
Hybrid Supervisory Utilization Control of Real-Time Systems

 X. Koutsoukos R. Tekumalla B. Natarajan C. Lu
 Institute for Software Integrated Systems Department of Computer Science
Department of Electrical Engineering and Computer Science and Engineering
 Vanderbilt University Washington University in St. Louis
 Nashville, TN 37235 St. Louis, MO 63130
{Xenofon.Koutsoukos,Radhika.r.tekumalla}@vanderbilt.edu, lu@cse.wustl.edu
 bala@isis.vanderbilt.edu

Abstract

Feedback control real-time scheduling (FCS) aims
at satisfying performance specifications of real-time
systems based on adaptive resource management.
Existing FCS algorithms often rely on the existence of
continuous control variables in real-time systems. A
number of real-time systems, however, support only a
finite set of discrete configurations that limit the
adaptation mechanisms. This paper presents Hybrid
Supervisory Utilization CONtrol (HySUCON) for
scheduling such real-time systems. HySUCON
enforces processor utilization bounds by managing the
switchings between the discrete configurations. Our
approach is based on a best-first-search algorithm that
is invoked only if reconfiguration is necessary.
Theoretical analysis and simulations demonstrate that
the approach leads to robust utilization bounds for
varying execution times. Experimental results
demonstrate the algorithm performance for a
representative application scenario.

1. Introduction

Traditional real-time scheduling theories [7][16]
depend on accurate a priori knowledge of the system
workload to provide real-time performance guarantees.
Despite their success, they cannot easily be applied to
many real-world systems since precise a priori
knowledge of application behavior is not often
available. For example, in large scale distributed real-
time and embedded (DRE) systems, dynamic operating
conditions due to partial failures and changes in
configurations due to mode transitions can cause
unexpected and acute changes to resource usage
patterns. In many cases, if variations are undetected

and unmanaged they can induce drastic changes in
system performance [12].

Adaptive solutions to accommodate unexpected
changes in the operating environment are usually
based on hand-tuned and heuristic strategies which
could induce instability. Such solutions tend to be
stove-piped, requiring rework when ported to a new
operating condition or platform. Further, sequences of
such environmental changes over time can lead to
chronic loss of confidence in system reliability and
utility. Addressing these concerns requires new
adaptive techniques to be developed on solid
theoretical foundations that can provide analytic
guarantees on system performance.

To overcome limitations of traditional scheduling
theories and heuristic-based adaptive solutions, a
number of feedback control real-time scheduling
(FCS) algorithms (e.g., [1][4][5][12][17]) have been
developed recently. While traditional approaches
usually adopt open-loop scheduling schemes, FCS
algorithms employ software feedback control loops
that dynamically adjust resource allocation in response
to workload changes. Furthermore, FCS algorithms
are modeled and designed using rigorous control-
theoretic methodologies. As a result, these algorithms
can provide robust and analytical performance
guarantees despite uncertainties.

Although existing FCS algorithms have shown
promise, several important practical issues have not
been addressed. In particular, existing algorithms often
assume that the system has continuous control
variable(s) that can continuously be adjusted. While
this assumption holds for certain classes of systems,
there are many classes of real-time systems, such as
avionics and total-ship computing environments that
only support a finite a priori set of discrete
configurations. The control variables in such systems

are therefore intrinsically discrete. For instance, rate
adaptation is a commonly used mechanism for
controlling the CPU utilization and deadline miss ratio
of a system [5][13][17]. While existing algorithms
generally assume task rates can be set to any value
within a range, the possible task rates in some
applications may be discrete due to practical
constraints. For instance in a sensor-to-weapon
shooter system, changing the task rates imply changing
the rate at which sensed imagery data are published.
Setting the task rates to any value within a range is not
practical since the hardware that senses the data may
not have a high-resolution timer needed to precisely
program the tasks. Some multimedia applications (e.g.,
Multi Bit Rate video) also only support a few
predefined rates. Several other adaptation strategies
may also provide only discrete control variables.
Examples include task admission control, switching
communication protocols, algorithms, or different
levels of replication.

Traditional control theories such as linear control
cannot effectively handle discrete control variables,
especially when the number of possible values is small.
To support adaptation strategies with discrete
variables, hybrid (continuous/discrete) control
algorithms must be used. This paper presents Hybrid
Supervisory Utilization CONtrol (HySUCON) for
enforcing utilization bounds in real-time systems by
adaptively selecting the task rates from a finite discrete
set. Although rate adaptation is used as a concrete
example, our methodology is generally applicable to
systems operating in a finite set of real-time and
performance configurations.

