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Abstract

In this paper, we study the problem of allocating end-to-
end bandwidth to each of multiple traffic flows in a large-
scale network. We adopt the QoS-based Resource Allocation
Model (Q-RAM) [9], whereby each flow derives an utility
based on the amount of its allocated bandwidth. Our goal
therefore is to maximize the total utility derived across all
network flows. The NP-hard nature of the resource alloca-
tion problem is compounded by the need to select an appro-
priate path between each source-destination pair. We pro-
pose a hierarchical decomposition scheme that allows the
resource allocation problem to be solved in a decentralized
and scalable fashion. The hierarchy we use is based on a
(natural) partitioning of the network into subnets, with re-
source allocation decisions made on a subnet-by-subnet ba-
sis. A novel distributed transaction scheme is used to ensure
that resource allocations are consistent across all the sub-
nets traversed by each flow. We provide both analytical and
experimental evidence to show that our scheme is very scal-
able and yet does not sacrifice the quality of the allocations.

1. Introduction

Examples of distributed networked systems include the
Internet, sensor networks, autonomous systems and overlay
networks. In order to provide QoS to tasks executing on these
systems, we need to guarantee the allocation and schedul-
ing of resources. The resources include computational cy-
cles, storage andnetwork bandwidthacross aroutebetween
the source and the destination. For example, a typical video
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transmission application requires a certain amount of net-
work bandwidth and CPU cycles from various network links
and routers respectively. Higher quality in terms of its frame
rates and resolutions requires a greater quantity of these re-
sources.

For a large number of tasks to be deployed on a system
consisting of a large number of resources, we designed a hi-
erarchical scheme in [6] that provides near-optimal resource
allocation in a scalable manner. The hierarchical technique
divides the problem into smaller independent sub-problems.
Specifically, it divides the system into identical subsystems,
assigns tasks to these subsystems in an equitable fashion so
that each subsystem obtains an (nearly) identical number of
tasks of the sametype, and then makes resource allocation
decisions within each subsystemindependently. Implement-
ing this scheme on a networked system, however, presents
two major difficulties. First, it is difficult to divide a net-
worked system into a number of identical subsystems if the
architecture is heterogeneous (even if it is hierarchical). Sec-
ondly and most importantly, it is not possible to isolate the
subsystems in the network. This is because the route of a task
can potentially span a very large number of links and routers
over the entire network. If we consider each network sub-
domain as a subsystem, many tasks can have routes across
multiple sub-domains and thus the resource allocation in one
subsystem may be dependent on that obtained in another
and vice versa. Hence, multiple subsystems need tonego-
tiate with each other in order to determine near-optimal re-
source allocations.

2. Related Work

There have been several contributions in the field of QoS
in networks, especially in the context of the Internet and
ATM. These contributions to network QoS are coarsely di-
vided into four categories: (1) the selection of a route be-
tween the source and the destination, (2) the bandwidth reser-
vation across the route, (3) the scheduling of network pack-
ets at each router across the route and (4) the choice of QoS-
based resource allocation algorithms.

For example, Ma and Steenkiste investigated several route
selection schemes for flows with a fixed bandwidth require-
ment [11]. The goal of their QoS routing is to select a feasi-
ble route if one exists, and the route leading to the best re-



source efficiency is chosen if multiple routes are available.
Nahrstedtet al also made contributions in the field of QoS-
aware routing. First, they used topology aggregation of hier-
archically structured networks in order to provide routing for
tasks involving QoS requirements related to bandwidth and
delay guarantees [3, 10]. In a hierarchical routing, nodes are
clustered into groups, which are further clustered into higher-
level groups, creating a multi-level hierarchy. Second, they
also presented distributedticket-basedrouting, which is de-
signed to work with imprecise state information [2]. As a sig-
naling protocol for network bandwidth reservation,Resource
ReserVation Protocol(RSVP) is a popular example[18]. It
provides a mechanism to establish a reservation over a route
between the destination and the source. It is designed to work
in conjunction with existing routing and scheduling proto-
cols. There are also many QoS-aware packet scheduling dis-
ciplines available as extensions of the Generalized Processor
Sharing algorithm [14], and otherwise [12][8][5].

