeling

In the dataflow modeling paradigm, computational
behavior is depicted as a dataflow graph. A dataflow graph
consists of a set of nodes and a set of directed edges. A
node (actor) represents either an indivisible computation or
a hierarchically-nested subgraph. An edge represents a
FIFO queue that buffers tokens from its source to its sink.
Dataflow graphs naturally capture the data-driven property
that is inherent in most DSP computations. An actor can
fire when it has sufficient tokens on all of its incoming
edges. When firing, it consumes certain numbers of tokens
from its incoming edges, executes the computation, and
produces certain numbers of tokens on its outgoing edges.

Many dataflow models have been developed by various
researchers, e.g., synchronous dataflow (SDF), cyclo-static
dataflow (CSDF), homogeneous synchronous dataflow
(HSDF), interval-rate locally-static dataflow (ILDF), Bool-
ean dataflow (BDF), parameterized dataflow, and blocked

dataflowModel graphID {
basedon { graphID; }
topology {
nodes = nodelD, ...;

edges = edgeID (srcNodelID, snkNodeID), ...; }
interface {

inputs = portID [:nodeID], ...;

outputs = portID [:nodeID], ...; }
parameter {

paramID;

paramID = value;

paramID : range; }

refinement {
subgraphID = supernodelD;

subPortID : edgelD;

subParamID = paramID; }
builtInAttr {

[elementID] = value;

[elementID] = id;

[elementID] = id1, id2, ...; }
attribute usrDefAttr(

[elementID] = value;

[elementID] = id;

[elementID] = id1, id2, ...; }

actor nodelD {
computation = stringValue;
attrID [:attrTypel = value;
attrID [:attrTypel id;
attrID [:attrType] = id1, id2, ...; }

Figure 1. The DIF language version 0.2 syntax.

dataflow (BLDF). See [6] for further discussion of such
models as well as references to the original works. The cur-
rent version of the DIF language, v0.2, has demonstrated
its capability of specifying all of the aforesaid models [6].

2.2. Dataflow Interchange Format Version 0.2

The overall language syntax of DIF v0.2 [6] is sketched
in Figure 1. Items in boldface are built-in keywords; non-
bold items are specified by users or generated by exporting
tools; and items enclosed by squares are optional. Briefly
speaking, the dataflowModel keyword specifies the data-
flow modeling semantics of the graph. The basedon block
provides a convenient way to refer to a pre-defined graph.
The topology block specifies the nodes and edges of the
graph. The interface block defines the input and output
ports of the enclosing hierarchy. The parameter block is
designed for specifying parameterized values, intervals or
other ranges for such values, and value-unspecified
attributes. The refinement block constructs hierarchical
graph structures, provides details for interface connections,
and sets subgraph parameters. The built-in attribute (builtl-
nAttr) block specifies dataflow modeling information spe-
cific to the model used, and the user-defined attribute
(attribute) block specifies user-defined attributes. The
actor block specifies tool-specific actor information. More
detailed description of the DIF language, including the lan-
guage grammar, can be found in [6].

3. The DIF Package

The DIF package is a Java-based software package
developed along with the DIF language. In general, it con-
sists of three major parts: the DIF front-end, the DIF repre-
sentation, and the implementations of dataflow-based
analysis, scheduling, and optimization algorithms.

3.1. The DIF Representation

For each supported dataflow model, the DIF package
provides an extensible set of data structures (object-ori-
ented classes) for representing and manipulating dataflow
graphs. This graph-theoretic representation for the data-
flow model is usually referred to as the DIF representation.

Figure 2 presents the class hierarchy of graph classes in

| DIFGraph |

i
CSDFGraph

BDFéraph || || PSDF‘Graph |

i
| SDFGraph | | BCSDI‘zGraph \

‘ SingleRateGraph ‘

t
| HSDFGraph |

Figure 2. Dataflow graph classes in the DIF package.

the DIF package. The DIFGraph is the most general graph
class. It represents the basic graph structure and provides
methods that are common to all dataflow models for
manipulating graphs. For a specialized dataflow model,
development can proceed naturally by extending the DIF-
Graph class (or suitable subclass) and overriding and add-
ing new methods to perform more specialized functions.

