
Dispatch Sequences for Embedded Control Models ∗

Rajeev Alur and Arun Chandrashekharapuram
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104-6389, U.S.A.
{alur, arunc}@cis.upenn.edu

Abstract

We consider the problem of mapping a set of control
components to an executable implementation. The standard
approach to this problem involves mapping control blocks to
periodic tasks, and then generating a schedule. This sched-
ule is platform-dependent, and its execution requires real-
time operating system support. We propose an alternative
approach which involves generating a dispatch sequence of
control blocks in a platform-independent manner. Our solu-
tion relies on assigning relative complexity and relative im-
portance measures to control components, and is an adap-
tation of classical scheduling algorithms such as earliest-
deadline-first. We show the benefits of our approach using
simulation experiments on two case studies.

1. Introduction

Contemporary industrial control design already relies
heavily on tools such as Simulink for mathematical mod-
eling and simulation. Even though many such tools sup-
port implementation via automatic code generation from the
model, many issues relevant to correctness and optimality
of the implementation with respect to the timed semantics
of the model are not satisfactorily addressed, and the imple-
menation is tailored to a specific platform. Consequently,
analysis results established for the model are not meaning-
ful for the implementation and the code cannot be ported
across platforms posing challenges for system integration.
These challenges motivate our research.

In this paper, we focus on generating an executable im-
plementation from a set of control blocks B. A control
block computes outputs that influences other blocks or the
environment being controlled. The control model has a
well-defined timed semantics (either continuous or discrete)
that can be used for simulation and analysis. Typically, the

∗ This research was partially supported by the US National Science
Foundation under awards ITR/SY 0121431 and CCR-0410662.

implementation relies on the support offered by a real-time
operating system for scheduling periodic tasks. Each con-
trol block Bi is compiled into an executable code in a host
language such as C, and the control designer specifies a pe-
riod ρi for the corresponding task. To implement the result-
ing periodic tasks on a specific platform, one needs to de-
termine the worst-case-execution-time τi for each blockBi,
and check whether the task set is schedulable using standard
scheduling algorithms such as earliest-deadline-first (EDF)
or rate monotonic scheduling (c.f. [4, 17]).

While the real-time scheduling based implementation of-
fers a separation of concerns using the abstraction of real-
time tasks with periods and deadlines, it can hinder porta-
bility of control designs across platforms. As a concrete ex-
ample, consider vision-based navigation of an autonomous
robot trying to reach a target in a room full of obstacles.
One control block computes the estimates of the obstacles
while the other decides the trajectory based on the current
estimates. Mapping these blocks to two tasks with specific
periods introduces an abstraction that is not relevant to the
high-level model or its goals. There are no hard real-time
requirements in this application, and the performance can
be measured by the time taken by the robot to reach the tar-
get. If the WCET (worst-case execution time) analysis on
a particular processor reveals that the tasks are not schedu-
lable, then in fact, the periods should be increased. If the
analysis says that the tasks are schedulable, then it pro-
duces a schedule, which is a mapping from time slots to the
tasks. This schedule is platform-dependent as it depends on
the platform-specific WCET estimates. Moreover, execut-
ing the schedule requires real-time support from the operat-
ing system while the current trend in many application do-
mains such as robotics is to employ commonly available
computing platforms such as .NET [6]. Furthermore, since
the scheduler views the tasks as periodic, it may leave the
processor idle, thereby preventing improved performance.

In the proposed solution, our goal is to produce a dis-
patch sequence of blocks, rather than periodic tasks. The
dispatch sequence is simply a string of control blocks, and
is platform-independent. Unlike a schedule, a dispatch se-

quence has no notion of time slots or other real-time re-
quirements. Ideally, we would like the sequence to be such
that, on any given platform, it follows the reference trajec-
tory of the continuous time model as best as one can on that
platform. This goal is hard to quantify abstractly, and even
if one could find a concrete measure for specific applica-
tions (for instance, the total distance traveled in the above
robot example), we are not aware of any methods to gen-
erate sequences that optimize this measure in an efficient
way. In this paper, we formulate the sequence generation
problem, and propose a possible solution. We associate with
each control block Bi a measure τ r

i of relative complexity
and a measure ρr

i of relative importance. The τ r
i value is

supposed to capture the computation time of Bi relative to
the other blocks, and the ρr

i value is supposed to capture in a
relative manner, how updating the output of Bi impacts the
environment. We use the appropriately tightly scaled ver-
sions of ρr values as periods and of τ r values as WCET es-
timates to generate sequences of blocks using classical real-
time scheduling algorithms such as non-preemptive EDF
and EDF. Since EDF is preemptive and we want to gen-
erate an executable sequence of blocks, this step requires
model transformation via block-code-splitting. The output
of our strategy is a platform-independent and untimed se-
quence of blocks: executing this sequence does not require
preemption or any support from real-time scheduler, and its
ability to follow the reference trajectory on a particular plat-
form depends on the processing power of the platform.

The rest of the paper is organized as follows. Section 2
describes our model for control blocks along with a contin-
uous time and a discrete time semantics for the same. Sec-
tion 3 describes the classical real-time scheduling based ap-
proach by formalizing schedules, schedule semantics and
strategies for generating schedules using period and WCET
assignments. Section 4 defines the notion of a dispatch se-
quence, the associated semantics, and proposes strategies
for generating dispatch sequences inspired by scheduling
techniques, but using the notions of relative complexity and
relative importance. Section 5 describes simulation experi-
ments on two examples, one for robot navigation, and one
for controlling heaters across multiple rooms, demonstrat-
ing the benefits of the proposed approach. We conclude with
directions for future research in Section 6.

