

SPP-NIDS - A Sea of Processors Platform for Network

Intrusion Detection Systems

Luís Carlos Caruso, Guilherme Guindani, Hugo Schmitt, Ney Calazans, Fernando Moraes

Faculdade de Informática – PUCRS – Av. Ipiranga 6681, Porto Alegre, Brazil

{calazans, moraes}@inf.pucrs.br

Abstract

A widely used approach to avoid network intrusion

is SNORT, an open source Network Intrusion Detec-

tion System (NIDS). This work describes SPP-NIDS, a

architecture for intrusion detection supporting SNORT

rules. SPP-NIDS is attractive to real-world network

intrusion detection, due to its scalability, flexibility and

performance features. A parameterizable cluster of

simple processors provides system scalability. Hard-

ware NIDSs described in the literature often employ

hardwired comparators to verify if the incoming net-

work traffic has data potentially containing intrusion

attacks. Such NIDSs must be re-synthesized when a

new set of rules is available, which happens frequently.

In SPP-NIDS, the rule set defining network intrusion

patterns is stored in RAM, enabling its straightforward

upgrade. The proposed system, when implemented in a

2-million gate FPGA is able to work at a 100 Mbps

network data rate, using the complete set of SNORT

rules. If more performance is required, it suffices to

scale the system, by adding extra processors.

1 Introduction

The threats to the goods of an enterprise by means

of network attacks (also known as network intrusion)

increase proportionally to the increase of the depend-

ency of these enterprises on computer networks. The

geometric growth of people and enterprises connected

to the Internet and the facility of use of networks are

not factors contributing to reduce this problem [1].

A widely used approach to avoid network intrusion

is SNORT [2], an open source packet sniffer and

packet logger network intrusion detection system (or

NIDS), commonly located after a firewall, trying to

detect complex network attacks [3]. SNORT works by

comparing character patterns present in the network

traffic to patterns defined by a set of rules, using pat-

tern-matching algorithms. Employing off-the-shelf

processors and/or general purpose computers based on

standard Instruction Set Architectures for building

NIDS cannot guarantee that all known rules can be

timely verified, given the high throughput of current

networks and the intrinsically sequential processing of

these architectures.

The enhanced performance of electronic systems

furthers research and development of specific system

architectures to meet the performance requirements of

computer networks. One domain where the need for

such architectures is acute is network security systems.

Real world NIDSs present deficiencies, most of

these related to sub-dimensioning and bad use of de-

vices dedicated to prevent network intrusion. For ex-

ample:

• NIDSs require high performance equipments and

algorithms. They must be capable of searching and

processing huge amounts of data at high through-

put - sub-dimensioning here is not acceptable.

• NIDSs require frequent updates in their knowledge

bases - some flexibility to recognize new types of

attacks is also recommendable.

Given this picture, the importance of employing

NIDSs, the need to use them correctly and their high

performance exigency degree it is possible to depict the

best choices to implement NIDSs as those presenting

the following features:

• Specialization - the designer of a NIDS may re-

strict himself/herself to provide computing power

only to the pattern detection related tasks;

• Parallelism - a NIDS design is expected to provide

the maximum possible amount of parallel comput-

ing power, and possibly some way to guarantee

support to the dynamic expansion of the system;

• Adaptability - a NIDS knowledge base must be

easily expandable on the fly.

This work presents the SPP-NIDS, a system built

with the above features defined as design requirements.

The rest of the paper is organized as follows. Sec-

tion 2 presents related works in specialized NIDS. Sec-

tion 3 presents the main features of the SPP-NIDS sys-

tem, while Section 4 details the system modules. Sec-

tions 5 and 6 present prototyping results and system

validation, respectively. Section 7 concludes this paper.

2 Related Work

Cho [4] implements 32-bit hardwired comparators

in parallel. The synthesis frequency obtained for an

Altera EP20K was 90 MHz, and multiplying it by 32,

they argue their system is able to sustain 2.88 Gbps.

The system was designed to process only 105 SNORT

rules. This implementation can achieve high throughput

for a small number of rules, however it is not scalable

neither flexible. Sourdins [5] implements an architec-

ture similar to Cho, using a register tree to improve

performance. According to the authors, their architec-

ture can be used in a 10 Gbps network. Backer [6] im-

plements unary comparators. The key idea is the fact

that the SNORT rules contains only 100 different

bytes, enabling the implementation of simpler com-

parators. Carver [7] uses a different approach. Regular

expressions are employed to reduce area and improve

performance. They employ 8-bit comparators, and can

achieve 1Gbps throughput.