The primary contributions of the paper are:
1. Design of a HySUCON, a hybrid supervisory

control scheduling algorithm based on utilization
control.

2. Theoretical analysis of HySUCON for providing
theoretical performance guarantees.

3. Simulation results that demonstrate robust
utilization performance for varying execution
times.

4. Evaluation of the approach using experimental
results for a representative application scenario.
The rest of the paper is organized as follows.

Section 2 reviews related work. The problem is
formulated in Section 3. Section 4 presents the
development and analysis of HySUCON. Section 5
presents the simulations results and Section 6 the
experimental results. Conclusions are discussed in
Section 7.

2. Related Work

A survey of feedback performance control in
computing systems is presented in [3]. Recent research
on applications of control theory to real-time
scheduling and utilization control is directly related to
this paper. Steere et al., developed a feedback
scheduler [17] that coordinated the share of CPU
cycles allocated to threads. Abeni et al., presented
control analysis of a reservation-based feedback
scheduler [4]. Cervin et al. presented a feedback
scheduler that adapts task rates for digital control
systems [5]. The FCS/nORB system [13] provides a
middleware service that dynamically controls CPU
utilization by adjusting the invocation rates of remote
operation invocations on a real-time Object Request
Broker. All the above solutions continuously adjust
control variables (e.g., CPU shares or task rates).

Abdelwahed et al. introduced a general hybrid
control approach for managing computing systems
based on a finite set of control inputs [1]. This
approach employs an exhaustive search algorithm to
evaluate a performance measure for all possible
operating states during a prediction horizon in order to
select the best control input. While the framework can
be applied for rate adaptation, the exhaustive search
introduces significant overhead and is not suitable for
real-time systems.

Several other FCS algorithms [2][12] used
admission control and service level adjustment as
adaptation mechanism for controlling the CPU
utilization. Although both mechanisms are discrete in
nature, the control algorithms were designed based on
approximate fluid models with continuous variables.
While such approximations may be adequate for
systems with a large number of tasks, they can become
inadequate for systems with a small number of tasks
and service levels.

3. Problem Formulation

This paper considers a real-time system comprised
of tasks }1|{ niTi ≤≤ executing on a single
processor P . Each task is invoked periodically at a
rate at sampling instant . The rate is
assumed to take values in a finite set of discrete rates,

 where) is the j

iT
)(kRi k)(kRi

},...,,{)()()2()1(im
iiii RRRkR ∈ (j

iR th
possible rate of task . The sampling period of the
controller, denoted by , is selected to be larger than
the maximum task period.

iT

sT

Each task is characterized by the following
attributes:

iT

• : Estimated execution time of iC iT
• : Best case execution time of task

iBCC iT

• : Worst case execution time of task
iWCC iT

• Current rate of task :)(kRi iT
• : Actual execution time of task at)(kAEi iT k
The deadline for each task is assumed to be equal to its
period. The actual execution times are bounded
but not known a priori. It is assumed that

.

)(kAEi

ii wciBC CkAEC ≤≤)(
The processor P is characterized by the following

attributes:
• : Estimated CPU utilization at k ∑=

i
ii kRCkB)()(

• : CPU utilization during sampling period k)(kU
• : Desired utilization set-point sU
• : Ratio of actual change in utilization to

estimated change in utilization.
aG

This paper presents a supervisory control algorithm
that dynamically assigns the rates nikRi K,1),(= in
order to ensure that the processor utilization

stays in a predetermined region)(kU ε≤− |)(| sUkU
since for varying execution times and discrete task
rates it is not be feasible to drive the utilization exactly
to the set-point.

The algorithm employs a feedback control loop (see
Section VI for more details) that dynamically adjusts
task rates to enforce the control objective. The
controller is located on a separate processor or shares a
processor with some applications and must be
scheduled as the highest-priority task in order to
effectively control utilization under overload
conditions. The processor has a utilization monitor and
a rate modulator. A separate TCP connection connects
the controller with the pair of utilization monitor and
rate modulator on the processor. The user inputs to the
controller include the utilization set-point , the
parameter ε, and the finite sets of rates for each task.
The control variable is the processor utilization U(k).
The control inputs from the controller are the changes
to task rates ∆R(k) = [∆R

sU

1(k),..., ∆Rn(k)]T, where ∆Ri(k)
= Ri(k) - Ri(k-1), 1≤i≤n. The supervisory controller
employs the following mechanisms:
1. The utilization monitor on the processor that sends

the utilization U(k) in the last sampling period to
the controller.

