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Abstract transmission application requires a certain amount of net-
work bandwidth and CPU cycles from various network links

In this paper, we study the problem of allocating end-toand routers respectively. Higher quality in terms of its frame
end bandwidth to each of multiple traffic flows in a large-rates and resolutions requires a greater quantity of these re-
scale network. We adopt the QoS-based Resource AllocatisAurces.

Model (Q-RAM) [9], whereby each flow derives an utility ~For a large number of tasks to be deployed on a system
based on the amount of its allocated bandwidth. Our goatonsisting of a large number of resources, we designed a hi-
therefore is to maximize the total utility derived across alrarchical scheme in [6] that provides near-optimal resource
network flows. The NP-hard nature of the resource allocadllocation in a scalable manner. The hierarchical technique
tion problem is compounded by the need to select an appréivides the problem into smaller independent sub-problems.
priate path between each source-destination pair. We pré3pecifically, it divides the system into identical subsystems,
pose a hierarchical decomposition scheme that allows th@ssigns tasks to these subsystems in an equitable fashion so
resource allocation problem to be solved in a decentralizethat each subsystem obtains an (nearly) identical number of
and scalable fashion. The hierarchy we use is based ontasks of the sam&/pe and then makes resource allocation
(natural) partitioning of the network into subnets, with re-decisions within each subsysténtdependentlyimplement-
source allocation decisions made on a subnet-by-subnet bi##g this scheme on a networked system, however, presents
sis. A novel distributed transaction scheme is used to ensu0 major difficulties. First, it is difficult to divide a net-
that resource allocations are consistent across all the subvorked system into a number of identical subsystems if the
nets traversed by each flow. We provide both analytical an@rchitecture is heterogeneous (even if it is hierarchical). Sec-
experimental evidence to show that our scheme is very sc@ndly and most importantly, it is not possible to isolate the
able and yet does not sacrifice the quality of the allocationgubsystems in the network. This is because the route of a task
can potentially span a very large number of links and routers
over the entire network. If we consider each network sub-
1. Introduction domain as a subsystem, many tasks can have routes across
multiple sub-domains and thus the resource allocation in one

Examples of distributed networked systems include thgubsystem may be dependent on that obtained in another
Internet, sensor networks, autonomous systems and overlayd vice versa. Hence, multiple subsystems neegetm-
networks. In order to provide QoS to tasks executing on thesiate with each other in order to determine near-optimal re-
systems, we need to guarantee the allocation and schedsturce allocations.
ing of resources. The resources include computational 05-
cles, storage anoetwork bandwidtracross aoutebetween 2. Related Work
the source and the destination. For example, a typical video There have been several contributions in the field of QoS
in networks, especially in the context of the Internet and
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source efficiency is chosen if multiple routes are availablenodeled as an undirected graph, these tasks can be mod-
Nahrstedeet al also made contributions in the field of QoS-eled as flows across the graph with variable capacity require-
aware routing. First, they used topology aggregation of hiements.

archically structured networks in order to provide routing for Q-RAM optimization in a network works as follows. Us-
tasks involving QoS requirements related to bandwidth andg the edges of the graph as network links with a certain
delay guarantees [3, 10]. In a hierarchical routing, nodes aeemount of bandwidthR, we construct a resource capacity
clustered into groups, which are further clustered into highevectorﬁ = Ry,...,R,, wherem is the total number of
level groups, creating a multi-level hierarchy. Second, theweighted edges of the graph afiy is the bandwidth of the
also presented distributeéitket-basedouting, which is de- ‘" edge. We enumerate the operational dimensions of each
signed to work with imprecise state information [2]. As a sigtask as follows.

naling protocol for network bandwidth reservati@tesource 3.1.1. Set of bandwidth settings :The number of choices

Resngatlon ProtogoQRSVP) is a popular exgmple[lS]. It of bandwidth settings of a task is given by:
provides a mechanism to establish a reservation over a route

between the destination and the source. It is designed to work _
H H . : P . . Bi_{bih abiN.B}7 (1)
in conjunction with existing routing and scheduling proto- é

cols. There are also many QoS-aware packet scheduling dighere,N” = number of possible bandwidth settings for task
ciplines available as extensions of the Generalized Processoer The bandwidth maps directly to the resource requirement
Sharing algorithm [14], and otherwise [12][8][5]. on the network link.

2.1. Our Contribution 3.1.2. Set of delay settings The number of choices of de-

In the context of network QoS, we make our contributionIay settings ofr; is given by:

in network bandwidth allocation and route selection. How- D;=dpn, - ,d;np, 2)
ever, our model differs in two fundamental ways. First, our D '
Q-RAM-based QoS model allows a task/flow to specify mulWhereN;” = number of delay levels for;.

tiple levels of bandwidth and delay requirements for differ- 1€ network delay encountered by a flow is dependent on
ent levels of service. Second, our resource allocation schermae valug of total bandwidth (or speed) of the network Ilnk(s)'
determines the allocation ofr@ar-optimaroute and aear-  US€d- Itis expressed as the sum of three components: (1) cir-
optimal network bandwidth along the route for each flow.CUit delay (propagation delay of 1 bit), (2) transmission de-

The scheme relies on a signaling protocol such as RSVP alfy: @nd (3) switching delay [15]. The switching delay is the
packet scheduling policies across the network in order to sdfominant factor in the overall delay, which is in turn depen-

isfy the network bandwidth reservation. In addition, it carf€Nt on the scheduling policies across the routers. Since our
also exploit the existing routing protocols to perform efﬁ_QoS model deals with resource allocation that separates it
cient optimization. from the scheduling concern at the lower level, we only need

. to consider the bandwidth of the links for our model. We as-
3. Modeling of Networked System sume that once the bandwidth has been allocated, the router

In this section, we describe our model of a distributedvill have enough processing cycles to process the packets
networked system. We first briefly describe our generic ré2€tween its incoming and outgoing links, and its lower level
source allocation model based on Q-RAM. Next, we introbacket scheduler can sghedule_ the packets appropriately so
duce a graph-theoretical model of the network and demo#pat each flow meets their deadlirfesn other words, we ex-
strate how to formulate and solve the network QoS optimiza2ress delay as the number of hops along a route in this pa-
tion problem in Q-RAM. per.