The Snort version 2.0 includes the work of Coit [8],

which improves the performance using the Boyer-

Moore algorithm. Attig [9] uses hash functions genera-

tors, Bloom filters and a limitation of 26 characters per

rule to detect matches.

Three common characteristics exist in the previous

works: (i) limited number of rules, below the 2124 ex-

isting rules of the SNORT v 2.11; (ii) limited size of

the rules; (iii) limited characters. The proposed archi-

tecture, SPP-NIDS, does not have such limitations.

Even if the achieved throughput is inferior to the hard-

wired 32-bit comparators, SPP-NIDS considers not

only the rule processing, but also the treatment of the

attacks.

3 SPP-NIDS: Platform and Prototyping

Figure 1 depicts the block diagram of the SPP-

NIDS and its external interfaces. SPP-NIDS is a plat-

form with an architecture composed by an IDS control-

ler processor (named MR2 [12]), an attached dedicated

reconfigurable coprocessor, a host processor and inter-

faces to a link connecting external and internal net-

works.

The main part of the system is the dedicated co-

processor, named GIOIA, designed for performing

SNORT rules pattern matching. GIOIA is a cluster of

very simple custom identical processors, each of them

named picoCPU. Configuring the amount of picoCPUs

in GIOIA it is possible to satisfy specific IDS perform-

ance requirements, in a scalable way.

The cluster is reconfigurable because it allows

downloading a distinct set of SNORT rules to each

picoCPU. This can be changed at every detection cycle

for all picoCPUs. Each picoCPU serially applies all

rules contained in its configuration to every IP packet it

receives.

Figure 1. SPP-NIDS architecture block

diagram.

Besides the cluster of picoCPUs, GIOIA contains:

(i) one match register for each picoCPU; (ii) an inter-

rupt generator; (iii) a bus responsible to carry the

SNORT rules and the network data to the picoCPUs.

After applying rules to data coming from the external

network, a picoCPU either detects a suspicious pattern

or not. In the first case, it writes data about the rule that

triggered the matching in its match register. Otherwise,

it remains idle until the next data coming from the net-

work. The interrupt generator performs a daisy-chain

search through all match registers. If any match occurs,

it interrupts the IDS controller CPU.

The host processor is typically an external equip-

ment (a PC or workstation) responsible for initializing

the IDS Controller processor and the GIOIA cluster.

The first hardware prototype of this platform was

targeted to the Digilent Spartan-3 System Board [10],

with a 3-picoCPU cluster. Due to the input/output re-

strictions imposed by this prototyping platform, a series

of adaptations of the SPP-NIDS architecture were

needed.

First, the Spartan-3 System Board does not contain

a built-in network interface, such as an Ethernet PHY

module. Thus, the behavior of the network is emulated

by using part of the MR2 data memory to contain IP

packets that are read by specialized software routines

running in the MR2 processor. This memory is imple-

mented with FPGA internal Block RAMs. A next ver-

sion of this prototype implementation will leave the

task of generating network packets to the host proces-

sor, to increase flexibility.

Another feature of the implemented prototype is

that the host processor is in fact a PC computer linked

to the prototyping platform through a serial interface,

using a RS-232 compatible protocol. This interface

enables the host to reset and to hold the MR2 proces-

sor. In addition, it allows the host to load the MR2 in-

struction memory with the GIOIA cluster management

software and load the MR2 data memory with SNORT

rules to be applied by the picoCPUs and IP packets to

emulate the network behavior. The host also uses this

interface to receive information about potential inva-

sion attempts in IP packets.

4 Detailed Description

Figure 2 presents the structure of the implemented

prototype of the SPP-NIDS platform. The GIOIA clus-

ter is mapped on the processor data memory. In this

way, memory read and memory write MR2 instructions

provide access to the cluster.

MR2 CPU

data_out

Cluster

wrapper

data_in

data_address

Bus2IP_data

IP2Bus_data

Bus2IP_address

DATA MEMORY

address DOUT DIN

serialIP data

INSTR. MEMORY

address DOUT DIN

serialIP address

SERIAL

IP

HOST COMPUTER

Figure 2 - Structure of the SPP-NIDS

prototype.