2. The controller computes the new task rates R(k)
and sends them to the rate modulator on the
processor P.

3. The rate modulator changes the task rates according
to R(k).

The system is controlled by a hybrid supervisory
controller which receives the utilization U(k) that takes
values in the interval [0,1] (continuous set) and sends
the rates R(k) that take value in a discrete finite set.
The controller changes the task rates only if needed in
order to keep the utilization in the region

ε≤− |)(| sUkU .
Next, we establish a dynamic model that

characterizes the relationship between the control input
∆R(k) and the controlled variable U(k). Let ∆Ri(k)
denote the change to task rate, ∆Ri(k) = Ri(k) – Ri(k-1).
The estimated change to utilization, Db(k), is given by

∑
≤≤

∆=
ni

iib kRCkD
1

)()(.

Note that Db(k) is based on the estimated execution
time. Since the actual execution times may be different
from their estimation, the utilization U(k) can be
written as

U (k) = U (k-1) + Ga Db(k) (1)

where the utilization gain Ga represents the ratio
between the change to the actual utilization and its
estimation Db(k-1). For example, Ga = 2 means that the
actual change to utilization is twice of the estimated
change. The exact value of Ga is unknown due to the
unpredictability of subtasks’ execution times.

A task running at a higher rate contributes a higher
value to the application at the cost of higher CPU
utilization. However, large CPU utilization may cause
tasks to miss their deadlines. To ensure that the tasks
meet their deadlines, the utilization must be kept below
its schedulable utilization bound [10]. This paper is
concerned with the problem of ensuring that the
processor utilization does not exceed the desired
utilization set point. The control problem is to design
a feedback control algorithm that selects the task rates

 based on the utilization so that the
distance between the utilization and the set-point does
not exceed the desired bound, i.e.

)(kRi)(kU

ε≤− |)(| sUkU .

4. Hybrid Supervisory Control

This section presents the design and analysis of the
supervisory controller. Our approach is based on
supervisory control of hybrid systems [8][9].

4.1. Control Formulation

Given the model of the real-time system, a
supervisory controller can be designed to control the
processor utilization. The continuous control
approaches presented in [12][14] are not suitable
because they cannot deal with the discrete nature of the
task rates. To overcome this problem, we adopt the
hybrid control approach from [9]. The approach is an
extension of supervisory control of hybrid systems [8]
for piecewise linear hybrid dynamical systems with
disturbances and can be applied to the hybrid model of
the real-time system that includes unknown execution
times. The control specifications are formally
described using finite state machines and include
safety (e.g. the utilization should remain in region S)
and eventual execution of actions (e.g. if the utilization
is in a region A, it must be driven to S in a specified
time interval).

The control approach is based on a piecewise linear
partition of the state space that is used to formulate the
specifications. For a single processor real-time system,
we can partition the state space in three regions as
shown in Figure 1. The partition can be described by a
mapping (similar to an A/D converter)

},,{]1,0[: ASB→π that takes as argument the
continuous utilization and returns the corresponding
region.

Figure 1. Partition of the state space

For all tasks to be schedulable, the controller should
keep the utilization out of region A. This can be
achieved by selecting the task rates for the worst-case
execution times leading to a conservative design that
will underutilize the system.

In this paper we take a different approach. We allow
the utilization to enter region A, but upon detecting
such an event the controller is invoked to drive the
utilization back to S in a fixed time interval. The
advantages of the approach are: (i) it increases the
average utilization contributing a higher value to the
application, (ii) the controller is invoked only when the
utilization is out of the schedulable region reducing the
control overhead, and (iii) it provides guarantees for
driving the utilization to the schedulable region. Of
course, when U(k)∈A schedulability cannot be
guaranteed which means that for a small fixed time

interval some tasks may miss their deadlines. Hence
HySUCON is more suitable for soft real-time systems
that may tolerate a small percentage of transient
deadline misses.

To ensure that the system is not underutilized, the
controller is also invoked when the utilization drops in
region B. In this case, the controller will increase the
task rates to drive the utilization back to S in a fixed
time interval.

To guarantee that the utilization will reach the
desired region S, the controller must select a suitable
set of task rates. This is accomplished by solving a
discrete optimization problem online based on
utilization feedback.

4.2. Discrete Optimization

If the processor utilization enters region A or B,
then the controller is invoked in order to change the
rates and drive the utilization back to the region S. The
new rates are computed by solving a discrete
optimization problem. We are using a Best First Search
(BFS) algorithm. BFS is a greedy algorithm which
performs a depth first search based on a heuristic. The
heuristic is defined as the estimated distance to the
goal, where the goal is defined as the desired change in
utilization |)(| sUkUU −=∆ . The controller will
compute the new task rates to minimize the heuristic.
To reduce the control overhead, the search stops after
finding a feasible solution that will drive any state
from A to S that is not necessarily optimal.