3.1. Network Model and QoS 3.1.3. Set of routes :The number of choices of routes of a

. _ _taskr; is given by:
We assume the network is a distributed system consist-

ing of multiple resources where each resource corresponds to Pi=ppx-- X DbinF (3)

the link capacity in terms of the available bandwidth of thq:Or a connected graph, we always hai > 1. The set
link®. We consider a set of tasks or flows that transfer datgs outes can be derivéd in several possib_le Ways For ex-
frfom oSne rlode_ '? thetnetworI;tk()) agOt.r:j?;' Eagr:jtallsk has a S(ﬁ]'nple, in order to determine all possible routes between a
of QoS set-points in terms of bandwi and delay requires, .ce and a destination, the source node can broadcast its

ments. In addition, there is a utility associated with eac_h oute discovery request to all of its neighbors. If a neigh-

its sgt-points. In gengral, a hi.gher bandwidth provides h'gh%ror is not the destination node itself, it forwards the request
quality and hence higher utility for a task. If a network iS¢0 its other neighbors

1 ltisrelatively straightforward to extend our formulation to include pro-2 A ot of work in packet scheduling has been done in the past with vary-
cessing resources but we do not do so for simplicity of presentation. ing degree of schedulable utilization bounds on the routers [16, 8, 5].



3.1.4. Basic Q-RAM Algorithm By combining Equa- 4. Hierarchical Network Architecture
tions (1), (2) and (3), we obtain the set-points of the tasks
{S; : B; x D; x PB;}. The utility of a set-point is ob-
tained from the QoS dimensions d8; — wu}, while
the corresponding resource requirements are obtain
as {B; x D; x P, — R}. Thus a set-point is repre-

In this section, we first formulate the hierarchical net-
work architecture using Graph-theoretical techniques. Next,
we describ.e how this formulation can be used in decompos-
INg our optimization process.

sented by{q;, u;, (rj,,...,7j,.), h;} where 4.1. Graph-Theoretical Representation
q; = Quality level, We follow the description of the hierarchical network
u; = Utility level, model as presented for the Internet [1, 7, 17].

(4,..,7;,) = resource vector representing resource The entire network is representeq as a connected undi-
requirement at each edge of the system, and rected graphG = (V, E) as shown in Figure 4.1, where
o V' denotes the set of vertices antldenotes the number of
_h; = compound resource describing the cost of allocazyyes The nodes or vertices of a graph represent switches,
Ing resources. and the edges represent links. Tiendwidth across each
The procedure is detailed in Algorithm 1. Itis the mostiink e; is expressed as theapacity c; of an edge in the
graph. If the network is hierarchically organized, repre-

input : profiles of tasks with bandwidth and network routes sents the network architecture at a particular layer
output : route and bandwidth allocation of tasks by maximizing util- ~ The nodes get clustered to form the graph of the next
ity layer. The nodes of the same layer that are clustered into the
for Each task = Oton do . same higher layer are said to belong to the speer group
Determine QoS points as bandwidtBs; . AN
DetermineP; as the set of resource options ; [4] At a parthUlar Iayer, a set of edgeS partition the graph
Generate set-points; = B; x D; x P; for 7; and map to into multiple induced subgraphs, whose vertices form peer

resource requirements — R in terms of link bandwidths; ; H
Determine “compound resource” as a scalar cost metric for each groups. This set of edges defines the edges of the graph at

set-point; the next higher layer. We call these edfeskbone-edgesf

Determine concave majorant of the set-points based on their two subgraphs are connected by a single edge, their connect-

(cor(?_pound resource, utility) values and the corresponding ing backbone-edge becomes a cut-edge of the graph

gradient; : .

end If we collapse all the vertices and edges of a subgraph
Merge set-points of, tasks with decreasing values of their gradients; G, Of G into a single vertex, it is called supervertexThus
Perfqrm a global resource allocation starting with the point of highest the graph at a higher |ayer is the supervertex graph of that
gradient of the next lower layer. This layered architecture is illus-

Algorithm 1 : Basic Global QoS Optimization For Networks trated in Figure 4.1. Expanding each supervertex at any layer

reveals the entire network of nodes in that subgraph at the

. . , lower layer.
direct way of solving the problem of network bandwidth al-

location | RAM. 4 th hy in drawback Let us consider a task that sends data from a source node
ocation in Q- - HIOWEVer, there are two main drawbacks; 1 a destination nodg. We definePg(z,y) to be the set
to this approach.

of all possible routes froms to . For a connected graph, we
First, it requires each task tenumerateall of its set- have| Pg(z,y)| > 1. Let us also definpg (z,y) € Pg(z,y)

points, which, in turn, requires them to determine all posas a particular route from to . This is formed by con-

sible routesP; between the source and destination. As theatenating a set of edges that conneandy. This includes

size of the network increasel;| increases exponentially, the edges inside multiple sub-graphs and the backbone edges

and the complexity of the whole route discovery process sionnecting them. Let us assume thatand V, are sets of

persedes the complexity of the optimization, making the prosertices of two subgraphs @ such thatr € V,,y € v,

cess intractable for large networks. Therefore, we must usgdV, N V,, = (. Let the supervertices, andu; of the su-

an efficient route discovery technique that can exploit the apervertex graptG’ represent the sets of verticés and Vv,

chitecture of the network, namely hierarchical route discovin the original graphG. By definition, Pg (v, U;) denotes

ery [7][10]. the set of routes between the superverti¢eandv;,. There-
Second, suppose that each task hamallset< 10 for ~ fore, for everype: (vy,vy) € Por(vy,vy), there is at least

example) of QoS levels for the sake of simplicity. Even irPne correspondingc (z,y) € Pa(z,y).