4.1 The GIOIA Cluster

The set of rules in SNORT [11] is updated very of-

ten. Table 1 illustrates the number of rules on a per

protocol basis for SNORT version 2.11. The larger set

of rules belongs to the TCP protocol, and these rules

are further subdivided in sub-classes, resulting in ap-

proximately six hundred rules for the largest sub-class.

Thus, an IDS for this version of SNORT and support-

ing the most stringent demands of rule application must

be capable of comparing each network input character

against at least six hundred rules in the time available

between the reception of two characters. This limit

establishes a minimum design performance requirement

on the GIOIA cluster.

Table 1 - Number of rules by protocol,

SNORT v. 2.11.
Protocol Number of rules

TCP 1784

UDP 165

IP 44

ICMP 131

TOTAL 2124

The cluster has 3 sets of signals, implementing 3

distinct interfaces: (i) a configuration interface, to load

SNORT rules in the cluster; (ii) a packet interface, to

receive network input data; (iii) an intrusion detection

interface or simply intrusion interface, to inform the

IDS controller CPU about rule matching. Figure 3 pre-

sents the external interface and the internal organiza-

tion of the GIOIA cluster, abstracting the configuration

interface.

The cluster packet interface can only receive a new

character when all picoCPUs are available to process

this new character. The wire gimme is used to signal

this availability. This is why an important point in the

cluster design is to balance the number of rules distrib-

uted to each picoCPU.

When a picoCPU detects an attack, it asserts signal

rule_match, setting the match flip-flop (one of M1 to

Mn). Setting a given match flip-flop provokes the as-

sertion of the busy signal of the corresponding pi-

coCPU, holding it. The cluster control unit sweeps the

match flip-flops data in a daisy chain, looking for a

picoCPU that has detected an attack. When this occurs,

an interrupt signal is sent to the MR2, the attack code

(named matchcode) is stored in a cluster register (not

shown Figure 3) and the picoCPU is released through

signal clear. Note that after the interrupt request is as-

serted, the picoCPU that detected the attack is back to

normal operation. The maximum time a picoCPU is

hold from applying its attack detection algorithm in

clock cycles is equal to the number of picoCPUs in the

cluster minus one.

Figure 3 - Cluster internal organization and

interface to the IDS controller CPU through the

cluster wrapper.

4.2 The GIOIA Cluster Wrapper

The cluster wrapper has the function of adapting the

cluster signals to IDS controller CPU data bus, as illus-

trated in Figure 4. This bus allows access to the three

cluster interfaces.

The cluster configuration process, responsible to

load the SNORT rules into the picoCPUs, takes place

with the MR2 writing data to the wrapper internal reg-

ister bank. After detecting a write operation on the con-

figuration registers, the wrapper generates a pulse on

signal config_en. The same procedure is followed for

sending network input data to the cluster. A write op-

eration in the registers allocated to perform packet data

transmission to the cluster generates pulses in signals

take (indicates packet data) and is_proto (indicates the

protocol of a new packet). It is important to point that

there is no need for the MR2 to initialize control regis-

ters, this action is undertaken by the wrapper.

The current implementation collects attack data us-

ing polling and not interrupts as described above. The

MR2 software monitors the attack detection register

and, once this is found to contain positive attack data,

executes the attack treatment actions. Once the detec-

tion process is initiated, the MR2 asserts a pulse in the

int_ack signal to release the cluster control. A future

implementation of the system will substitute this by the

interrupt mechanism described above.

Bus2IP_address

Bus2IP_data

IP2Bus_data

Bus2IP_RW
Bus2IP_CE

Cluster

wrapper
take
is_proto

packet
int_ack
int_req
detected

file_address

file_data
prime

config_en

gimme

Figure 4 - Cluster wrapper structure.

4.3 The PicoCPU

The function of a picoCPU is to verify if certain

patterns (SNORT rules) occur in some section of the

input network traffic. PicoCPUs store in an internal

RAM patterns against which the network traffic must

be compared. The use of RAM to store patterns confers

the property of reconfigurability to picoCPUs. Since

SNORT is an evolving set of rules [11] this is an im-

portant feature of the SPP-NIDS platform. Every time

SNORT releases new rules, these can be immediately

accounted for in SPP-NIDS by just adding these new

rules to the MR2 data memory.