First, we consider the case when ε+> sUkU)(.
Figure 2 illustrates the discrete optimization algorithm.
The heuristic is initialized as . Suppose
that at time k–1, the rate of the task is

Ujih ∆=),(

iT)1(−kRi and

is the optimal value of the heuristic. If at time k we
select for , a lower bound for the estimated
change in utilization will be

where is the best case

execution time of . The heuristic is then updated as

*h
)(j

iR iT

iBCi
j

iij CkRR))1(()(−−=α
iBCC

iT
0,*),(<+= ijijhjih αα . The algorithm initially

computes the heuristic for each task rate . The task
rate with the lowest evaluation is selected since the
heuristic measures the estimated distance to the goal.
The algorithm terminates when which means
that the total expected change in utilization is close to
the goal.

)(j
iR

ε≤*h

Similarly, if ε+< sUkU)(, the controller will
increase the utilization by increasing the rates of

A S

10

B

Us+ε UUs-ε

utilization

selective tasks. An upper bound of the estimated
change in the utilization is defined as

where is the worst case

execution time of and the heuristic is then computed

by .

iWCi
j

iij CkRR))1(()(−−=β
iWCC

iT

ijhjih β+= *),(

Figure 2. The discrete optimization algorithm

The behavior of the controller is illustrated by the
finite state machine of Figure 3. When U(k) exits the
region S to A, an event generated by the system (plant
event σSA) triggers the controller that selects the new
rates by solving the BFS algorithm based on the lower
bounds for the estimated utilization .ijα The new rates
will drive the utilization back to S. Similarly, when the
utilization falls to B, the controller uses the algorithm
based on the lower bounds .ijβ

Figure 3. Finite state machine of the controller

4.3. Analysis

Feedback algorithms for adaptive utilization control
are designed so that the closed loop system is stable to
guarantee that the utilization will converge to the
desired set-point independent of the unknown task
execution times. Previous work [12][14] is based on

the assumption that the set-point is an equilibrium of
the system. When only a finite set of rates are available
for each task, the single equilibrium assumption does
not hold since for different rates the system will have
different or no equilibria. However, it is still possible
to design controllers for switching between the
available rates so that the system stays close to the set-
point. Such behaviors are similar to those of
conventional stable systems close to equilibrium points
and can been described using the notion of safety [9].
Definition 1 Given the system (1), the region

ε≤− |)(| sUkU is said to be safe if for every U(0)=U0,
there exists K=K(U0)≥0 such that ε≤− |)(| sUkU for
any k≥K.

This definition implies that the utilization trajectory
will always remain in an ε-region of the set-point. The
main challenge for real-time systems in using the
notion of safety for control design is that the utilization
gain Ga is not known. For such uncertain systems, one
could design the controller for the worst case execution
times. Such a design would result in underutilization of
the processor to allow for a large safety margin.

To overcome these difficulties, our approach
employs a notion of practical stability, which can be
viewed as a relaxed definition of safety.
Definition 2 Let ε>− |)(| sUkU at time step k for a
fixed parameter ε. If there exists finite l≥0 such that

ε≤−+ |)(| sUlkU the system (1) is said to be
practically stable.

The parameter l corresponds to the “rising-time” and
as in conventional control design it is desirable to
minimize l while keeping a small overshoot.

We define the lower utilization and upper utilization
levels that are guaranteed to be achieved independent
of the actual execution times as

.maxmin
1

1,
1

1, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

=
≤≤

=
≤≤ i

n

i
BCniRi

n

i
WCniR

RCURCU
i

i
i

i
 and

Theorem 1 There exist control policy for selecting the
task rates for the system (1) so that the closed loop
system is practically stable if ε+< sUU and

.ε−> sUU

Proof The condition ε+< sUU)(ε−> sUU
guarantees that for every utilization AkU ∈)(0 (or B)
there exist task rates and integeriR lkkk ≤−< 00, so
that ε+< sUkU)().)((ε−> sUkU Therefore, for
any value U(k) there always exists a combination of
rates R(k) = [R1(k),...,Rn(k)]T that will drive the
utilization towards in the ε-region of the set-point . sU

σBS

σAS σSB/R(k)=BFSβ()

σSA/R(k)=BFSα()