this case, S'.nCPi isthe enum_erated list ail_l routes between Definition 1 (Border vertices). The vertices in two differ-

two nodes in the network, it can potentially be very Iargeem induced sub-graphs that are connected by one or more

Therefore, we must select a few routes to make the pro'ﬁ}'}aekbone-edges are known as border vertices.

lem tractable. The challenge is to pick these few routes suc

that the resulting utility is close to what would be achieved iDefinition 2 (Sub-Route). The set of edges of a particu-

the exhaustive lists of routes were considered. lar route connecting two border vertices of an induced sub-




Layer 2 backbone-ed g e

Layer 1 backbone—ed g e

i

(a) Layerl Architecture (b) Layer2 Architecture (c) Layer3

Figure 1. Hierarchical Graph Model of Network

p— Thus all routes inP;(z, y) collapse to having the same set

e " Backhone 1 R o of supervertices and hence are connected by the same set
S of edges inG’. Therefore they collapse to a single route. In
undoman other words|Pgr (v;,, vy, )| = 1. [
Route in the Supervertex Graph ———#== Let us consider the network of 3 sub-domains illustrated

N

® ® o’

° o ° in Figure 2. The source node is present in Sub-domain 1
. . while the destination node is present in Sub-domain 3. As
Flgu;e 2. /Sub/-do_miam and Supervertex Graph can be seen from the figure, every route connecting the
or | Par (v, vy )| = source “src” and the destination “dst” has to go through the
same sub-domains, 2, 3 and the backbone edgésand
2 connecting those sub-domains. Hence, in the superver-
graph between two backbone-edges is called a “sub-routefex graph, all routes collapse to a single route that traverses
or a “child-route”. across3 supervertices.
Definition 3 (Parent Route). The route in the supervertex Next, we WOl.JId I|k§ to determine the routgs mternal 0
ach sub-domain. Using the same example in Figure 2, we

graph that connects the source and the destination superveﬁ ) .
tices is called the “parent route” of the “sub-routes” inter- uild a complete route between the source and the destina-

nal to each supervertex of the (supervertex) graph. tion by selecting a sub-route within each sub-d_omain th_at
connects the backbone edges. We can have multiple possible
According to the above definitions, each parent route hashoices of sub-routes inside each sub-domain. If the selec-
sub-routes within each supervertex it connects. Using th#n of the sub-route in one sub-domain does not affect the
same notationPq (v;, v,) denotes the set of parent routes,same at another, we say that the sub-routes can be cimesen
and each element ifig (z,y) consists of a concatenation of dependentlypf each other. Based on that, we state Lemma 2
the edges from a route iRg (v}, v;) and its sub-routes one under the situation where we would like to determine a route
from each of the supervertices it traverses. As an examplef a particular bandwidth for a flow.
in the case of the Internet, border vertices denote the ed

routers that connect two sub-domains, a parent route re .
P P ute pg (vl,,vl) € Pg/(vl,v]) in the supervertex graph

sents a route corresponding to “Inter-domain routing” anfP 7y x2 7Y

a sub-route represents that corresponding to “Intra-doma‘f}‘nith a fixed capacity (bandwidth) requirement, the sub-

routing”. routes inside each sub-graph can be chosen independently

Next, we state Lemmas dealing with route selection for gf each other.
given flow with a fixed capacity (or bandwidth) constraint. proof. Let us consider a hierarchical Graygh consisting

Lemma 1 (Backbone edge and Route selection)f all  of multiple induced subgraphs and backbone edges joining

routes in Pg(xz,y) share the same set of backbone edgedhem. The source node and the destination node of a par-
in GraphG, then| Pg: (v}, v},)| = 1. ticular task are denoted by andy respectively. Any route

) pe(z,y) € Pg(x,y) traverses a fixed set of subgraphs
Proof. If all routes in P; share the same set of backboneyy, .., g; and a fixed set of backbone edggs, .., L;_;. If
edges, they go through the same set of subgraphs. In the sy;, ..,p,, are the sub-routes in the respective subgraphs
pervertex grapli=’, these subgraphs are replaced by verticeg, .., g; of the routepg(z, y), then we expresgg(z,y) as

fe%mma 2 (Independent Sub-Route Selection)For a fixed



pc(%,y) = pgy - L1 Py - - .- Li_1 - p,, and the correspond- 4.2. Hierarchical Route Discovery
ing per aspar (vl vy) = Ly - ...« Li_1.

The maximum capacity of the route:(z, ) is given by We employ the hierarchical route discovery that is cur-

rently employed in the Internet. We obtain the set of routes
c(pe(x,y)) = min(c(pg, ), (1), .., e(Li-1), c(pg,)), for a task at its highest.levell of network hierarchy. .Next, for
() each of' thg (super)vertices in each route, we obtain the ;ub—
and that ofpe (v, v/,) is given by routes inside the subgraphs represented by those vertices.
ey The process starts with the highest level of the task and con-
c(par (v, v,)) = min(c(Ly), ¢(Lg), ...,c(Lyi—1)).  (5) tinues to the lowest level of the hierarchy. From Lemma 3,
if we would like to determiney;;,, number of sub-routes for
Combining Equations (4) and (5), we obtain: each sub-domain, the complexity of hierarchical route dis-
) covery isO(pn:,), wherep is the number of sub-domains.
= clpa(w,y)) < min(c(pg,), c(pg2); -+ ¢(Pg.), () On the other hand, a flat route discovery will have the com-
= clpa(z,y)) < clpg,), VI<i<l () plexity of O(n?, ) for the same set of routes.