3.2. The DIF Front-end and Implementations of
Dataflow-based Algorithms

The DIF front-end tool provides users an integrated set
of interfaces to convert between DIF specifications and the
corresponding DIF representations. Specifically, the DIF
language parser is implemented using a Java-based com-
piler-compiler called SableCC [4].

For supported dataflow models, the DIF package also
provides efficient implementations of various scheduling
and optimization algorithms that operate on DIF represen-
tations. These implementations provide designers a conve-
nient interface to analyze and optimize DSP applications. It
is also possible to integrate DSP design tools with the DIF
package and then utilize the powerful representations,
algorithm implementations, and other features provided by
the DIF package.

3.3. The Methodology of Using DIF

Figure 3 illustrates the end-user viewpoint of the DIF
architecture. DIF supports a layered design methodology
covering dataflow models, the DIF package, dataflow-
based DSP design and prototyping tools, and the underly-
ing embedded processing platforms targeted by these tools.

The dataflow models layer represents the dataflow mod-
els currently integrated in the DIF package. The primary

Dataflow Models
Static Dynamic
| SDF | [BCSDF | | DIF |

| HSDF | | CSDF]| | | [ILDF | [BDF |

Meta-Modeling
‘ Parameterized DF ‘

| BLDF |

(DIF Specifications)— - —C DIF Language)
ks

The DIF Package DIF Front-end

‘ DIF Representations ‘—»

Dataflow-based
Algorithms

£ 5
‘ DIF Exporting / Importing Tools }4—

MoML | spoNT
Dataflow-based + Autoci)din Other
DSP Design Tools | Ptolemy II Toolset g Tools
e = \ +
Embedd.ed ‘ Java ‘ ‘ C ‘ ‘ Ada ‘ Other
Processing Embedded
Platforms [java VM| [Mercury DSP|[VDM | | Platforms

Figure 3. The role of DIF in DSP system design.

dataflow-based DSP design tools that we have been experi-
menting with in our development of DIF so far are the SDF
domain of Ptolemy II [2], developed at UC Berkeley, and
the Autocoding Toolset [10] developed by Management
Communications and Control, Inc. (MCCI). However, DIF
is in no way designed to be specific to these tools; they are
used only as a starting point for experimenting with DIF in
conjunction with sophisticated academic and industrial
DSP design tools. Tools such as these form a layer in our
proposed DIF-based design methodology. The embedded
processing platforms layer gives examples of platforms
supported by Ptolemy II and the Autocoding Toolset. In
general, this layer represents all embedded platforms that
are supported by dataflow-based DSP design tools.

The DIF package acts as an intermediate layer between
abstract dataflow models and different practical implemen-
tations. DIF exporting and importing tools automate the
process of translating between tool's specification formats
and DIF specifications or DIF representations and provide
a useful front-end to use DIF and the DIF package.

4. Exporting and Importing DIF

In DIF terminology, exporting means translating a DSP
application from a tool’s specification format to DIF (either
to the DIF language or directly to the appropriate form of
DIF representation). On the other hand, importing means
translating a DIF specification to a design tool’s specifica-
tion format or converting a DIF representation to a tool's
internal representations.

4.1. Mapping Dataflow Graphs

When exporting, parsing a tool’s specification format
and then directly formulating the corresponding DIF speci-
fication is usually not the most efficient approach. Since
DIF provides a complete set of classes for representing
dataflow graphs through a well-designed, object-oriented
realization, mapping the graphical (internal) representa-
tions of tools to the formal dataflow representations used in
DIF, and then converting to DIF specifications is typically
more convenient to develop and more efficient to execute.