A S B

BFSα()
;:;:|;)(|: * ∅=∆=−=∆ IUhUkUU

while h and I ε>* },...1{ n≠
∉

ij

for all i I
for

imj ,,1K=

iBCi
j

iji CkRR))1(()(
, −−=α

 if < 0α
 h

iBCi
j

i CkRRhji))1((:),()(* −−+=

 end if
 end for

end for

};{;:)(

|};),({|minarg),(

|};),({|min

*

,
**

,
*

*

** iIIRkR

jihji

jihh

j
ii

ji

ji

∪==

=

=

end while

Practically, the parameter ε must be selected large
enough to avoid oscillations of the utilization between
the regions A and B. The oscillatory behavior is also
related to the parameter l that specifies how fast the
utilization should return the region of the set-point.
The presented BFS algorithm will achieve that in one
sampling period (i.e. l = 1). As in conventional control
this could lead to overshoot and oscillatory behavior.
An alternative approach could be to compute the
change in utilization based on an estimated value of the
utilization gain Ga instead the best case and worst case
execution time. This will decrease the oscillation but
will increase the time l the utilization will reach the
schedulable region. Due to length limitation, this paper
focuses only in the case when l = 1.

Although, the safety conditions described above
guarantee the existence of an appropriate control
policy, we have to analyze the proposed algorithm and
develop guidelines for the selection of the parameters.
In the following, we assume that ε+> sUkU)(and
the control task is to reduce the utilization. The case

ε−< sUkU)(is symmetrical and is omitted.
First, we analyze the BFS algorithm vs. an

exhaustive search (ES) algorithm that at every
sampling period computes the expected utilization for
all possible combinations of task rates and selects the
one with the closer distance to the set-point. The
conditions of Theorem 1 imply that the ES algorithm
can always find an optimal combination of task rates.
Let denote the optimal estimated change in
utilization derived using the ES algorithm, then we
have (and further

is minimized).

|| *
ESU∆

ε+<∆− sES UUkU ||)(*

|||)(| *
sES UUkU −∆−

Theorem 2 Assume that Theorem 1 holds and let
 denote the expected change in utilization

derived using the BFS algorithm. The BFS algorithm
will also reduce the utilization so that

.

|| *
BFSU∆

ε+<∆− sBFS UUkU ||)(*

Proof Consider the following two possible cases: (i)
ES decreases the rates for all tasks, i.e.

. In this case, because of its
greediness property, BFS can select the new rates so
that . In practice, our algorithm will
stop the search if

niRi ,,1,0 K=<∆

|||| **
ESBFS UU ∆≥∆

ε+<∆− sBFS UUkU ||)(to reduce
the overhead. (ii) ES decreases the rates of some tasks
while increasers some others. In this case, since BFS
can only decrease the rates, we have
also . Therefore, in both cases,

.

|||| **
ESBFS UU ∆≥∆

ε+<∆− sBFS UUkU ||)(*

The case can be proved in a
similar manner.

ε−>∆− sBFS UUkU ||)(*

The potential drawback of the BFS vs. the ES
algorithm is related to the oscillation of the utilization.
The ES and BFS algorithms differ on the minimum
change in utilization they can achieve. Specifically, we
have | since the BFS

algorithm will either only increase or only decrease the
rates. Hence, the BFS algorithm may overshoot the set-
point especially since the change in utilization is based
on the best case execution times.

|min||min *

1,

*

1, ESniRBFSniR
UU

ii
∆≥∆

≤≤≤≤

 An exhaustive search algorithm is not suitable for
real-time systems since it is exponential, i.e. O(mn)
where n is the number of tasks and m is the maximum
number of task rates for a task. Our control algorithm
is based on a best-first search using a heuristic. From
Figure 2, the while loop is executed at most n times.
Since each time we have to sort the values of the
heuristic, the total time complexity is O(n3m2)
(depending on the sorting algorithm). Practically, the
algorithm is much faster since it usually stops before
searching all tasks and only negative (positive) values
of the expected change)(ijij βα in utilization are used.
The controller overhead is also evaluated using the
simulation and experimental results.

5. Simulation Results

5.1. Simulator Environment

We have designed an event-driven simulator using

Model Integrated Computing and the Generic
Modeling Environment (GME) tool [6]. The simulator
implements the real-time system controlled by
HySUCON, the utilization monitor, and the rate
modulator. The tasks are scheduled using the Rate
Monotonic Scheduling (RMS) algorithm [11]. The
environment provides a visual notation for specifying
the tasks. Simulation code is generated automatically
from the task specification. The advantage of the
simulation framework is the automatic code generation
of the controller. This is accomplished by an
interpreter engine that prior to simulation, generates
the controller code.