The picoCPU implements in hardware a two-nested

loop. The external loop is responsible for sampling one

by one the characters of a packet. The internal loop

compares each character against one of the bytes in

every rule assigned to this picoCPU. One of four pos-

sible situations may occur during the comparison of a

sampled character with a given byte of some rule:

1. no match, being the rule pointer at the start of the

rule;

2. match, without reaching the end of the rule, in

which case the rule pointer must be advanced;

3. no match, but the comparing rule must have its

pointer reset to its starting position ;

4. match, being the pointer at the last character of the

rule.

The standard situation is item one above, which is

executed in a single clock cycle. Situations 2 and 3 take

two clock cycles each. Situation 4 corresponds to rule

matching. The treatment of this situation depends on

the IDS controller CPU and on the cluster size. Since

detections are bufferized, there is little performance

penalty involved in case of attack detection, as already

discussed at the end of Section 4.1.

Equation 1 defines the picoCPU throughput, in

Mbps.

rt

p
np

f
T

*

8*
= (1)

where:

• f, the picoCPU frequency;

• 8, the picoCPU word size;

• pt, represents the average time to process each

character in a packet, in clock cycles;

• nr, the number of rules each picoCPU compares

against each character.

As a case study, considers f=200 MHz, pt=1.5,

nr=20. Data throughput (Tp) exceeds 53 Mbps. Assum-

ing the most stringent rule set treatment requirement

established in Section 4.1, 600 rules, a cluster with 30

picoCPUs operating in parallel is able to support the

same performance computed for a single picoCPU, i.e.,

53 Mbps.

4.4 Serial IP

The Serial IP Core is responsible to provide com-

munication between the user working in a host com-

puter and the intrusion detection system. This commu-

nication is performed by an RS-232 protocol standard

serial interface.

The host computer is used to send: (i) the software

to be used by the MR2 processor; (ii) the rules to the

picoCPUs; (iii) the network flow - characters to be

compared. The host computer receives from the system

the number of attacks and the number of rules generat-

ing them.

4.5 MR2 CPU

The SPP-NIDS IDS controller CPU is called MR2.

MR2 [12] is a 32-bit Harvard processor that partially

implements the MIPS 2000 instruction set architecture.

It is responsible for loading each picoCPU memory

with patterns, as well as for controlling and monitoring

GIOIA. It is also responsible for interacting with the

host processor, and with the external and internal net-

works.

5 System Prototyping

The target device is the Spartan3 XC3S200. The

SPP-NIDS system uses 62.58% of the available LUTs,

26.13% of the available flip-flops and 100% of the

available BRAMs. Table 2 presents the area results

after logic synthesis. The area of the three main macro

modules (MR2 processor, serial IP and GIOIA cluster)

is detailed. The Table also presents the area of each

picoCPU (3 in this implementation). Note that this

block is very small (150 LUTS, 102 flip-flops and 1

BRAM), enabling to implement large clusters, when

more BRAMs are available.

Table 2 - Leonardo area report.
 LUTS FFs BRAM

picoCPU 150 102 1

Main macro modules

MR2 processor 1169 274 9

Serial IP 323 243 0

GIOIA cluster 753 583 3

Other small blocks 158 39 0

TOTAL 2403 1139 12

Available in the device 3840 4359 12

Utilization 62.58% 26.13
%

100.00%

Figure 5 displays the SPP-NIDS floorplanning after

placement and routing. The placement of each macro

block was constrained using the floorplanning tool,

enabling to obtain an optimized routing.

Instruction

Memory

MR2 processor

Cluster

Serial IP

picoCPUs

memories

 Figure 5 - SPP-NIDS floorplanning after place-

ment and routing.

6 System Validation

To compile the SNORT rules the user employs the

RuleWizard tool (Figure 6), developed in the context

of this work. The tool compiles the ASCII description

of the SNORT rules, generating: (i) set of rules to be

stored in each picoCPU; (ii) random attack vectors.

Figure 6 - RuleWizard tool.

The application developed for the MR2 processor is

responsible to: (i) initialize the contents of the pi-

coCPUs memories; (ii) send data packets to the cluster;

(iii) monitor attacks. This application is merged to the

data obtained with the RuleWizard tool, resulting in the

MR2 objected code.