We categorize implementation issues involved in this
process as dataflow graph mapping issues. Dataflow-based
design tools usually have their own representations instead
of just the abstract components defined in theoretical data-
flow models. Although these representations are tool-spe-
cific, exporting without losing any essential modeling

actor nodeID {
computation = “ptolemy.domains.sdf.lib.FFT”;
order : PARAMETER = intValue or intParamlID;
input : INPUT = incomingEdgelD;
output : OUTPUT = outgoingEdgelID;

Figure 4. DIF actor specification of the FFT actor.

information is completely feasible due to the following
properties of DIF. First, the DIF language is capable of
describing dataflow semantics regardless of any particular
tool used as long as the tool is dataflow-based. Second,
DIF representations can fully realize the dataflow graphs
specified by the DIF language. Based on these properties,
our general approach for exporting is to comprehensively
traverse graphical representations in a design tool and then
map the modeling components encountered into equivalent
corresponding components or groups of components avail-
able in DIF representations.

4.2. Specifying Actors

Specifying an actor’s computation and all necessary
operational information is referred to as actor specifica-
tion. Although this detailed information is not directly used
by many dataflow-based analyses, it is essential in export-
ing, importing, and porting across tools, as well as in hard-
ware/software synthesis since every actor’s functionality
must be fully preserved. The actor block in the DIF lan-
guage v0.2 is designed for the actor specification [6].

Lets take the FFT operation as an example to illustrate
actor specification in DIF. In Ptolemy II, the FFT actor is
referred to as ptolemy.domains.sdf.lib.FFT, and it has a
parameter order and two ports, input and output. The built-
in DIF attribute computation and built-in attribute types
PARAMETER, INPUT, and OUTPUT are used to specify
its computation, parameters, and connections. The corre-
sponding DIF actor specification is presented in Figure 4.

4.3. Exporting and Importing Mechanism

Figure 5 illustrates the exporting and importing mecha-
nisms in DIF. First, a dataflow graph mapping algorithm
must be properly designed for the specific design tool.
Then a DIF exporter is implemented based on the graph
mapping algorithm in order to convert the graphical repre-
sentation in that design tool to an equivalent DIF represen-
tation. Actor specification is also required to preserve the
full functionality of actors. By applying the DIF front-end,
the DIF exporter can translate the DIF representation to a

DIF Importer DIF DIF Exporter
DIF Front-end k7| Specification N DIF Front-end

“
‘ DIF Representation ‘

~
‘ DIF Representation ‘

Import
Datafiow)[: P -\ Datafiow!
. Graph |7 Actor Spenor gDéter,!,?]W:
. Mapping ;Specification; Export \\E?‘f','ff?y Mapping |

corresponding DIF specification and complete the export-
ing process. Similarly, based on a “reverse graph mapping
algorithm” and actor specification, the DIF importer can
construct the graphical representation in the tool while pre-
serving the same functionality of the original application.
We have implemented a DIF exporter and a DIF
importer for Ptolemy II [6]. With these software compo-
nents, a DSP application in Ptolemy II can be exported to a
DIF specification and then be imported back to a Ptolemy
MoML [8] specification with all functionality preserved.
Such an equivalent result from round-trip translation vali-
dates the correctness of the strategies and general methods
in DIF for dataflow graph mapping and actor specification.

5. Porting Mechanism

Figure 6 illustrates our newly developed porting mecha-
nism. It consists of three major steps: exporting, actor map-
ping, and importing. Let us take porting from the
Autocoding Toolset to Ptolemy II as an example to intro-
duce the porting mechanism in more detail.

The first step is to export a DSP application developed
in the Autocoding Toolset (AT), which uses MCCI’s Signal
Processing Graph Notation (SPGN) as its specification for-
mat, to the corresponding DIF specification. In this stage,
the actor information (actor specification in the DIF actor
block) is specified for the Autocoding Toolset. With the
DIF-Autocoding Toolset exporter/importer, this exporting
process can be done automatically. The second step
invokes the actor mapping mechanism to map DSP compu-
tational modules from the Autocoding Toolset to Ptolemy
II. In other words, the actor mapping mechanism inter-
changes the tool-dependent actor information in the DIF
specification. The final step is to import the DIF specifica-
tion with actor information specified for Ptolemy II to the
corresponding Ptolemy II graphical representation and then
to an equivalent Ptolemy II Modeling Markup Language
MoML [8] specification. This importing process is handled