This shows that selecting edges inside each subgraph Selective Routing
can.be performed independently under a fixed capacity con- As proved in Lemma 3, the hierarchical scheme is able to
straint. reduce the complexity of the route discovery process. How-

Delay and Hierarchical Routing_.emma 2 holds true when €Ver, it does not reduce the over_all number of routes pe_rtask.
delay is not considered. The approximated delay is the malfi order to reduce the complexity of the Q-RAM optimiza-
drawback of hierarchical routing [10]. In order to satisfy thelion, we must also limit the number of routes per task.

delay constraint in terms of the number hops as mentioned The route discovery process employed in our scheme is
in Section 3.1, we divide the delay requirements equally iféveloped in three phases, starting from generating the ex-
each subgraph falling in the route, similar to what is done iRaustive lists of routes for each task to a smart discovery of
8]. a fewer routes, with the aim of improving on the execution

Based on Lemma 1 and Lemma 2, we state a lemma d#ne without incurring any significant loss in overall utility.

the complexity of route selections. 5.1. Broadcast Routing

Lemma 3 (Complexity of Route Selections). Sup- Broadcast routing is the basic approach that uses flooding

pose all routes inPg(z,y) share the same set of back-from the source across the network to determlieossi-

bone edged.s, ..., L;—1, and hence the same set of sub4le routes to the destination. It assumes that each node only

graphsgi, . .., g, in GraphG. Furthermore, suppose that the knows its neighbors. This process can potentially yield an

set of edges for the route within a subgraphcan be cho- exponentially large number of routes, and can therefore be-

sen ins; different ways under a bangwidth constraint. Thercome intractable as the size of the network increases.

the number of possible routes Hi:ﬁi and the num- 5.2. Smart Route Discovery

ber of computational steps required to choose a route is

Zézl S;. Instead of choosing all possible routes between a source
and a destination, we would like to select only a fegstor

Proof. Using the notation from (4), the set of linkg, satis-  |east-cost routes. We use a metric calRadite Count Thresh-
fying the bandwidth constraint from the sub-graptcan be g

chosen irs; different ways. From Lemma 2, for each choice
ways and so on. Therefore, the maximum number of posdfreshold is defined as the maximum number of choices of
ble ways a route can be selected s X 5 = Hl s, routes for a particular source-destination pair.

cooxsp =11 sie

Next, the number of steps required to chooserthar- We denote this limit byy,,. We assume that the number
optimal set of edges inside a subgraph(sub-route) iss;.  of hops is the measure of the cost of a route. Using this prin-
Since all routes map to a single route in the supervertex d@'rple, forn,, = 1, the only route between the source and
main, Lemma 2 proved that the selection of edges in eagRe destination is the shortest one. In our routing scheme that
subgraph can be done independent of each other undega call “Smart Route Discovery”, we use a modified version
fixed capacity requirement. Therefore, the maximum numbeyf the Bellman-Ford algorithm within each sub-domain of
of steps required to choose a suitable routg is ... +s, = g network, where we determing, shortest routes for each
Sy sie source-destination pair.

5 5.3. Route Caching
Based on Lemma 3, we describe our hierarchical route |n g distance vector routing algorithm a router learns

discovery method next. Later, we will also discuss how itoutes from neighboring routers’ perspectives and then ad-
also assists in hierarchical QoS optimization.



vertises the routes from its own perspective. We implement
areactivedistance vector routing protocol in our simulation.

Composite set-point

According to this protocol, each node (router) is initial- Siu,q, <<R>,, <R>s>,h, + h,
ized with the routes of its next hop neighbors. The algorithm _ I -
discovers routes of a task starting from its source. Once a Subsreph setTpoint s set-point

route is established, each node across the route adds the en-
try to its routing table. The existing routing table, in turn, is
exploited in route discovery. During this process, at any in-
termediate node, we sort the neighboring vertices in increas-
ing order of the minimum cost of routing to the destination
based on their routing tables, and reject the neighbors with
more expensive routing in their tables once the number of Figure 3. Compound Resource Composition
routes reaches the limjt;,. This algorithm can provide a po-
tentially sub-optimal route compared to the exhaustive dis- )

covery of the best routes. Therefore, we would like to us€: = Bi x Di, x P, for these tasks, wherE;  is the set
this routing information to assist in this step only after wePf Sub-routes inside the subgrapland D;, is the delay as-
finish discovering routes for a sufficient number of tasks. Wéigned for the route inside subgraphAs mentioned before,
define a parameter calléhsk Count Threshold;,, which 2 set-point consists of a utility value, a corresponding QoS

should besufficientlylarge so that the optimality of the solu- |€vel and a resource vector specifying the route inside the
tion does not reduce significantly. subgraph and the bandwidth requirement of the links of that

o route. Thus each task has distinct profiles within each sub-
Definition 5 (Task Count Threshold). The task count graph.