5.2. Workloads

We use two different workload/system

configurations in our experiments. The workload
parameters are characterized by experimentation and
are used by the event-driven simulations in order to
compare the performance with the experimental

results. SIMPLE is a workload consisting of three
tasks as shown in Table 1. All three tasks are floating
point matrix multiplications with each task operating
the same function but on matrices of different
dimensions. Task A performs matrix multiplication on
two matrices of dimensions 100x200 and 200x100,
task B on matrices of dimensions 100x300 and
300x100, and task C on matrices of dimensions
100x400 and 400x100. The tasks were executed on a
2.8 GHz, Intel Pentium IV processor running Red Hat
Linux. Execution time statistics were obtained using a
high resolution timer and are shown in Table 1. Each
task executed separately and the data was collected
over 5000 samples. The wide range observed in the
execution times can be attributed to the cache misses
and pipelined architectures of modern day processors.

In the simulation environment, tasks are defined
using the parameters in Table 1. The execution time
for each task at every sampling period is drawn from a
uniform distribution between its best- and worst-case
execution times in our profiling experiments. The
sampling period was 600 ms in both the simulation and
the experimental setup.

The second configuration, MEDIUM that was used
only for the experimental results, simulates a more
complex workload consisting of 10 tasks. The tasks are
also matrix multiplications of matrices different
dimensions. Their parameters were obtained as in
SIMPLE.

Table 1. Task parameters in SIMPLE
 Task A Task B Task C

iBCC (ms) 21 31 43

iWCC (ms) 68 86 81
j

iR (KHz) 1/75
1/100
1/200
1/300
1/400
1/500

1/75
1/100
1/200
1/300
1/400
1/500

1/75
1/100
1/200
1/300
1/400
1/500

)0(iR (KHz) 200 200 200

5.3. Baselines

We compare HySUCON against two baseline

algorithms, OPEN and FC-U. OPEN is an open-loop
algorithm that uses fixed task rates. It assigns task rates
a priori based on estimated execution times so that the
processor utilization is near the set-point. As it can
been seen from the task parameters in SIMPLE, it is
not possible to establish tight bounds on the task
execution times. OPEN will cause underutilization
when execution times are overestimated and over-

utilization when they are underestimated. As a baseline
OPEN allows us to evaluate the benefits of a
supervisory controller.

FC-U uses a single input single output PI controller
presented in [12]. FC-U also computes the changes to
task rates based on measured utilization but assumes
that the task rates take values on a continuous set (i.e.

max.min. iii RRR ≤≤). FC-U can be used in our case by
quantizing the continuous task rates computed by the
controller to the closest available value. As a baseline
FCS allows to compare the supervisory controller with
simple linear control.

5.4. Real-Time Simulation for SIMPLE

This section provides the simulation results for the

SIMPLE task scenario obtained using the event-driven
real time simulator and compares HySUCON’s
performance with OPEN and FC-U controller. CPU
utilization set point was set to 0.69 and ε to 0.10
Simulations run for 60 sec, with sampling being
performed at every 600 ms ().

sU

sT
Figure 4 shows the CPU utilization .

changes as the execution time of the periodic tasks
varies randomly. For example, at time , the
processor is underutilized at 0.57. HySUCON
responds to the deviation from the utilization set point
by increasing task A’s rate from 1/400 to 1/300. As a
result the utilization increases from 0.57 to 0.74 in the
next time step.

)(kU)(kU

sT18

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sampling period)

C
P

U
 U

til
iz

at
io

n

Figure 4. CPU Utilization for SIMPLE

Similarly, in the case of over-utilization the
controller will decrease some of the rates. For
example, at , where the utilization is 0.83,
HySUCON reduces rate of task B from 1/200 to 1/300,
which results in a subsequent reduction in utilization to
0.64 in the next time step. The average utilization
0.704 is with standard deviation 0.054. Figure 5 shows
the task rates selected by the controller.

sT21

In contrast, Figure 6 shows an overloaded processor
under OPEN unable to adapt to the workload
conditions. As a result, CPU utilization levels at 100%.