Actor nerchange | _TheDIFPackage gy

Methods | ! |

\
|
|
|
|

]

DIF Specification | _L{\¢tor Mapping | [pIF Specification
(Ptolemy Actor Spec.)] =—————— | (AT Actor Spec.)
£ T

85 & 5
‘ DIF-Ptolemy Exporter / Importerﬂ ‘ DIF-AT Exporter / Importer H

Dataflow-based DSP Design Tools
[Ptolemy Il (MoML)| [Other Tools | | AT (SPGN) |

~
Dataflow-based | Tool-dependent Graphical Representation |
DSP Design

Tool ‘ Tool-dependent Specification Format ‘

Figure 5. The exporting and importing mechanisms.

Figure 6. The DIF porting mechanism.

Embedded Processing Platforms

‘ Other Platforms ‘ ‘ Mercury DSP ‘

by the DIF-Ptolemy exporter/importer automatically.

The key advantage of using DIF as an intermediate state
in the porting process is that except for the actor block, a
DIF specification for a DSP application represents the
same semantic information regardless of which design tool
is used. Such unique dataflow semantic information is an
important basis for our porting mechanism, and porting
DSP applications can be achieved by properly mapping the
tool-dependent actor information while transferring the
dataflow semantics unaltered.

5.1. Actor Mapping

The objective of actor mapping is to map an actor in a
design tool to an actor or set of actors in another design
tool while preserving the same functionality. Because dif-
ferent design tools generally provide different sets of actor
libraries, problems may arise due to actor absence, actor
mismatch, and actor attribute mismatch.

If a design tool does not provide the corresponding
actor, the actor absence problem arises. If corresponding
actors exist in both libraries but the specific functionalities
of those actors do not completely match, we encounter the
actor mismatch problem. For example, the FFT domain
primitive in the Autocoding Toolset allows users to indi-
cate an FFT or IFFT operation through its parameter F7,
but the FFT actor in Ptolemy II does not. Actor attribute
mismatch arises when attributes are mapped between
actors but the values of corresponding attributes cannot be
directly interchanged. For example, the parameter order of
the Ptolemy FFT actor specifies the FFT order, but the cor-
responding parameter N of the Autocoding Toolset FFT
domain primitive specifies the length of FFT.

The actor interchange format can significantly ease the
burden of actor mismatch problems by allowing designers
to specify how multiple actors in the target design tool can
construct a subgraph such that the subgraph’s functionality
is compatible with the source actor. Such conversions
reduce the need for users to introduce new actor definitions
in the target tool. Similarly, actor interchange methods can
solve attribute mismatch problems by evaluating a target
attribute in a consistent, centrally-specified manner, based
on any subset of source attribute values. For absent actors,
most design tools provide ways to create actors through
some sort of actor definition language. Once users deter-
mine equivalent counterparts for absent and mismatched
actors, DIF’s actor mapping mechanism can take over the
job efficiently and systematically.

5.2. Actor Interchange Format

The actor interchange format (AIF) is a specification
format dedicated to specifying actor interchange informa-
tion. It consists of the actor-to-actor mapping block and
the actor-to-subgraph mapping block.

The actor-to-actor mapping block, as presented in Fig-
ure 7, specifies the mapping information from a source
actor to a target actor. The srcActor and trgActor terms des-
ignate the computations of the source and target actors,
respectively. A method methodID is given optionally to
specify a prior condition that must be satisfied to trigger
the mapping. The statements inside braces provide ways to
specify or to map the target attribute values. First, AIF
allows users to directly assign a value value for a target
attribute #rgAtID. Second, the value of #rgAtID can be
directly assigned by the value of a source attribute srcA¢ID
if methodID is not given in this statement. On the other
hand, a method methodID can optionally be given to evalu-
ate or conditionally assign the value of trgA¢ID based on
the runtime values of source actor attributes.