determined by exhaustive search using only the next-hRsing compound resource values, we prune the list of set-
routing information for each node. points and discard the ones that are “inefficient”. A set-point
is called inefficient if it has a larger compound resource value
than another point at the same utility level. In other words,
So far, we have discussed a single centralized optimizif-we have multiple set-points for a particular value of util-
tion scheme that distributes bandwidth among tasks. Inig, we keep the one that has the smallest compound resource
large network, a centralized scheme is likely to be infeasivalue and discard the rest. If there is more than one set-point
ble. In addition, it may not scale well with a very large num-with the same minimum compound resource value at a util-
ber of tasks. In the next section, we will describe a hieraiity level, we keep all of those points as co-located set-points
chical QoS optimization technique that exploits the inherer|g].
hierarchy of the network. It can also be distributed acros . . .
the entire system, thus making the QoS optimization feas .1.2. Creation of Composite Profiles\We next merge the

ble and scalable for a large network using a large number BfOf!leS of multiple subgraphs or sub-dom.alns Into a §|ngle
tasks or flows. profile for each task. First, we choose a single set-point for

. ) . each utility value from each subgraph for each parent route,
6. Hierarchical QoS Optimization and thencombinethe compound resource values of all sub-

In this section, we present H-Q-RAM for networks thatdraphs. Since all the resources in this case are considered
utilizes the hierarchical architecture of networks [17]. W0 be of identical type (as network links), the compound re-
confine our discussion to on/levels of hierarchy for ease Source of the global set-point of a task spanning two sub-
of presentation. The process is divided into two major step§faphsy: andg. is given by:

They are: (1) hierarchical concave majorant operation, and b Cho4h ®)
(2) distributed resource allocation. The process is described comp = Ttg1 927

in detail in the following sections. whereh,, andh,, are the compound resource values of the
6.1. Hierarchical Concave Majorant Operation task(or flow) at its particular quality setting in the two sub-

This process is divided into two steps. First, we genelgomamsg1 andg. The generation of a composite set-point
’ isdllustrated in Figure 3, where the local set-points of the

ate separate profiles for each task in each of the sub-doma|ﬁ§t|) h 't . R b q
containing its sub-routes. Second, we combine informatiop°9"@Phs are assumed to(lsg, : u, g, < R >, hg, ) an
Sg, 1 u,q,< R >4,, hy,) for a particular value of utility.

from each sub-domain and update the set-points. ;
and quality level.

6.1.1. Creation of Multiple Profiles At the lowest level We determine the concave majorant of these global set-
for each sub-graph, we obtain the set of tasks whose routpsints after that. Next, we replace the compound resource
include the sub-graph. Next, we generédeal set-points values of the local set-points in each sub-domain by the cor-

5.4. QoS Optimization in Large Networks



------- — sub-problem. Such tasks must be assigned the resources to
/ \ achieve thesameutility value (or quality setting) in all the
SR sub-problems that they are present in. This requires coordi-
\// oprimization nation between these sub-problems, since a resource alloca-
\ // tion in one sub-domain may be infeasible in another sub-

domain. In this context, we define three parameters.

", Global Information Transaction

Definition 6 (Local Task). A task is called a local task if its
source and destination nodes are in the same sub-domain.

Figure 4. Distributed QoS Optimization Definition 7 (Global Task). A task is called a global task
if its source and destination nodes are in different sub-

: . domains.
responding composite compound resource values. For exam-

p|e, as shown in Figure 3, the Set_points for a task in SutpEﬁnition 8 (Locallty of TaSkS). The |Oca|ity is the fraction
graphsg; and g, are changed froniS,, : u,q,< R >,  Oftasks thatare local,

shg,) and (S, : u,q,< R >g,,hg,) 10 (Sg, ¢ u,q,< 621, Distributed Negotiation The resource allocator in

R >g,,hg, + hg,) @nd(Sg, : u,q,< R >g,,hg, + hg,)  each sub-domain sequentially goes through its slope list. If it

respectively. In addition, since the concave majorant opefinds the set-point in the list belonging to a local task, it de-

ation eliminates set-points, a few global set-points may b@mines its feasibility of allocation locally, and accepts or

discarded. In that case, we also discard the corresponding |@jects it based on the availability of local resources. Hence

cal set-points in the subgraphs. it works independently for local tasks assuming that the best
Finally, we merge all the local set-points of tasks in eachoyte for a local task Is available within the sub-domain it be-

sub-domain to create lists of set-points caliéape list$6],  |ongs to.

which are going to be traversed for resource allocation pur- \when the allocator comes across a set-point of a global

poses. The set-points in the slope list are ordered by increagsk that needs to have a route spanning multiple subgraphs,

ing slope or marginal utility values. it does the following. First, it checks if the corresponding

lobal set-point has already been rejected. It happens when

for Each sub-domain in the netwodo 9 h F;J d in th .y. lud dJ in th PP f
for Each task in the sub-domaifo another sub-domain that is included in t e parent route_ o
Determine set-point§); = B; x D; X Py(i) ; the task fails to allocate the corresponding local set-point.

/1Pg(2) = number of sub-routes for task i In that case, the current allocator also discards the set-point

in the domain; . . .

end and moves on. Otherwise, it marks the set-point as allocable
end and waits until every other sub-domain along the route de-
for Each taskin the entire netwodo cides the allocations of their corresponding set-points. Dur-
Generate global set-points by combining compound resource at ing this time. it goes to sleep and and wakes up only when all
each utility level, ! . ) . . .
Perform concave majorant on g|oba| set-points; other sub-domains make their decisions. Upon Wak|ng up, It

end checks if the allocation has been successful. The allocation

for Each sub-domain in the netwodo ;
for Each task in the sub-domaifo becomes successful when all sub-domains are able to allo-