Related Work. Bridging the gap between high-level mod-
eling or programming abstractions, and implementation
platforms has been identified as a key challenge for embed-
ded software research by many researchers (c.f. [19, 18]).
Programming abstractions for embedded real-time con-
trollers include synchronous reactive programming (lan-
guages such as ESTEREL and LUSTRE [3, 10, 9]), and
the related Fixed Logical Execution Time (FLET) as-
sumption used in the Giotto project [12, 13]. While these
provide schedule-independent semantics, they do not ad-

dress the problem of mapping continuous time controllers
to an executable implementation. Recently, the prob-
lem of generating code from timed and hybrid automata
has been considered in [1, 14, 21], but in these pa-
pers the focus has been on choosing the sampling period
so as to avoid errors due to switching and communica-
tion. The work on mapping Simulink blocks to Lustre
focuses on signal dependencies [5]. Model-based devel-
opment of embedded systems is also promoted by other
projects with orthogonal concerns: Ptolemy supports inte-
gration of heterogeneous models of computation [7] and
GME supports integration of multiple views of the sys-
tem [16]. There is a rich literature on sampled control sys-
tems with a focus on understanding the gap between con-
tinuous and discrete controllers, determining the correct
sampling period, and compensating for the computation de-
lays in the design of control laws (c.f. [2]). In schedul-
ing literature, while many variations of the basic periodic
scheduling problem have been explored, the focus is on de-
termining a platform-dependent mapping from time slots to
tasks. The most relevant of these is control-aware schedul-
ing [20], where periods for tasks are determined by opti-
mizing a performance index.

2. Modeling Controllers

In this section, we describe the model of a real-time con-
trol system and the desired semantics for the model.

2.1. Model

Let X be a finite set of environment variables model-
ing the physical world to be controlled, and U be a finite set
of control variables to be computed by the control software.
Each variable has a type, which typically is IR, the set of re-
als. A state over a set of variables W is a mapping from W
to values. We use QW to denote the set of all states overW .
A control model is given by M = 〈MC ,ME〉, where MC

is the controller model and ME is the environment model.
The controller model MC consists of a finite set B of

control blocks, where each control block Bi ∈ B has the
following components:

• A set of input variables Yi ⊆ (X∪U), which the block
reads to do its computation.

• A set of output variables Ui ⊆ U , which the block
writes after its computation.

• A relation fi ⊆ QYi
× QUi

, defining the computation
of the block.

• A set of initial states Q0
i ⊆ QUi

for the output vari-
ables of the block.

The following properties must be satisfied by MC . Every
output variable must be computed by a unique block. That

is, [(∀i, j, i 6= j : Ui ∩ Uj = ∅) and (∪jUj = U)]. Fur-
ther, consider a directed graph BG whose nodes are con-
trol blocks and where there is an edge from Bi to Bj if Bj

reads an output variable computed byBi. ThenBG must be
acyclic.

The environment model ME is given by

• A relation gx ⊆ QX ×QU × IR for every environment
variable x ∈ X . This relation is used to define the rate
of change of x in terms of the current state.

• A set of initial states Q0 ⊆ QX for the environment
variables.

We have allowed our models to be nondeterministic, but
this choice is not central to this paper, and in many cases, the
computation of each control block Bi is defined by a func-
tion fi : QYi

→ QUi
, and the rate of change of an environ-

ment variable x is given by a function gx : QX ×QU → IR.

Robot Navigation Example. Consider a robot R which
can move on a 2-D plane (see Figure 1). Initially R is at
the (fixed) starting point S. Its goal is to reach a (fixed) tar-
get point T , without colliding with any of the stationary cir-
cular obstacle-disks O1, O2 and O3 on the plane. The robot
moves in the direction θ at a constant speed vR. It can esti-
mate the obstacles only approximately, and we assume that
the estimate is a circle whose center coincides with the cen-
ter of the obstacle (xc, yc) and whose radius r is always
larger than the actual radius r0. The estimation rule is given
by r = r0 + (

√

(xc − x)2 + (yc − y)2 − r0)
2/500 where

(x, y) is the current position of R. The estimate r is smaller
if R is closer to the obstacle. Based on the estimated radii
of the 3 obstacles from the current position, the robot com-
putes θ as follows : first, it checks if the direct path from
the current position (x, y) to the target T faces no obstruc-
tion — if so, it proceeds in that direction. If not, it computes
the slopes of the tangents from the current position to the es-
timated obstacle circles, and checks whether rays along the
tangents face any obstruction. Then, among the rays without
any obstruction, it chooses to go along that ray which makes
the least angle with the direct path. Figure 1 shows a snap-
shot of the robot position during its motion, along with the
estimated obstacle radii and the selected direction of mo-
tion.

Figure 1 also shows a block diagram of the model. The
environment variables are the coordinates of the robot po-
sition, (x, y). The initial values of (x, y) are the coordi-
nates of S. The differential equations governing the rates
of change of x and y are : ẋ = vR cos θ, ẏ = vR sin θ. The
control variables are e0, e1, e2, and θ, where ei is the es-
timate of the radius of obstacle Oi. There are four control
blocks B0, . . . , B3. The control block Bi, for 0 ≤ i ≤ 2,
is used to estimate radius of obstacle Oi. Its input variables
are x and y, and its output variable is ei. The control block
B3 is used to calculate θ. Its input variables are e0, e1, e2, x,

e

e

e

0

1

2

B

B

B

B

0

1

2

3

x

y

Controller

Environment

S

R

T

(x, y)

e

e

e

1

2

3

O

O

O
1

2

3
R

v

Figure 1. Robot navigation example

and y, and its output variable is θ. The initial values of ei

are the estimates from S, and that of θ is the angle com-
puted using the initial values of ei.

2.2. Semantics

Given a model M over variables X and U , a trajectory
for M is a function ψ : IR → QX∪U . A semantics for
a model M , denoted [[M]], is a set of trajectories for M .
Two semantics, continuous time and parameterized discrete
time, are described below.

2.2.1. Continuous Time Semantics. The continuous time
semantics for a modelM , denoted [[M]]C , evaluates all con-
trol variables at every point in the continuous time domain.
It consists of the trajectories ψ satisfying the following con-
straints : ∀t ∈ IR, t ≥ 0, ∀Bi ∈ B we have

ψ(0)(X) ∈ Q0

(ψ(t)(X), ψ(t)(U), ψ̇(t)(X)) ∈ gx
(1)

ψ(0)(Ui) ∈ Q0
i

(ψ(t)(Yi), ψ(t)(Ui)) ∈ fi

2.2.2. Parameterized Discrete Time Semantics. The pa-
rameterized discrete time semantics for a model M eval-
uates the control variables with a sampling period of ∆,
and a zero-order hold. So, all control outputs are piecewise-
constant, the pieces being of length ∆.