Before executing the system in the FPGA, it can be

simulated using the ModelSim tool. Figure 8 displays

how to identify the individual alerts for each picoCPU,

through signal match. Observe in Figure 8 that each

picoCPU detects four matches: rules {1,7,9,6} in pi-

coCPU1; rules {1,6,A,8} in picoCPU2; rules

{1,12,B,10} in picoCPU3.

In the upper part of the Figure 8 we can observe the

signal intreq/detected signaling an alert to the MR2

CPU. The signal intack releases the cluster control.

Note also the busy signal at each picoCPU. Each pi-

coCPU waits in average two clock cycles after a rule

matching.

The hardware validation starts by downloading the

SPP-NIDS bitstream into the prototyping board. A sec-

ond tool developed in the context of this work enables

the user to start the SPP-NIDS system and collect the

resulting attacks from the prototyping board. Figure 7

illustrates the trigged rules. Compare this result to the

waveforms of Figure 8, where each picoCPU has de-

tected four rules. The set of rules detect in simulation

are the same of the ones obtained in the hardware exe-

cution, showing the correct system operation.

Figure 7 - Triggered Rules.

Figure 8 - SPP-NIDS Functional validation.

Individual alerts

Interruption request

and acknowledge

p
ic

o
C

P
U

 1

p
ic

o
C

P
U

 2

p
ic

o
C

P
U

 3

7 Conclusions and Future Works

This work presented a proof-of-concept NIDS

based on the SNORT rules. This system, named SPP-

NIDS, combines flexibility and performance. Flexibil-

ity comes from the use of embedded memories to store

the rules, instead to hardwired comparators, as found in

the literature [4][5]. Performance comes from the spa-

tial parallelism of the picoCPUs. Using a two-million

gate FPGA it is possible to construct a cluster with 40

picoCPUs. Such cluster could easily work at 100

Mbps, verifying every packet in a 100 Mbps Ethernet

flow.

Future work in the SPP-NIDS includes: (i) connect

the alert interface to the CPU interrupt signal; (ii) con-

nect the packet interface to a realistic network inter-

face, e.g. Ethernet; (iii) migrate to a system with two

embedded CPUs, one for network input data prepara-

tion for the GIOIA cluster and the second one for intru-

sion detection treatment; (iv) work with an heterogene-

ous cluster, with specialized picoCPUs.

It is also possible to convert this proof-of-concept

prototype in a real product. For example, considers the

two PowerPC Virtex-II Pro XCVP30 device. A MAC

IP and one PPC can be used to obtain network input

data, execute the basic SNORT procedures, and send

the packets to the GIOIA cluster. The second PPC may

process the cluster alerts and send them, for example,

to a firewall.

8 References

[1] Allen, J.; et al. "State of the Practice of Intrusion Detec-

tion Technologies", 2000.

http://www.cert.org/archive/pdf/ 99tr028.pdf.

[2] SNORT. “About SNORT Homepage”. Available at

http://www.snort.org/ about_snort/, July, 2005.

[3] Beale, J.; et al. “Snort 2.0 Intrusion Detection”. Syn-

gress Publishing, Inc, Rockland, MA. 2003. 559 pages.

[4] Cho,Y.H.; et al. “Specialized Hardware for Deep Net-

work Packet Filtering”. In: FPL 2002.

[5] Sourdis,I.; Pnevmatikatos,D. “Fast, Large-Scale String

Match for 10Gbps FPGA-based Network Intrusion De-

tection System”. In: FPL 2003.

[6] Backer,Z; Prassana,V. “Automatic Synthesis of Efficient

Intrusion Detection Systems on FPGAs”. In: FPL 2004.

[7] Carver, D; et al. "Assisting Network Intrusion Detection

with Reconfigurable Hardware". In: FCCM02, 2002,

pp.111-120.

[8] Coit, C.; et al. "Towards Faster String Matching for

Intrusion Detection". In: DARPA Information Surviv-

ability Conference & Exposition II, 2001, pp.367-373.

[9] Attig,M.; et al. “Implementation Results of Bloom Fil-

ters for String Matching”. In: FCCM 2004.

[10] Xilinx, Inc. “Spartan-3 Starter Kit Board”. User Guide,

Mar., 2005.

[11] SNORT. “SNORT Rules Homepage”. Available at

http://www.snort.org/rules/, July, 2005.

[12] Calazans,N.; et al. “MR2 Multicycle Processor”. Nov,

2004. http://www.inf.pucrs.br/~calazans/undergrad/

orgcomp/arq_MR2.pdf.