Discard the set-points whose global counter-part has been  Cate their corresponding local set-points that complete the

eliminated by concave majorant operation; route with a specific utility value. The allocation is unsuc-
end - . ) . _cessful if one of the sub-domains fails. Upon a successful
Merge the remaining set-points of all tasks in the sub-domain in a . o . . .
single list; allocation, it finalizes the local allocation. Otherwise, it re-
end jects the initial tentative allocation. Next, it proceeds further

for Each sub-domain in the netwodo
Execute transaction-based resource allocation as described in

Figure 15; 6.2.2. Deadlock Avoidance in NegotiatiorSince allo-
cators negotiate the allocation for set-points belonging to

Algorithm 2 : Hierarchical Distributed QoS Optimization global tasks, it is important to ensure that a deadlock never

happens. Since an allocator follows the slope list that is or-

6.2. Transaction-based Resource Allocation dered in the increasing marginal utiftyalues, it is fea-
sible to have the same marginal utility values for multiple

We perform concurrent resource allocation within eaclet-points belonging to different tasks or flows or for differ-

sub-domain. Thus, the entire global resource allocation pront routes of the same task. In that case, we must implement
lem is partitioned into multiple sub-problems within each

subgraph, similar to the Situati_on in [6]. However, the SUb_B The marginal utility of a task is defined as the ratio of the difference
problems are not completely independent of each other in  between the utility values and the compound resource values between
this case, since some tasks may be present in more than onefWwo successive set-points of different utility values.

to complete the operation of QoS-based resource allocation.

end




an ordering mechanism of set-points to avoid any dead- From the expression, in the worst case, when every task
lock. has a profile in every sub-domain, we have= n. Then,
We implement two levels of ordering to avoid the deadthe complexity of H-Q-RAM ishigherthan that of Q-RAM.
lock. First, we assign a global number to each flow or task the best case, which corresponds to the case when every
in the entire network. This global number can obtained asftow is a local task that does not span sub-domains, we have
combination of IP addresses of the source and the destina-= n/l, which is better than that of Q-RAM. However, in
tion nodes, and the corresponding port numbers. a very large network (the size of the Internet), it is very un-
Second, we also assign a global number to each “Pardikely that a task traverses across all sub-domains. Therefore,
Route” within a flow. Using these numbers, we resolve th&l-Q-RAM performs better than Q-RAM for practical cases.
contention in the slope list when multiple set-points have th8ince H-Q-RAM computations can be distributed (one node
same marginal utility value. First, we order them in the inper sub-domain), we can further reduce the complexity to
creasing order of their global flow IDs. Next, for multiple O(%|Qm|(1og |Qum|+ 1:k log(ny))). Thus, H-Q-RAM can
co-located set-points of the same flow, we order them in thgcale well with large networks.
increasing order of their Parent Route IDs. For the co-locatef, Experimental Evaluation
points of the same Parent Route of the same task, we do not

require any ordering since their selections are independent Our experimental evaluation is intended to quantify the

in sub-domains, as proved in Lemma 2. The allocation proo_erformance of H-Q-RAM and Q-RAM in terms of the

cess is illustrated in Figure 4 and is detailed by a row—chaH""de'Of.f b(itween 'optlmalltyt an<_j scalability. We focus on
in Figure 15 the appendix. measuring two main parameters:

e the global utility obtained by the optimization, and

6.3. Complexity of Network QoS Optimization o the total execution time of the algorithm.
In this section, we compare the complexities of the Q- First, we investigate the efficiency of our enhancements in
RAM and the H-d-RAM optimization route discovery. We determine how a selective set of routes

obtained through our smart route discovery process can elim-
6.3.1. Q-RAM Complexity Suppose there are tasks inate the necessity of selecting a large number of routes for
in the entire network. Using the same notation as behe optimization purposes. We also investigate the perfor-
fore, let us assume thafQ,,| denotes the maximum mance of the optimization when we vary the paraméigr
number of QoS settingsy;, = max}_,|Ps(i)|. This def- Second, we compare the performance of H-Q-RAM opti-
inition yields the the maximum number of set-pointsmization with respect to Q-RAM optimization.
L = |Q|letass|. Hence, the complexity of the concave ma-7.1. Experimental Configuration
jorant operation i) (n|Q.,|log |@Qm|), and the complexity
of the merging operation i©(n|Q.,||eta.y | log(n)).

Since the complexity of the Q-RAM optimization | QoSdimensions Bandwidth and delay
. h f the comblexities of the concave maio- Length of bandwidth dimension random(1,4)
Is the sum o . p_ J_ Length of delay dimension 1
rant and the merging operation, we have the total complexity [ Minimum BandwidthB,:,,) min((Rayleigh
asO(n lo + letas | log(n Distr. : p = 152 Kbps),

(n|Qm|(log |@m| + [etasn|log(n))) 5000.0 Kbpe)
. o Bandwidth Increment 0.3Bmin

6.3.2. _ H—Q-RAM Complexity For H-Q-RAM,.II’]ItIa| local Maximum Delay random (16, 20) Frops
set-point pruning ha® (In;|Qm|n:n) complexity per sub- Utilities for QoS dimensiond(q)) (0.5,0.7,0.8)
domain, wherd equals the number of sub-domains and -
equals the maximum number of tasks per sub-domain. Un- Table 1. Settings of Tasks

like the Q-RAM optimizations),;, denotes the upper limit on
the number of routes inside each sub-domain for a task.

Next, we have the concave majorant operation that has In order to validate our technique, we generate network
the global complexity of O (n|Q,,|1og(|Q..|)). The second topologies using BRITE [13] a topology generation tool. The
pruning operation after the concave majorant also has th@ndwidth distribution of the network links is presented in
same complexity) (In;|Qm |[nen)- Table 2.

The merging operation requir@8(1n;|Q,, |n:1 log(n;)) The specifications of the tasks are presented in Table 1.
steps, and the distributed transaction requires a maximum &8 seen from the table, the minimum bandwidth is ran-
O(nnen|Qm|) steps per sub-domain.