Let tk = k∆ for k ∈ IN. Given a ∆ > 0, the discrete
time semantics for M , denoted by [[M]]∆D , is a set of trajec-
tories ψ satisfying the following constraints, besides (1) :
∀Bi ∈ B and ∀k ∈ IN, we have

ψ(0)(Ui) ∈ Q0
i

(ψ(tk)(Yi), ψ(tk)(Ui)) ∈ fi

For tk−1 ≤ t < tk, t ∈ IR : ψ(t)(Ui) = ψ(tk−1)(Ui)

2.2.3. Error in Discrete Time Semantics. We note that
the continuous time semantics is the ideal semantics for any
given model. The discrete time semantics introduces an er-
ror into the model because of the zero-order hold for ∆ in-
tervals. We may want to define the error using some metric
over trajectories, but it is difficult to quantify the errors ab-
stractly. For specific applications, such as those evaluated
in this paper, we can find some concrete measures to quan-
tify the performance of a trajectory, and use them to com-
pare any two trajectories. In our robot navigation example,
total distance traveled from the start position to the target is
a reasonable measure of performance.

3. Schedule-based Implementation

In this section, we discuss some standard implemen-
tation strategies to generate real-time tasks from a given
model M = 〈MC ,ME〉. We first define the notion of a
schedule and then discuss the standard platform-dependent
ways of computing schedules.

We assume henceforth that the minimum time unit of ex-
ecution of a control task is 1. That is, the values of the con-
trol variables can be updated by any control function only in
intervals of one time unit. This simplifies the notation, oth-
erwise we would need definitions parameterized by ∆ as in
case of discrete-time semantics.

3.1. Schedule and Schedule Semantics

A schedule is a mapping from time slots to blocks, which
indicates the block that executes in each time slot. The
schedule semantics for a schedule is the set of trajectories
obtained by executing the blocks according to the schedule
: that is, an instantiation of a block executes only in the time
slots given by the schedule; its input values are read at the
beginning of the first time slot of its execution and the con-
trol outputs computed by the block are updated at the end
of the last slot of its execution. This can be implemented us-
ing the time-triggered architecture [17].

Formally, a schedule sch for M is a function sch : IN →
B ∪ B+ ∪ ⊥, where B+ = {B+

i | Bi ∈ B} is used to
denote the completion of the current instances of the cor-
responding tasks, and ⊥ denotes idle. The connotation of
a schedule is as follows : let slot k denote the time inter-
val [k − 1, k]. Then for k ≥ 1,

sch(k) =























Bi means Bi executes in slot k but fi is not
yet computed.

B+
i means Bi executes and finishes

computation of fi in slot k.
⊥ means the processor is idle in slot k.

Given a schedule sch, the semantics associated with the
model M , denoted by [[M]]sch , is a set of trajectories ob-
tained by executing the blocks according to sch. For ex-
ample, consider the schedule B0B1B1 B

+
0 B

+
1 Block

B0 starts executing at time t = 0 after reading its in-
puts and executes in time slot 1. It is then preempted at
time t = 1 when B1 starts executing. Block B0 again exe-
cutes in time slot 4, and finishes its execution in that time
slot. The values computed by B0 are updated at the end of
slot 4. We assume that reading and updating take zero com-
putation time. Therefore, ψ(t)(U0) = q0 for some q0 ∈ Q0

0

for 0 ≤ t < 4, and ψ(4)(U0) = f0(ψ(0)(Y0)).
Formally, [[M]]sch consists of the trajectories ψ satisfy-

ing the following constraints, besides (1): ∀k ∈ IN, Bi ∈ B,
ψ(0)(Ui) ∈ Q0

i

ψ(t)(Ui) = ψ(k − 1)(Ui) for (k − 1) < t < k
ψ(k)(Ui) ∈ fi(ψ(l)(Yi)) if sch(k) = B+

i , where l
is the smallest index l′ such that
sch(l’) = Bi and
∀j : l′ < j < k : sch(j) 6= B+

i ;
l = k if no such index l′ exists.

ψ(k)(Ui) = ψ(k − 1)(Ui) otherwise .

3.2. Standard Ways of Computing Schedules

Given a model M , the following steps are typically fol-
lowed :

1. We first generate one task Ti for each block Bi in the
model. The code executed by the task will be the func-
tion fi, and the values used as input for variables in
Yi will be the most recently computed values for those
variables.

2. We then assign a period ρ(Bi), where ρ : B → IN,
to each task Ti. The period ρ(Bi), also denoted by
ρi, is independent of the platform on which the tasks
are going to be executed. That is, as long as the task
set is schedulable, the periods remain the same. They
are usually assigned by control engineers (c.f. [2]) to
satisfy the performance requirements of the control
model such as stability, ability to track a given trajec-
tory, etc.. The relative deadline of Ti is equal to ρi.

3. Then, given an execution platform F , we compute
τ : B → IN, where τ(Bi), also denoted as τi, is the
Worst-Case-Execution-Time (WCET) ofBi on F . The
WCETs can be estimated using well-known WCET es-
timation methods (c.f. [11]).

4. Given ρ and τ , we can execute the tasks using a real-
time operating system (RTOS) that includes a real-time
scheduler for periodic tasks.

The RTOS typically uses well-known hard real-time
scheduling algorithms for executing the tasks. We use
two scheduling algorithms in this paper : the earliest-
deadline-first (EDF) algorithm and the non-preemptive
earliest-deadline-first (NPEDF) algorithm. The EDF (c.f.
[4]) algorithm is a preemptive algorithm. When a new
task is released or when the current task completes execu-
tion, it schedules the task with the earliest deadline among
all active tasks. The NPEDF algorithm (c.f. [15]), if the
processor is idle or the currently executing task has fin-
ished execution, schedules the task with the earliest dead-
line among all active tasks.

For a given ρ and τ , if the task set is schedulable by
EDF, it produces a periodic schedule sch, and the semantics
[[M]]EDF(ρ,τ) is defined to be [[M]]sch . If the task set is not
schedulable using EDF, then the semantics [[M]]EDF(ρ,τ) is
undefined. The semantics associated with the NPEDF algo-
rithm [[M]]NPEDF(ρ,τ) is defined in a similar way.

We call this approach platform dependent since the
schedule depends on the WCET estimates τ . Note that
the only feature of the platform relevant in our con-
text is its processing power, which is captured by the
WCET estimates τ .