The actor-to-subgraph mapping block, as presented in
Figure 8, specifies the mapping from a source actor to a
subgraph consisting of a set of target actors and depicts the
topology and interface of this subgraph. It is designed for
use when matching to a standalone actor in the target tool
is not possible. The trgGraph term specifies the computa-
tion in order to invoke a subgraph component in the target
tool. The topology block portrays the topology of trgGraph
and the inferface block defines the input and output ports
of trgGraph. Mappings from the interface attributes of the
srcActor to the interface ports of the trgGraph are also
specified. The actor information of nodes in trgGraph is
specified in actor blocks. More detailed description of the
AIF, including the AIF grammar, can be found in [6].

5.3. Actor Interchange Methods

The methods optionally given in AIF specifications are
used to perform conditional checks or to evaluate attribute
values. They are referred to as actor interchange methods.

actor trgActor <- srcActor | methodID(arg, ...) {
trgAtID = value;
trgAtID <- SrcAtID | methodID(arg, ...);
trgAtIDl, ..., trgAtIDn <- srcAtID;
trgAtID <- srcAtID1l, ..., srcAtIDn;

Figure 7. The AIF actor-to-actor mapping syntax.

graph trgGraph <- srcActor | methodID(arg, ...) {
topology {
nodes = nodelID, ...;
edges = edgeID (srcNodeID, snkNodeID), ...; }

interface {

inputs = portID : nodeID <- sSrcAtID, ...;

outputs = portID : nodeID <- srcAtID, ..., }
actor nodelID {

computation = “stringDescription”;

trgAtID = value;

trgAtID = ID;

trgAtID = ID1, ..., IDn;

trgAtID <- SrcAtID | methodID(arg, ...);
trgAtID <- SrcAtIDl, ..., srcAtIDn; }

}
Figure 8. The AIF actor-to-subgraph mapping syntax.

A set of commonly-used interchange methods is defined in
a built-in Java class in the DIF package. Users can extend
this class and design specific interchange methods for more
complicated or specialized actor mapping scenarios.

There are three built-in actor interchange methods in the
DIF package: 1. ifExpression (“expression”) evaluates the
Boolean expression and returns true or false; 2. assign
(“expression”) evaluates the expression and returns the
evaluated value; and 3. conditionalAssign (“valueExpres-
sion”, “conditionalExpression”) returns the value of val-
ueExpression if the conditionalExpression is true, and
throws an exception otherwise. Note that the attributes of
the source actor can be used as variables in expressions and
their values are used at runtime during evaluation.

5.4. Case Study: FFT

According to the actor mismatch and attribute mismatch
problems described in Section 5.1, the Autocoding Toolset
FFT library module (referred to as D_FFT) can be mapped
to the Ptolemy FFT actor only when its parameter F/ is not
set to indicate IFFT operation. Moreover, the parameter N
of the Autocoding Toolset’s FFT module can be mapped to
the parameter order of Ptolemy’s FFT actor only when
N = 27" is satisfied, where N and order are integers.
The AIF specification for mapping the FFT operation from
the Autocoding Toolset to Ptolemy II is shown in Figure 9.

The D_FFT module also has a parameter B, which spec-
ifies the first point of its output sequence, and a parameter

actor ptolemy.domains.sdf.lib.FFT <- D FFT |
ifExpression("FI == 0") {

order : PARAMETER <- N |
conditionalAssign("log(N) /log(2)",
"(log(N)/log(2)) - rint(log(N)/log(2))
== 0");

input : INPUT <- X;

output : OUTPUT <- Y;

Figure 9. AIF specification for mapping FFT.

graph ptolemy.actor.TypedCompositeActor<-D_FFT

| ifExpression ("FI==1 && M!=N")

topology {
nodes = IFFT, Scale, SequenceToArray,

ArrayExtract,ArrayToSequence;

edges = ...; }

interface { inputs = in:IFFT<-X;
outputs = out:ArrayToSequence<-Y; }

actor IFFT {
computation="ptolemy.domains.sdf.lib.IFFT";
order:PARAMETER <- N|conditionalAssign(.J;

actor Scale { ...
factor:PARAMETER <- N;

actor ArrayExtract { ...
sourcePosition:PARAMETER<—B|assign("B—l");
extractLength:PARAMETER <- M;

-}

Figure 10. AIF specification for mapping IFFT.