. . Network topology generator;  BRITE [13]
Wg can now express the generic complexity ex- Intra-domain ink bandwidth 10,0 Mbps
pression for H-Q-RAM, namely: O(in;|Qm|mn) + Inter-domain link bandwidth| 10000.0 M bps

O(n|Qm|10g(|Qm ) +0 (1| @um|nen ) +O (1| Qo nen log (1)) +
O(nimin|@ml) = O(n|Qm|10g(|Qm|)+0 (1| Qm|(log [Qm|+
L5 nen log(ne))).

Table 2. Settings of Networks




domly chosen following a Rayleigh distribution wifh =

route selection scheme yields a much lower utili29.6%

152 Kbps. This distribution ensures a positive value for thefor N = 320) compared to the smart route selection.
minimum bandwidth of any task. For simplicity, we choose Next, we compare smart route selection for different
a single value of delay, which is expressed by a certain maxalues of nth. In this case, we usé values ofrn, as
imum number of hops for a route. The source and the desfit, 2, 5, 80, co]. The valuexo signifies that all possible routes
nation nodes of a task are chosen randomly across the entie chosen for each source-destination pair. The plots of util-

network. The experiments are performed ch(aG H = Pen-

tium IV processor withv68 M B of memory.

7.2. Performance Evaluation of Selective Routing
In this section, we evaluate the performance of the sele(j‘\—,

tive routing algorithms.

0 | |

T T T~
Random Path Discovery——
Smart Path Diseovery----- —

ity against the number of tasks are shown in Figure 6. The
“nen, = 00" case is shown by the bar graph instead of a line.

From the bar graph, we observe that we do not have any
data beyondV = 40 for 1, = oco. This is because for
> 80, the route discovery and the optimization processes
become intractable. This is further confirmed by its steep rise
in execution time as shown in Figure 7.

On average, the utility increases@g increases since it
provides more alternative routes for each task. However, the
difference between utilities gt;, = 5 andn;, = oo is statis-
tically insignificantk 0.09%), whereas the reduction in ex-
ecution time fory,;, = 5 is 93.6% (or, 15.6 times). Overall,
we observe 89.997% (or, 38239.4 times) reduction in exe-
cution time forn,, = 5 relative ton;, = oo when the num-
ber of tasks ist0. Even forn,, = 2, the reduction in util-
ity is only 3.57% relative ton;;, = 80 for 640 tasks, with a
run-time reduction 096.9%.
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Figure 6. Utility and Number of Routes

7.2.1. Results on Smart Route Selectiofn this experi-
ment, we demonstrate the effectiveness of smart route selec-
tion as described in Section 5.2.

First, we compare the smart route discovery algorithm
with the random route discovery algorithm, where we ran-
domly selecty,;, routes out of all possible routes. We vary
the number the number of tasks in the system in geomet-
ric progression a®v = 10, 20,40, ..., 640. We plot the ac-
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Figure 8. Percentage Utility Drop with
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crued utility against the number of tasks f@f, = 5 under
both schemes in Figure 5. The results show that a random
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Net-ID | Sub-domains| Nodes | Links 7000.0
1 5 100 207
2 8 160 334 6000.0- n
3 15 450 930 5000.00 |
4 20 600 | 1240
Table 3. Specifications of Networks 4000.0|- s

3000.0

Execution Time (sec)

7.2.2. Results on Route Cachingrhis experiment demon- 200001~

strates how caching route information helps in reducing the 10000}
execution time of the optimization. In this case, we fix the 0 L
number of task$V to 640 and vary the parameter Task Count 0 2000 4000 6000 8000 10000 12000
ThresholdT},,. Figure 8 shows the percentage drop in util- _. _ NumberofTasks
. ) Figure 11. Run-Time in a Host for Q-RAM and
ity for different values off};;, compared to the same under no H-Q-RAM
Route Caching, of;;, = co. The value ofy,,, is kept con-
stant at.

We observe that even f@f;, = 1, for example, we start
expl9|t|ng route discovery mforr_naﬂon right after the f'rStSpo er of2. Figure 10 shows the variation of utility between
task’s routes have been determined. The percentage 10ss 0l

N AM and H-Q-RAM against the number of tasks. Fig-
utility is less than3%. On the other hand, we also ObServe o 17 ghows the variation of execution time against the num-

a huge drop in execution time>( 60%) as shown in Fig-
ure 9. Using the route caching technique, the route diSCO\?—er of tasks.
) 9 g que, We observe that H-Q-RAM reduces the optimization time

ery time per task will reduce with time as nodes keep addin]%r 10,240 tasks by64% while incurring a utility reduction

more entries to their routing tables. In other words, we Calk |ass thare% utility than Q-RAM. From Figure 11, we also

claim that in a dynamic scenario, in steady state, the opli e e that the difference between Q-RAM and H-Q-RAM
mization timedominateshe I‘Ol..lte d'SCOYery t|m.e. _increases further with the increase in the number of tasks.
7.3. Performance Evaluation of Hierarchical Opti-

mization

between100 and 10240 in a geometric progression with a

Implementation ConsiderationsAs can be seen from Fig-
ure 11, the execution time of the optimization increases ex-