Consider the robot navigation example again. For this
model, four tasks would be generated: Ti, 0 ≤ i ≤ 2,
for estimating the radii of the obstacles, and T3 for calcu-
lating θ based on the estimates. An assignment of periods
for the tasks, and WCET estimates on three different plat-
forms F1, F2 and F3 is given in Table 1. Platform F1 is the
fastest while F3 is the slowest. The tasks are schedulable
by NPEDF (a schedulability test for NPEDF can be found
in [15]) on F1 and F2 but not on F3. For t ∈ [1..120] (120
is the LCM of the periods of the tasks), the schedule pro-
duced by NPEDF on F1 and F2 is shown in table 2. The
schedule produced by EDF on F2 is also shown. The nota-
tion [i : t1 − t2] means that blockBi executes continuously
from time slot t1 to time slot t2 but without completing its
execution, and [i : t1 − t+2] means that Bi executes continu-
ously from time slot t1 to time slot t2 and completes its ex-
ecution at t2.

We first note here that the periods (and therefore dead-
lines) assigned to the tasks are artificial. For example, if a
task set is not schedulable, the control engineer might be
able to increase the periods without violating the perfor-
mance requirements of the control model. Here, we can in-

ρ τ
Task F1 F2 F3

T0 120 ms 12 ms 24 ms 28 ms
T1 120 ms 12 ms 24 ms 28 ms
T2 120 ms 12 ms 24 ms 28 ms
T3 24 ms 3 ms 6 ms 7 ms

Table 1. Period (ρ) and execution times (τ) on
different platforms for robot navigation.

Strategy, Schedule in [1..120]
Platform
NPEDF, [3 : 1 − 3+] [0 : 4 − 15+] [1 : 16 − 27+]
F1 [3 : 28 − 30+] [2 : 31 − 42+] [⊥ : 43− 48]

[3 : 49 − 51+] [⊥ : 52 − 72] [3 : 73− 75+]
[⊥ : 76 − 96] [3 : 97 − 99+]
[⊥ : 100− 120]

NPEDF, [3 : 1 − 6+] [0 : 7 − 30+] [3 : 31 − 36+]
F2 [1 : 37 − 60+] [3 : 61 − 66+] [2 : 67− 90+]

[3 : 90 − 96+] [3 : 97 − 102+]
[⊥ : 103− 120]

EDF, [3 : 1 − 6+] [0 : 7 − 24] [3 : 25− 30+]
F2 [0 : 31 − 36+] [1 : 37 − 48] [3 : 49 − 54+]

[1 : 55 − 66+] [2 : 67 − 72] [3 : 73 − 78+]
[2 : 79 − 96+] [3 : 97 − 102+]
[⊥ : 103− 120]

Table 2. Schedules by NPEDF and EDF.

crease the periods slightly to render the tasks schedulable
on F3. Further, we observe that there are a lot of idle times
on F1, whereas executing the control tasks without any idle
times (that is, executing the next block in sequence imme-
diately after a block finishes execution) can improve per-
formance. The goal in this case is to approximate the dis-
crete semantics [[M]]1D (and hence the continuous semantics
[[M]]C) as best as possible given the processing constraints.
Abstracting this goal to scheduling of the tasks with dead-
lines and periods loses too much information. The perfor-
mance measure in this case is the total distance traveled,
or equivalently, time to reach the target, and we would like
a systematic and computationally tractable approach which
will minimize this performance measure.

4. Dispatch Sequences

In this section, we discuss our method of implementing
controllers without real-time tasks. We introduce the notion
of a dispatch sequence (d-sequence for short) which is a

string of blocks indicating the order in which blocks are to
be executed. Then, after defining the semantics associated
with d-sequences, we describe strategies to generate them
using NPEDF and EDF.

4.1. Dispatch Sequence Semantics

A d-sequence σ ∈ B? is a string over B which indi-
cates the sequence in which the blocks should be executed
repeatedly. The whole block is to be executed without pre-
emption, and when it completes its execution, the succeed-
ing block can start executing immediately. Unlike a sched-
ule, there is no notion of time in a d-sequence. Hence, d-
sequences may look like cyclic executive schedules, but are
different.

Given a platform F , let γl, γu : B → IN be two func-
tions that specify lower and upper bounds respectively on
the execution time of Bi on F . That is τi, the execution
time of Bi on F , is such that γl(Bi) ≤ τi ≤ γu(Bi). Note
that different executions of the same block can take differ-
ent amounts of time, and nothing is said about the distribu-
tion of τi between the two limits.

Given a triple (σ, γl, γu), the d-sequence semantics as-
sociated with a model M , denoted by [[M]](σ,γl,γu), is the
set of trajectories obtained by executing the blocks accord-
ing to σ, where the execution times for the blocks are cho-
sen according to the bounds. Formally, it can be defined as
follows.

Let |σ| = k, and let σi denote the ith block in σ for
i ≥ 1. Define Sch(σ, γl, γu), to be the set of all sched-
ules sch: IN → B ∪ B+ such that ∃ i0=0 ≤ i1 ≤ i2 ≤ . . .
for which ∀j ≥ 1, let m = j mod k, then

γl(σm) ≤ (ij − ij−1) ≤ γu(σm) and

sch(n) =

{

σm for (ij−1 + 1) ≤ n < ij
σ+

m for n = ij

then [[M]](σ,γl,γu) =
⋃

sch∈Sch(σ,γl,γu)
[[M]]sch .

For example, consider the round-robin (RR) d-
sequence σRR = (B0B1B2B3)

∗ for the navigation exam-
ple. The blocks are to be executed repeatedly in the order
B0B1B2B3. Table 3 gives the γl and γu values for plat-
form F2. This means that Bi for i = 0, 1, 2 can execute for
anytime between 22 ms and 24 ms, and B3 for anytime be-
tween 4 ms and 6 ms. Here, estimation takes much longer
than computing the direction, and round-robin does not
seem to be a desirable choice.

Relative execution times and relative periods. Since we
do not want to commit to concrete deadlines and periods,
we introduce the notion of “relative” periods and “relative”
execution times. Let a controller model MC with n blocks
be given. For each block Bi, we assign a relative execu-
tion time τ r

i ∈ IN and a relative period ρr
i ∈ IN such that

Block γl γu

B0 22 ms 24 ms
B1 22 ms 24 ms
B2 22 ms 24 ms
B3 4 ms 6 ms

Table 3. γl and γu for the blocks in robot nav-
igation for platform F2.