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

T
as

k
A

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

T
as

k
P

er
io

ds
T

as
k

B

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

Time (sampling period)

T
as

k
C

Figure 5. Task Periods for SIMPLE

Figure 7 and Figure 8 illustrate FC-U’s performance
for the SIMPLE workload. While the FC-U controller
responds to both over and under utilization by
selecting different rates, its performance is limited by
the discrete rate set provided by the user. In the case of
discrete rates, the utilization is not guaranteed to
converge to the set point and FC-U performs much
worse than HySUCON. A larger and finer rate set
would reduce the quantization error that occurs when
FC-U quantizes its chosen rate to the user defined rate
and a lower quantization error would lead to better
performance.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (sampling period)

C
P

U
 U

til
iz

at
io

n

Figure 6. OPEN CPU utilization

6. Experimentation

6.1. Experimental Setup

In our experimental setup, we evaluated a real-time
application whose task rates can be changed discretely
using callbacks from a controller. The distributed
system setup consists of 2 Intel Pentium IV, 2.8 GHz
processors running Red Hat Linux. The client

processor performs CPU intensive computations and
sends utilization updates every sampling period to the
remote server. HySUCON residing on the server
receives these updates from the client and computes
the new task rates. It communicates the new rates to
the rate modulator, which subsequently changes the
rates.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sampling period)

C
P

U
 U

til
iz

at
io

n

Figure 7. FC-U CPU Utilization

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400
Ta

sk
 A

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

Ta
sk

 P
er

io
ds

Ta
sk

 B

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

Time (sampling period)

Ta
sk

 C

Figure 8. FC-U Task Periods

We assumed that the application is implemented as a
Half Sync/Half Async [18] with a queue receiving
events at different task rates. The setup has the
following components: (i) A Half Sync/Half Async
setup as a real-time application, (ii) a component for
sensing the resource utilization and sending it to a
controller, and (a) a component for accessing new task
rates from the controller.
Real-time application: Our real-time application is
deadline driven by messages and the processing of
each message has a deadline. The messages are
inserted into a queue at periodic intervals of time
dictated by the periods. The messages are then
processed by any thread (every thread has a equally
likely chance of processing the message) waiting on
the queue and performs the intended job (matrix
multiplication in our setup).

Sensing resource-utilization: After every message is
processed, the thread which processes a request senses
the CPU utilization on the machine and sends to a
controller which runs on a different machine. We used
a distributed middleware (ACE/TAO) to implement
this, since it provides all the required mechanisms.
Accessing New Task Rates: Our experimental setup
also has a provision to contact the controller to receive
new task rates at periodic time intervals. The new task
rates are computed by the controller based on the latest
utilizations received from the application by the
controller.

6.2. Experimental Results for SIMPLE

This section discusses the experimental setup results
obtained from HySUCON for the SIMPLE workload.
CPU utilization set point was set to 0.69 and ε to
0.10.

sU

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sampling period)

C
P

U
 U

til
iz

at
io

n

 Figure 9. CPU Utilization for SIMPLE

Task execution times vary dynamically at run time
under the SIMPLE configuration. As a result, the client
CPU utilization varies dynamically, as shown in
 Figure 9. At time , the processor faces
over-utilization at 0.90, as a result of which, the
controller decreases the rate of task A from 1/200 to
1/75. This, results in a decrease in the utilization to
0.68 in the next time instant. Similarly the controller
reacts to under-utilization by increasing the rate of A
from 1/75 to 1/200 at , where the CPU
Utilization is 0.9. The average utilization is 0.673 and
the standard deviation is 0.053. The task rates are
given in Figure 10.

sT60

sT68

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

T
as

k
A

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

T
as

k
P

er
io

ds
T

as
k

B

0 10 20 30 40 50 60 70 80 90 100

200

300

400

500

600

Time (sampling period)

T
as

k
C

Figure 10. Task Periods for SIMPLE

6.3. Experimental Results for MEDIUM

The MEDIUM task scenario consisting of 10 tasks
demonstrate the performance of HySUCON for larger
workloads. The same client-server setup was used as
described in the previous section. Input parameters
for the controller algorithm, such as best-case and
worst-case execution times for the 10 tasks were
obtained from experiments conducted by running the
same 10 tasks one at a time. As shown in Figure 11,
the CPU utilization varies due to the dynamic task
execution times. HySUCON controls the utilization in
a region of the set-point. For instance, at time ,
the client reports under-utilization at 0.8277 and the
controller responds by decreasing the task rates which
results in an decrease in utilization to 0.76. Similarly
the controller reacts to over-utilization, as seen at time

where the utilization drops to 0.58 by increasing
the rates and hence the utilization to 0.65. The average
utilization is 0.997 and the standard deviation is 0.054.

sT47

sT160

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sampling period)

C
P

U
 U

til
iz

at
io

n

Figure 11. HySUCON CPU Utilization

6.4. Control Overhead

To estimate the run-time overhead of the controller,
we measured the execution time of the controller
component running on the server. In the simulations
with the SIMPLE workload on a 2.8 GHz, Intel
Pentium IV processor, the average controller overhead
was 0.033 msec. In the HySUCON experimental
setup, the controller overhead was calculated as the
interval from the time the server receives the utilization
to the time the controller compute the new task rates.
For the SIMPLE workload, the average overhead was
0.069 ms and for the MEDIUM scenario the average
overhead was 0.155 ms.