In this section, we evaluate the performance of Hierarchponentially for a large number of tasks to be deployed in
cal QoS optimization. We use levels of hierarchy for our larger networks. This is because the simulation becomes
experimental evaluation. We use the same specifications wfemory-intensive under this situation and hence many page
tasks as mentioned in Table 1. In order to validate the uséults and swapping operations cause the non-linear (expo-
fulness of H-Q-RAM, we use larger networks, consisting ohential) increase in the execution times. Consequently, it be-
5, 8, 15 and 20 sub-domains respectively. Their specifica-comes difficult tesimulatethe hierarchical optimization of a
tions are presented in Table 3, and their bandwidth distribwery large network in a single host, as the memory require-
tions as specified in Table 2. For these large networks, we useent for the optimization process also increase. This effec-
nen, = 2, andTy, = 1, since these settings have provided reatively suggests the necessity of studying the performance im-
sonably good utility values( 5%) with great reductions ex- provement of distributed transaction-based optimization us-
ecution time for smaller networks. ing H-Q-RAM. The execution time for H-Q-RAM will be

In the first experiment, we use Network 3 from Table 3reduced further if the optimization is distributed over multi-
In this case, we vary the number of tasks for optimizatiople hosts. This will be the only option available, since run-



N performs better than Q-RAM and the significance of local-
I

> Number of SUbNets=5—— ity on this performance decreases.

5 e Nemoor of Supnotocse The above experiment shows that H-Q-RAM provides a
s significant gain in performance when (a) the size of the net-
z ef N work is large, and (b) the locality of the tasks is high. These
:é results are in agreement the complexity analysis of H-Q-
& RAM.

§ In Figure 14, we also plot the number of transactions
a

against the locality of the tasks. As expected, the number

0 ! ‘ ‘ ! * ‘ : of transactions decreases with the increase in task locality.
10 20 30 40 50 60 70 80 90 . .
Locally of Tasks(%) However, we observe a larger number of transactions with
Figure 12. Percentage Utility Loss with Number of Sub- the increase in the size of the network. This affects the abso-
domains lute execution time of H-Q-RAM in our simulation due to a

large number of switching among optimization threads and
the consequent page faults.
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Figure 13. Percentage Run-Time Reduction Locality of Tasks (%)

with Number of Sub-domains Figure 14. Number of Transactions for 6400
Tasks with the Number of Sub-domains

ning the Q-RAM optimization for all the tasks in a single
host becomes intractable.

Next, we measure the performance of H-Q-RAM relative Based on the above results, we conclude that H-Q-RAM
to thelocality of tasks in different sub-domains. From ourPerforms well for large networks compared to Q-RAM,
complexity analysis, we know that H-Q-RAM performs besﬂ/vhmh makes it feasible to employ QoS-based optimization

when the source and the destination of a task are confinéylarge networked environments. However, we also observe
within a single domain, which in turn also eliminates transthat the number of transactions also increases with the in-

rease in the size of the network. Therefore, we would like

actions between sub-domains during the optimization ste _ )
In this experiment, we keep the number of tasks constant reduce the number of transactions for future implementa-

6400 and vary the locality of tasks betwe@# and96% and ~ UONSs.
measure the performance of Q-RAM and H-Q-RAM. The re .
sults are taken for Networkis 3 and4 from Table 3. 8. Concluding Remarks
Figure 12 plots the percentage loss in utility under H-Q- In this paper, we have discussed a resource allocation
RAM, which does not exceed.5%. In addition, the loss scheme for a networked system based on Q-RAM. First, we
drops with the increase in the locality of the task and witlproposed several pruning algorithms for smart route selec-
the increase in the size of the network. tions that makes the basic optimization more scalable with-
Figure 13 plots the percentage gain in execution time urout any significant loss in the optimality of the solution. Our
der H-Q-RAM. As seen from the figure, H-Q-RAM actually main goal was to analyze the trade-off between optimality
has20% higher execution time undéfs task locality for the and the execution time of our QoS optimization. Although
smallest network (Network 1 with 5 sub-domains). Howeverthe specific values may vary depending on the topology, re-
itincreases with the size of the network as well as with the lostricting the maximum number of routes only 2aeduces
cality of the tasks. Moreover, the rate of increase in percenthe optimality only by5%. In addition, exploiting the cached
age gain decreases with the increase in the size of the netute information across the network becomes more useful
work. In other words, for a very large network, H-Q-RAM as the size of the network increases.



Next, we presented a transaction-based hierarchji4] Abhay Parekh and Robert G. Gallager. A generalized processor shar-
cal scheme (H-Q-RAM) that can make the problem more ing approach to flow control in integrated services networks: the sin-
lable b loiti h f hi hy i t gle node caselEEE/ACM Transactions on Networkingages 344—

scalable by exploiting the presence of hierarchy in net- 357 jyne 1993,
works. The performance of H-Q-RAM improves with the in- [15] Charles L. Hedrick Rutgers. Cisco white paper: An introduction to
crease in the size of the network and the locality of the igrp. _ _
tasks. We also observed that the simulation is memory if28] !. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing:
. . . . . . ’ Achieving approximately fair bandwidth allocations in high speed

tenswe_, and |t' becomeg mcreasmgly expensive in a single  networks. InProceedings of SIGCOMM'98.998.
host with the increase in the size of the network. Theref7] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple con-
fore, a centralized scheme becomes infeasible for a network ceptual model for the internet topology. 6th IEEE Global Internet

. . . Symposiun2001.
with the size of the Inteme?' Since H__Q_RAM can be_ €X€118] Lixia zhang, Stephen Deering, and Deborah Estrin. RSVP: A new
cuted concurrently on multiple machines using distribute resource ReSerVation protoctEEE network 7(5):8—18, September
transactions, it can be run in parallel to address large net- 1993.
works. In addition, we would also like to reduce the num-
ber of transactions which increases with the size of the
network. This can be done if we can aggregate multi-
ple tasks into a few “super-tasks” and perform transactions
for “super-tasks”. Hence our future work will investigate ef-

ficient methods of task aggregation.
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