Block τr
i ρr

i

B0 4 5
B1 4 5
B2 4 5
B3 1 1

Table 4. Relative execution times and relative
periods for blocks of robot navigation.

gcd(τr
1 , τ

r
2 , . . . , τ

r
n) = gcd(ρr

1, ρ
r
2, . . . , ρ

r
n) = 1. The rela-

tive execution time τ r
i is an estimate of the WCET of Bi

on any platform, relative to the times taken by other blocks
in the model. We can compute them by several approxi-
mate methods. One method is to scale the execution times
ofBi on several platforms by the speeds of those platforms,
and take the average of the scaled times as the estimate of
τr
i . The relative period ρr

i is an index of the importance as-
signed to the block, when compared to the importance of
other tasks. These are to be assigned by the control engi-
neer.

Table 4 shows a set of relative execution times and rela-
tive periods for the blocks of navigation example. Note that
the WCETs of the blocks on platform F2 as given in table
3 are roughly 6 times the relative execution times as given
by table 4. In general, γl(Bi) and γu(Bi) are expected to be
roughly k times τ r

i for some scaling factor k.

The d-sequence generation problem can be stated infor-
mally as follows. Given a model M and relative measures
τr and ρr, generate a string σ of blocks such that, on any
platform F where the lower and upper bounds γl and γu for
blocks are consistent with the ratios given by τ r, the trajec-
tories in [[M]](σ,γl,γu) are as close as possible to the trajec-
tories in [[M]]C . There does not seem to be a computation-
ally tractable way of formulating this as a mathematical op-
timization problem. Hence, we settle for heuristics inspired
by scheduling schemes.

4.2. Dispatch Sequence Generation using NPEDF

In this section, we explain our strategy to gener-
ate d-sequences using NPEDF algorithm from given
model MC and relative measures. The d-sequence, de-
noted by σNPEDF , is such that a block is always executed
in its entirety.

The main steps to generate σNPEDF are as follows :

1. Compute the utilization U r =
∑n

i=1
τr

i

ρr
i

of the blocks.
If Ur > 1, then scale the periods ρr

i by the smallest
integer p such that U r/p ≤ 1; otherwise, let p = 1.
Call these new periods, the scaled versions of ρr

i .

2. Compute l = lcm(p ρr
1, p ρ

r
2, . . . , p ρ

r
n). This is the lcm

of the scaled periods.

3. Run the NPEDF algorithm from time t = 0 to time
t = l with τ r

i as the execution time, and p. ρr
i as the pe-

riod of taskBi to get a schedule sch(NPEDF) of length
l. SinceU r ≤ 1, all the instances of the blocks released
before t = l are executed before t = l.

4. In sch(NPEDF), there may be some idle times. Col-
lapse the schedule by disregarding the idle times to
obtain a d-sequence σ′ from sch(NPEDF). That is, if
there is any idle time between two successive blocks
Bi and Bj in sch(NPEDF) then Bj follows immedi-
ately after Bi in σ′, and the idle time after the execu-
tion of the last block in sch(NPEDF) is discarded. The
desired d-sequence σNPEDF is σ′. It is easy to see that
σNPEDF as obtained above is indeed a string over B.

For example, consider the relative execution times and
periods for the robot example given in table 4. The uti-
lization U r is 17

5 . We scale this by p = 4. We then ob-
tain l = lcm(4, 20, 20, 20) = 20. We then simulate it using
NPEDF algorithm from t = 0 to t = 20 to get the sched-
ule [3 : 1−1+][0 : 2−5+][3 : 6−6+][1 : 7−10+][3 : 11−
11+][2 : 12−15+][3 : 16−16+][3 : 17−17+][⊥ : 18−20].
We then get σ′ from the above schedule by removing idle
times : there are three slots of idle time at the end for this
schedule, and so σNPEDF is (B3B0B3B1B3B2B3B3).

A property of σNPEDF is that if the algorithm above
used α τ r

i for some α ∈ IN as the execution times instead
of τr

i , then the d-sequence produced is the same irrespec-
tive of α. In other words, if the execution times are scaled
by α and the periods by p. α, where p is as in the above al-
gorithm, and the tasks are scheduled using NPEDF, then
the schedules obtained are the same as the schedules corre-
sponding to the d-sequence σNPEDF . This means that the
d-sequence generation algorithm needs to be run only once,
regardless of the platform on which the d-sequence is go-
ing to execute.

Scaling Theorem : Let M be a given model with a rela-
tive execution time τ r

i and relative period ρr
i for each block

Bi. Let p ∈ IN be the least integer such that
∑

i(
τr

i

p. ρr
i

) ≤ 1.

Given any α ∈ IN, let ∀i : (τi, ρi) = (α. τr
i , α. p. τ

r
i).

Let τ, ρ : B → IN such that τ(Bi) = τi and
ρ(Bi) = ρi. Then, for any schedule sch , sch ∈
Sch(σNPEDF ,τ,τ) iff sch is generated by NPEDF(τ, ρ).
Proof : Omitted due to space constraints.

4.3. Dispatch Sequence Generation using EDF

The d-sequence generation algorithm using EDF is sim-
ilar to that using NPEDF, except that we use EDF to ob-
tain σ′. However, σ′ will no longer be a d-sequence over B
since some blocks might be preempted. In other words, the
block-code of Bi (that is, the code implementing fi) may
need to be split. We first discuss how to handle splitting of
block-code before proceeding to d-sequence generation.

Splitting of block-code. Given a blockBi, we assume that
we can split the block-code of Bi into τr

i contiguous por-
tions such that the relative execution time of each contigu-
ous portion is 1. We can then create τ r

i blocksBi1, . . . , Biτr
i

such that Bil executes the lth contiguous portion, and τ r
il =

1 for all l. The inputs ofBi1 are the inputs ofBi, and the in-
puts of Bil for l > 1 are the outputs of Bi(l−1); the out-
puts of Bi are the outputs of Biτr

i
. Call Bij the split-block

of Bi and the new model M ′ with B′ = {Bij} as the set
of blocks as the split-model ofM . Note that M ′ is a seman-
tics preserving transformation of M .

D-sequence generation. The main steps to generate σEDF

are as follows :

1. Compute the utilization U r =
∑n

i=1
τr

i

ρr
i

of the blocks.
If Ur > 1, then scale the periods ρr

i by the smallest
integer p such that U r/p ≤ 1; otherwise, let p = 1.
Call these new periods, the scaled versions of ρr

i .