M, which specifies the number of output points. Further-
more, there is a factor of N difference between the IFFT
operation of the D _FFT and the Ptolemy IFFT actor. One
way to solve this problem is to create a new IFFT actor in
Ptolemy, but this approach is relatively time-consuming.
The actor-to-subgraph mapping feature in DIF can be used
as a more convenient alternative. Figure 10 presents the
critical part of an AIF specification that achieves this. If a
D FFT domain primitive indicates an IFFT operation (F/
==]) and it outputs only part of its sequence (M # N), it is
mapped to a Ptolemy subgraph consisting of an I[FFT actor
for performing an IFFT operation, a Scale actor for adjust-
ing each sample by a factor of N, and three array process-
ing actors for extracting a certain part of the output
sequence. The input and output ports of the subgraph, in
and out, are mapped from parameters X and Y of D_FFT.

6. Experiment of Porting SAR Benchmark

In this section, we port a synthetic aperture radar (SAR)
benchmark application from the MCCI Autocoding Toolset
to Ptolemy II and in doing so, we demonstrate the effec-
tiveness of our newly-developed porting mechanisms in
DIF. The synthetic aperture radar system examined here
was used as a benchmark in the Rapid Prototyping of
Application Specific Signal Processors (RASSP) program
sponsored by DARPA [10].

Figure 11 shows the SAR system developed by MCCI
using the Autocoding Toolset [10]. Figure 11(a) illustrates
the top-level dataflow graph. This graph consists of two
major building blocks, RANGE processing and AZIMUTH
processing, represented respectively by the RNG subgraph
in Figure 11(b) and the AZI subgraph in Figure 11(c).

With a properly-designed actor interchange specifica-
tion [6] together with actor interchange methods available
in the DIF package, the DIF actor mapping mechanism can
translate the DIF specification of Figure 11, which is

(a) (b) RAMGE_IM
® " @
N

SAR_IN

v
RMG_FR —
RAMGE | e
:‘NG_GLITl WEIGHTED
"y
AZI_FR O_FFT ‘l
BZIMUTH CORPRESS)
SAR_OU nnhpnrﬁ
N / A
o . |
"/ SHPENSAT)

Figure 11. The SAR system in the Autocoding Toolset.

RANGE_IN BAD WEIGHT

COMPRESS

COMPENSATE RANGE_OUT

CORNERTURMN FFT IFFT_SUBGRAPH
AZI_OUT

i IFFT Scale
n SequenceToAray

ArrayExtract ArrayToSequence |

Figure 12. The ported SAR system in Ptolemy II.

exported from the Autocoding Toolset, to an equivalent
DIF specification for Ptolemy II. The DIF-Ptolemy
exporter/importer can then import this equivalent specifi-
cation; the resulting graphical representation in Ptolemy II
is shown in Figure 12. Figure 12(a), 12(b), and 12(c) corre-
spond to Figure 11(a), 11(b), and 11(c), respectively. Note
that the node IFFT in Figure 11(c) is mapped to the
IFFT_SUBGRAPH in Figure 12(d) through the AIF actor-
to-subgraph mapping capability.

The ported SAR benchmark application in Ptolemy II
works correctly. Figure 13 compares the output samples
generated by Ptolemy II with those generated by the
Autocoding Toolset, and reveals that the simulation results
are the same except for tolerable precision errors.

7. Summary and Current Status

In this paper, we have reviewed the principles behind
the dataflow interchange format (DIF) and the DIF pack-
age. We have then described our new approach to automate

Ptolemy 11 RASSF MINI SAR DISPLAY
1.113328370E9, -5.672582199E8
1.686243152E9, -1.132239286E9
2.280892492E9, -1.837179778E9
2.787030647E9, -2.565079199E9
3.121469726E9, -3.124321013E9
3.235633491E9, -3.339997173E9
3
2
2
1

.:,,‘:.l-.un,,:\‘

1 4.4

\'I-‘mu'll’
.126105298E9, -3.132702116E9 |

.795907223E9, -2.578937710E9 .