7. Conclusions

We have presented a hybrid supervisory control
algorithm for feedback control real-time scheduling of
single-processor real-time systems. Our theoretical
analysis and are experimental results demonstrate the
algorithm provides robust utilization bounds in the
presence of varying execution times. Future work
includes adapting the method for task admission
control by including rates with zero values as well as
the extension of the approach to multi-processor
systems with end-to-end tasks.

Acknowledgements
This work is supported in part by DARPA under the
Adaptive and Reflective Middleware Systems (ARMS)
program (grant NBCHC030140).

8. References
[1] S. Abdelwahed, N. Kandasamy, and S. Neema, "Online
Control for Self-Management in Computing Systems," IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’04), May 2004.
[2] T.F. Abdelzaher, K.G. Shin, N. Bhatti, "Performance
Guarantees for Web Server End-Systems: A Control-
Theoretical Approach," IEEE Transactions on Parallel and
Distributed Systems, Vol. 13, No. 1, Jan 2002.
[3] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang, and
Y. Lu, "Feedback Performance Control in Software
Services," IEEE Control Systems, 23(3): 74-90, June 2003.
[4] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole,
“Analysis of a Reservation-based Feedback Scheduler,”
IEEE Real-Time Systems Symposium (RTSS 2002), Dec
2002.
[5] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén,

"Feedback-Feedforward Scheduling of LQG-Control Tasks,"
Real-time Systems Journal, 23, 2002.
[6] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty. Model-
Integrated Development of Embedded Software. Proceedings
of the IEEE, 91(1):145-164, 2003.
[7] M.H. Klein, T. Ralya, B. Pollak, and R. Obenza, A
Practitioner's Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems, Kluwer
Academic Publishers, 1993.
[8] X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver and M.D.
Lemmon, “Supervisory Control of Hybrid Systems,”
Proceedings of IEEE, 88(7), 1026-1049, 2000.
[9] X. Koutsoukos and P. Antsaklis, "Safety and
Reachability of Piecewise Linear Hybrid Dynamical Systems
Based on Discrete Abstractions", Journal of Discrete Event
Dynamic Systems: Theory and Applications. 13(3), 203-243,
2003.
[10] C. Liu and J.Layland, “Scheduling Algorithms for
Multi-programming in a Hard-Real-Time Environment,”
Journal of the ACM, 20(1), 46-61, 1973.
[11] J.W.S. Liu, Real-Time Systems. Prentice Hall, 2000.
[12] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, “Feedback
Control Real-Time Scheduling: Framework, Modeling, and
Algorithms,” Real-Time Systems Journal, Special Issue on
Control-theoretical Approaches to Real-Time Computing,
23(1/2): 85-126, July/September 2002.
[13] C. Lu, X. Wang, and C.D. Gill, "Feedback Control
Real-Time Scheduling in ORB Middleware," IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS 2003), Washington DC, May 2003.
[14] C. Lu, X. Wang, and X. Koutsoukos, “End-to-end
Utilization Control in Distributed Real-Time Systems,”
International Conference on Distributed Computing Systems,
ICDCS 2004, Tokyo, Japan, Mar. 2004.
[15] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, “On
Task Schedulability in Real-Time Control Systems”, IEEE
Real-Time Systems Symposium, December 1996.
[16] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C.
Buttazzo, Deadline Scheduling for Real-Time Systems – EDF
and Related Algorithms, Kluwer Academic Publishers, 1998.
[17] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee, C.
Pu, and J. Walpole, "A Feedback-driven Proportion
Allocator for Real-Rate Scheduling," OSDI, Feb 1999.
[18] D.C. Schmidt and C. D. Cranor. “Half-Sync/Half-Async
Pattern for Efficient and Well-structured Concurrent I/O”,
Pattern Languages of Program Design, Addison-Wisley,
1996

	1. Introduction
	2. Related Work
	3. Problem Formulation
	4. Hybrid Supervisory Control
	4.1. Control Formulation
	4.2. Discrete Optimization
	4.3. Analysis

	5. Simulation Results
	5.1. Simulator Environment
	5.2. Workloads
	5.3. Baselines
	5.4. Real-Time Simulation for SIMPLE

	6. Experimentation
	6.1. Experimental Setup
	6.2. Experimental Results for SIMPLE
	6.3. Experimental Results for MEDIUM
	6.4. Control Overhead

	7. Conclusions
	Acknowledgements
	8. References