2. Compute l = lcm(p ρr
1, p ρ

r
2, . . . , p ρ

r
n). This is the lcm

of the scaled periods.

3. Produce the split-model M ′ of M .

4. Run the EDF algorithm from time t = 0 to time t = l
with τr

i as the execution time, and p. ρr
i as the period of

task Bi to get a schedule sch(EDF) of length l. Since
Ur ≤ 1, all the instances of the blocks released be-
fore t = l are executed before t = l. Now, the EDF al-
gorithm can split the block Bi by preempting it. Thus,
sch(EDF) is a mapping from IN toB∪B+∪⊥, and it
can be viewed as a mapping from IN to B′ ∪ ⊥, by re-
placing τ r

i time slots allocated to an instance of Bi by
the τr

i split blocks Bij .

5. In sch(EDF), there may be some idle times. Collapse
the schedule by disregarding the idle times to obtain
a d-sequence σ′ ∈ (B′)? from sch(EDF). That is, if
there is any idle time between two successive blocks

Bil and Bjk in sch(EDF) then Bjk follows immedi-
ately after Bil in σ′; further, the idle time after the ex-
ecution of the last block in sch(EDF) is discarded.

6. Now, note that a blockBi need not be split by the EDF
algorithm into τ r

i split-blocks. In other words, Bi(l+1)

may always follow Bil in σ′. Therefore, we can op-
timize splitting of M by finding maximal sequences
BilBi(l+1) . . . Bi(l+j) of split-blocks of Bi which al-
ways execute contiguously in σ′, and combine all the
blocks in a sequence into a single block. Let B ′′ be
the new set of blocks obtained after performing this
optimization step, and the final schedule σEDF is in
(B′′)?.

Note that all the steps above can be automated. As an il-
lustration, consider again the navigation model, whose rel-
ative execution times and periods are given in Table 4. The
utilization U r is 17

5 . We scale this by p = 4. We then ob-
tain l = lcm(4, 20, 20, 20) = 20. We then simulate it us-
ing EDF algorithm from t = 0 to t = 20 to get the schedule
[3 : 1− 1+][0 : 2− 4][3 : 5− 5+][0 : 6− 6+][1 : 7− 8][3 :
9 − 9+][1 : 10 − 11+][2 : 12 − 12][3 : 13 − 13+][2 :
14 − 16+][3 : 17 − 17+][⊥ : 18 − 20]. We then get
σ′ ∈ B′ from the above schedule by removing the three
idle slots from the end of the schedule. We then obtain B ′′

from B′ as follows : B3 ∈ B′′ since τr
1 = 1. Since B0

is split into two parts whose relative execution times are
3 and 1 respectively, the first three split-blocks of B0 can
be combined into a single block B′

01. Similarly, B11 and
B12 can be combined into a single block B′

11, and B13 and
B14 can be combined into B′

12. Again, last three blocks of
B2 can be combined into a single block B′

22. Thus, B′′ =
{B′

01, B03, B
′
11, B

′
12, B21, B

′
22, B3}. Therefore, σ′ can be

written as (B3B
′
01B3B03B

′
11 B3B

′
12B21B3B

′
22B3) to

give the final d-sequence σEDF .
We note here that the exact splitting of block-codes to

get B′′ is non-trivial. However, since there are no hard real-
time requirements, and the purpose of the intended strategy
is to improve performance, there is no need for exact split-
ting.

5. Evaluation and Experimental Results

In this section, we evaluate the performance of d-
sequences generated using NPEDF and EDF, against
those of round-robin d-sequences and the schedule-based
platform-dependent implementation strategies. We first de-
scribe the simulator used to perform our experiments. We
then examine the results in the case of two case stud-
ies : the first being the robot navigation example used in
the previous sections, and the second, a house-heater sys-
tem.

Simulator. The inputs to the simulator are the following :

• Model M = 〈MC ,ME〉: An input file provides infor-
mation about the structure of the model. It lists the en-
vironment variables, the control blocks Bi ∈ B in the
order given by topological sort of BG and Ui, Yi, τr

i ,
ρr

i , γl(Bi), and γu(Bi) for every Bi. The file also in-
dicates the function to be used. Finally, the simulator
needs initial values of all the variables.

• Simulation step δ : To approximate the continuous se-
mantics, the simulator needs an integration step δ, such
that 0 ≤ δ < 1.

• Simulation time N : It simulates from t = 0 to t = N .

The simulator simulates M as per the continu-
ous time and parameterized discrete time semantics, as
per the platform-dependent NPEDF and EDF strate-
gies as described in section 3, and by using the d-sequences
generated by the round-robin, NPEDF, and EDF platform-
independent strategies as described in section 4. Each of
these cases is briefly discussed below :

Continuous-time semantics (cont) : The simula-
tion is carried out in steps of δ. At the end of each δ-interval,
all the environment variables are evaluated in parallel, and
then the control outputs serially as per the topological sort
of the blocks. The Euler method of integration is used for
updating the environment variables in steps of an integra-
tion step δ. In all the other cases below, the environment
variables are evaluated in the same way.

Discrete-time semantics (disc) : This is same as
the cont case except that the control variables are updated
only in intervals of the parameter ∆. The simulator uses
∆ = 1.

Round-robin d-sequence (rr) : The blocks are ex-
ecuted as per the d-sequence σRR. The order of blocks in
σRR is given by the topological sort of BG. The execu-
tion time of Bi, τi, is chosen uniformly at random between
γl(Bi) and γu(Bi) for each execution of Bi. The block Bi

samples the values of Yi when it starts execution, and the
variables in Ui are updated at the end of the execution.

NPEDF d-sequence(npedf pi) : The execution of
this is the same as that of rr except that the d-sequence used
is σNPEDF .

EDF d-sequence (edf pi) : This case is interest-
ing because of the need to simulate splitting of block-codes.
Let the split-blocks produced forBi be Bij (after optimiza-
tion). Let the relative execution time of Bij be τr

ij . Assum-
ing that the relative execution time τ r

i corresponds to an ac-
tual execution time of γu(Bi), the execution time of Bij is
(τr

ij ×γu(Bi))/τ
r
i . Now, for any particular execution ofBi,

the execution time τi may be less than γu(Bi). In such a
case, we execute the blocks in the order Bi1, Bi2, . . . un-
til an execution time of τi is consumed, and the remaining
blocks are not executed.