.292518065E9, -1.852489499E9 i S

.698661416E9, -1.145532955E9

MCCI RASSP MINTSAR DISPLAY
1.11334E+09, -5.67194E+08
1.68657E+09, -1.13206E+09
2.28101E+09, -1.83712E+09
2.78720E+09, -2.56485E+09
3.12169E+09, -3.12429E+09
3.23570E+09, -3.33972E+09
3.12633E+09, -3.13268E+09
2.79604E+09, -2.57867E+09
2.29266E+09, -1.85242E+09
1.69888E+09, -1.14531E+09

Figure 13. Simulation results of the SAR systems
in Ptolemy Il and the MCCI Autocoding Toolset.

the processes of exporting and importing DIF when inter-
facing to DSP design tools. Finally, we have developed the
DIF porting mechanism, and demonstrated it through
experiments using a synthetic aperture radar system.

Our ongoing work on DIF includes using AIF to
develop a component within the DIF package to interface
DIF to and from VSIPL [7], which is an important pub-
licly-available library for DSP software design. Such a
capability would enable tools to port designs efficiently to
VSIPL-based implementations, and to port designs to other
tools through the AIF-based integration of DIF and VSIPL.

DIF is being developed in the University of Maryland
DSP-CAD Research Group. Currently, DIF is being evalu-
ated and used by a number of research partners, including
MCCI, which has developed DIF exporting and importing
capabilities in its Autocoding Toolset. A general public
release of DIF is being planned for the near future.

8. Acknowledgements

This research was supported by the U. S. Defense
Advanced Research Projects Agency (DARPA) via the U.
S. Army Aviation and Missile Command (Contract Num-
ber DAAHO01-03-C-R236).

References

[1] S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software
synthesis and code generation for DSP”, [EEE Transactions on
Circuits and Systems — II: Analog and Digital Signal Process-
ing, 47(9):849-875, September 2000.

[2] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs, and Y. Xiong, “Taming Heterogeneity
- the Ptolemy Approach,” Proceedings of the IEEE, v.91, No.
2, January 2003.

[3] R. Flatscher, “Metamodeling in EIA/CDIF - Meta-Metamodel
and Metamodels”, ACM Transactions on Modeling and Com-
puter Simulation, vol. 12, no.4, pp. 322-342, October 2002.

[4] E. Gagnon. SableCC, an object-oriented compiler framework.
Master's thesis, School of Computer Science, McGill Univer-
sity, Montreal, Canada, March 1998.

[5] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhatta-
charyya, “DIF: An interchange format for dataflow-based
design tools”, In Proc. of the Intl. Workshop on Systems, Archi-
tectures, Modeling, and Simulation, Samos, Greece, July 2004.

[6] C.HsuandS.S. Bhattacharyya, “Dataflow Interchange Format
Version 0.2, Technical Report UMIACS-TR-2004-66, Insti-
tute for Advanced Computer Studies, University of Maryland,
College Park, November 2004.

[7]1 R. Janka, R. Judd, J. Lebak, M. Richards, and D. Campbell,
“VSIPL: An object-based open standard API for vector, signal,
and image processing,” in Proc. 2001 IEEE Int. Conf. Acous-
tics, Speech, and Signal Processing, vol. 2, pp. 949-952.

[8] E. A.Lee and S. Neuendorffer, “MoML - A Modeling Markup
Language in XML, Version 0.4”, Technical Memorandum
UCB/ERL M00/12, Univ. of California, Berkeley, March 2000.

[9] Object Management Group, Meta Object Facility (MOF) Spec-
ification, v. 1.4, April 2002. In http://www.omg.org.

[10] C. B. Robbins. Using The MCCI Autocoding Toolset Tutorial.
Version 0.9a, Management, Communications & Control, Inc.