NPEDF schedule (npedf pd) and EDF sched-
ule (edf pd) : These are simulated using the NPEDF
and EDF periodic algorithms. A min-priority queue is used
to extract the block with the earliest deadline.

The outputs of the simulator are the following :

• For each variable v, the value of v after each δ-interval
from time t = 0 to time t = N .

• The value of a measure opt for each strategy. This mea-
sure is used for assessing the performance of the strate-
gies. It is application specific, and is calculated a func-
tion of control outputs during the course of simulation.

5.1. Robot Navigation Example

The performance measure opt in this case is the total dis-
tance D traveled traveled by the robot from the source S
to the target T . The simulation parameters are N = 500,
∆ = 0.1, S = (0, 0), T = (200, 200), ROBOT SPEED =
2.0, MINRAD = 10.0, O0 = (90, 110), O1 = (260, 50),
and O2 = (50, 260). The relative execution times and rela-
tive periods are those in table 4. The actual periods used are
those in table 1.

Experimental results. The simulation results for three sets
of simulations using the above parameters for different γl

and γu are shown in table 5 for all 7 strategies. The no-
tation used is γ(Bi) = [γl(Bi), γu(Bi)]. The execution
times for I and II are taken from table 1 and in both cases,
γl(Bi) = γu(Bi). The τ r

i ’s are scaled by 3 for I, and by
6 for II. For III, the τ r

i ’s are scaled roughly by 6 so that
γl(Bi) < γu(Bi).

The lower the value of D, the better the strategy is.
It can be seen, as expected, that cont and disc al-
ways perform much better than the other strategies. In
all cases (except that of edf pi of I), round-robin per-
forms worse than the platform-independent strategies.
The platform-independent strategies introduce computa-
tion of θ in between the estimation of obstacle radii, and
this helps the robot to take advantage of recently com-
puted obstacle radii to change its course. This also demon-
strates that taking into account the relative periods of
the tasks can improve control performance. Next, ob-
serve that in I, the platform-independent NPEDF strategy
performs better than the platform-dependent NPEDF strat-
egy because the latter has a lot of idle times, while the
former has none. In III, the platform-independent strate-
gies perform better than the platform-dependent ones.
This is because while the platform-independent strate-
gies schedule the next block immediately after the cur-
rent block finishes execution, platform-dependent strategies
have to wait for the task to be released at the begin-
ning of its period. Thus, the former can take advantage

of tasks finishing earlier than their worst possible execu-
tion times.

5.2. Heater Example

Ivancic and Fehnker [8] discuss benchmarks for verifi-
cation of hybrid systems, and this example is adapted from
one of their benchmarks.

Description of the example. The benchmark deals with a
set of rooms in a house being heated by a limited number of
heaters and sharing the heaters so as to maintain some min-
imum temperature in all the rooms. The number of heaters
is strictly less than the number of rooms. The temperature
xi of a room Ri depends linearly on the temperatures of
the adjacent rooms, on the outside environment tempera-
ture u, and on hi, which is 1 if a heater is present in the
room and switched on, and 0 otherwise. The equation gov-
erning the rate of change of xi is

ẋi = cihi + bi(u− xi) +
∑

i6=j

ai,j(xj − xi)

where ai,j , bi, ci are constants. Each room Ri has two
thresholds on i and off i such that the heater, if present in the
room, is switched on if xi is below oni and switched off if
xi exceeds off i. Each room may have at most one heater. If
Ri does not have one, a heater can be fetched from an adja-
cent roomRj providedRj has a heater, xi is below a certain
threshold geti and xj − xi ≥ diff i. If there are more than
one such roomsRj , Ri can choose non-deterministically to
fetch from any of those rooms.

Our example has 3 rooms, R0, R1 and R2, where R1 is
adjacent to R0 and R2, and R0 and R2 are not adjacent.
There are two heaters, initially switched on and in R0 and
R1. The outside temperature is constant at u = 4, and xi =
20 initially for all i. The thresholds are the same for all the
rooms and are off = 21, on = 20, get = 18, and diff = 1.

The environment variables are xi and the differential
equations governing behavior of xi are given by

ẋ1 = −0.9x1 + 0.5x2 + 0.4u+ 6h1

ẋ2 = 0.5x1 − 1.3x2 + 0.5x3 + 0.3u+ 7h2

ẋ3 = 0.5x2 − 0.9x3 + 0.4u+ 8h3

The controller has two blocks, B0 for shifting heaters
from one room to another if necessary and B1 for switch-
ing on or switching off all the heaters. There are six boolean
control variables : hp0, hp1 and hp2 indicating the presence
of heaters in the rooms, and hs0, hs1 and hs2 which are 1 iff
there is a heater in the room and is switched on. The block
diagram of the model is shown in Figure 2.

Experimental results. We measured the minimum temper-
ature η reached in any of the rooms during the simula-
tion, and the total duration ξ for which the the tempera-

I II III
γ(B{0,1,2}) = [12, 12]
γ(B3) = [3, 3]

γ(B{0,1,2}) = [24, 24]
γ(B3) = [6, 6]

γ(B{0,1,2}) = [21, 24]
γ(B3) = [4, 6]

D D D
cont 346.52 346.52 346.52
disc 348.42 348.42 348.42
rr 599.08 967.34 914.78

npedf pi 499.10 428.88 419.46
npedf pd 575.44 428.90 518.54
edf pi 605.80 518.72 512.06
edf pd 579.38 649.50 560.86

Table 5. Simulation results for robot example.

x
x
x

0
1

2

Controller

Environment

hp
hp

hp

0

1

2

hs

hs

hs

0
1

2
B

0
B

1

Figure 2. Block diagram of heater model.

ture in one of the rooms was below a certain threshold tem-
perature xmin . The simulation parameters are N = 100,
∆ = 0.01, xmin = 13, (τ r

0 , τ
r
1) = (4, 1), (ρr

0, ρ
r
1) = (4, 1),

and (ρ0, ρ1) = (24, 6). The value of xmin was chosen to be
13, slightly below the min temperature attained by disc.
The relative period ofB0 is much higher than that ofB1 be-
cause we expect update of heater state in a room to be more
important than shifting of heaters. However, the actual re-
sults vary a lot depending on the choice of these simulation
parameters.

The simulation results for four sets of simulations using
the above parameters for different γl and γu are shown in
table 6 for all 7 strategies. The τ r

i ’s are scaled by 1 in I, and
by 2 in II and for both I and II, γl(Bi) = γu(Bi). In III, τ r

i ’s
are scaled roughly by 2 so that γl(Bi) < γu(Bi). In IV, the
values are chosen such that the task set was not schedulable
using the platform-dependent NPEDF strategy.

Now, the higher the η value, and the lower the ξ value,
the better the strategy is. It can be seen that the perfor-
mance of rr is worse than that of npedf pi and edf pi
as in the navigation example. Next, observe that if γl(Bi) <
γu(Bi), we expect the platform-dependent strategy to per-
form worse than that of independent strategies because the
former always assumes that Bi takes γu(Bi) time. This can

be seen from the results in III. Next, in IV, while the tasks
are not schedulable using NPEDF-dependent strategy, the
platform-independent NPEDF strategy performs quite well,
that is, much better than round-robin.

6. Discussion and Conclusions

We have proposed an approach to generate a dispatch
sequence, instead of a schedule based on real-time tasks
with deadlines and periods, from a set of interacting con-
trol blocks. This proposal is relevant when there are no hard
real-time deadlines, or when the implementation platform
does not offer support for real-time tasks. The generation
strategy itself uses relative measures inspired by scheduling
literature, and our preliminary simulation experiments sug-
gest that it outperforms naive methods such as round-robin
in optimizing application-level performance metrics.

There are many directions for future work. Extensive ex-
perimental validation and fine tuning of the proposed ap-
proach will be necessary. In particular, we are integrating
the d-sequence generation strategy in the system ROCI de-
veloped for robotics applications [6]. In our examples, the
d-sequence is supposed to imitate the timed model as best as
one can, and there are no hard real-time requirements. How-
ever, a more general framework would integrate d-sequence
generation with application-level real-time constraints. The
current generation strategy does not take into account the in-
terdependence among control blocks due to their inputs and
outputs. Also, we have assumed that there is a single proces-
sor dedicated to the controller, and this can be relaxed. Fi-
nally, it is worth exploring if control design and d-sequence
generation can be integrated so that some optimality guar-
antees of performance of the generated d-sequence can be
obtained.

I II III IV
γ(B0) = [4, 4]
γ(B1) = [1, 1]

γ(B0) = [8, 8]
γ(B1) = [2, 2]

γ(B0) = [6, 8]
γ(B1) = [1, 2]

γ(B0) = [9, 9]
γ(B1) = [3, 3]

η ξ η ξ η ξ η ξ
cont 15.74 0 15.74 0 15.74 0 15.74 0
disc 13.31 0 13.31 0 13.31 0 13.31 0
rr 7.79 61.01 6.88 67.78 6.91 58.71 6.58 76.24

npedf pi 11.20 51.59 9.64 48.7 10.88 41.72 7.14 59.44
npedf pd 9.90 50.01 9.64 50.67 9.69 49.08 - -
edf pi 10.99 48.31 9.61 40.71 10.43 43.94 8.66 44.04
edf pd 9.90 50.01 7.35 59.99 8.68 57.31 8.66 52.36

Table 6. Simulation results for heater example.

References

[1] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Generat-
ing embedded software from hierarchical hybrid models. In
Proceedings of the ACM Conference on Languages, Compil-
ers, and Tools for Embedded Systems, pages 171–182, 2003.

[2] K. Aström and B. Wittenmark. Computer-controlled sys-
tems: Theory and Design. Prentice Hall, 1997.

[3] G. Berry and G. Gonthier. The synchronous program-
ming language ESTEREL: design, semantics, implementa-
tion. Technical Report 842, INRIA, 1988.

[4] G. Buttazo. Hard real-time computing systems: Predictable
scheduling algorithms and applications. Kluwer Academic
Publishers, 1997.

[5] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis.
Translating discrete-time Simulink to Lustre. In Proceed-
ings of Third International Conference on Embedded Soft-
ware, LNCS 2855, pages 84–99, 2003.

[6] L. Chaimowicz, A. Cowley, V. Sabella, and C. Taylor. ROCI:
A distributed framework for multi-robot perception and con-
trol. In Proc. IEEE Intl. Conf. on Intelligent Robots and Sys-
tems, pages 266–271, 2003.

[7] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Luvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity–the
Ptolemy approach. Proceedings of the IEEE, 91(1):127–144,
2003.

[8] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems
verification. In Hybrid Systems: Computation and Control,
Proceedings of the 7th International Workshop, LNCS 2993,
pages 326–341. Springer, 2004.

[9] N. Halbwachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers, 1993.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre. Pro-
ceedings of the IEEE, 79:1305–1320, 1991.

[11] R. Heckmann, M. Langenbach, S. Thesing, and R. Wil-
helm. The influence of processor architecture on the design
and the results of WCET tools. Proceedings of the IEEE,
91(7):1038–1054, 2003.

[12] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceed-
ings of the IEEE, 91(1):84–99, 2003.

[13] T. Henzinger and C. Kirsch. The embedded machine: Pre-
dictable, portable, real-time code. In Proceedings of the ACM
Conference on Programming Language Design and Imple-
mentation, pages 315–326, 2002.

[14] Y. Hur, J. Kim, I. Lee, and J. Choi. Sound code genera-
tion from communicating hybrid models. In Hybrid Systems:
Computation and Control, Proceedings of the 7th Interna-
tional Workshop, LNCS 2993, pages 432–447, 2004.

[15] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In Proceedings
of the IEEE Real-Time Systems Symposium, pages 129–139,
1991.

[16] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings
of the IEEE, 91(1):145–164, 2003.

[17] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, 2000.

[18] E. Lee. What’s ahead for embedded software. IEEE Com-
puter, pages 18–26, September 2000.

[19] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill. Modeling
and design of embedded software. Proceedings of the IEEE,
91(1), 2003.

[20] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedu-
lability in real-time control systems. In Procedings of the
IEEE Real-Time Systems Symposium, 1996.

[21] M. D. Wulf, L. Doyen, and J. Raskin. Almost ASAP seman-
tics: From timed models to timed implementations. In Hy-
brid Systems: Computation and Control, Proceedings of the
7th International Workshop, LNCS 2993, pages 296–310,
2004.