2.1. Our Contribution

In the context of network QoS, we make our contribution
in network bandwidth allocation and route selection. How-
ever, our model differs in two fundamental ways. First, our
Q-RAM-based QoS model allows a task/flow to specify mul-
tiple levels of bandwidth and delay requirements for differ-
ent levels of service. Second, our resource allocation scheme
determines the allocation of anear-optimalroute and anear-
optimal network bandwidth along the route for each flow.
The scheme relies on a signaling protocol such as RSVP and
packet scheduling policies across the network in order to sat-
isfy the network bandwidth reservation. In addition, it can
also exploit the existing routing protocols to perform effi-
cient optimization.

3. Modeling of Networked System

In this section, we describe our model of a distributed
networked system. We first briefly describe our generic re-
source allocation model based on Q-RAM. Next, we intro-
duce a graph-theoretical model of the network and demon-
strate how to formulate and solve the network QoS optimiza-
tion problem in Q-RAM.

3.1. Network Model and QoS

We assume the network is a distributed system consist-
ing of multiple resources where each resource corresponds to
the link capacity in terms of the available bandwidth of the
link1. We consider a set of tasks or flows that transfer data
from one node in the network to another. Each task has a set
of QoS set-points in terms of bandwidth and delay require-
ments. In addition, there is a utility associated with each of
its set-points. In general, a higher bandwidth provides higher
quality and hence higher utility for a task. If a network is

1 It is relatively straightforward to extend our formulation to include pro-
cessing resources but we do not do so for simplicity of presentation.

modeled as an undirected graph, these tasks can be mod-
eled as flows across the graph with variable capacity require-
ments.

Q-RAM optimization in a network works as follows. Us-
ing the edges of the graph as network links with a certain
amount of bandwidthR, we construct a resource capacity
vector ~R = R1, . . . , Rm wherem is the total number of
weighted edges of the graph andRi is the bandwidth of the
ith edge. We enumerate the operational dimensions of each
task as follows.

3.1.1. Set of bandwidth settings :The number of choices
of bandwidth settings of a taskτi is given by:

Bi = {bi1, · · · , biNB
i
}, (1)

where,NB
i = number of possible bandwidth settings for task

τi. The bandwidth maps directly to the resource requirement
on the network link.

3.1.2. Set of delay settings :The number of choices of de-
lay settings ofτi is given by:

Di = di1, · · · , diND
i

, (2)

whereND
i = number of delay levels forτi.

The network delay encountered by a flow is dependent on
the value of total bandwidth (or speed) of the network link(s)
used. It is expressed as the sum of three components: (1) cir-
cuit delay (propagation delay of 1 bit), (2) transmission de-
lay, and (3) switching delay [15]. The switching delay is the
dominant factor in the overall delay, which is in turn depen-
dent on the scheduling policies across the routers. Since our
QoS model deals with resource allocation that separates it
from the scheduling concern at the lower level, we only need
to consider the bandwidth of the links for our model. We as-
sume that once the bandwidth has been allocated, the router
will have enough processing cycles to process the packets
between its incoming and outgoing links, and its lower level
packet scheduler can schedule the packets appropriately so
that each flow meets their deadlines2. In other words, we ex-
press delay as the number of hops along a route in this pa-
per.

3.1.3. Set of routes :The number of choices of routes of a
taskτi is given by:

Pi = pi1 × · · · × piNP
i

(3)

For a connected graph, we always have|Pi| ≥ 1. The set
of routes can be derived in several possible ways. For ex-
ample, in order to determine all possible routes between a
source and a destination, the source node can broadcast its
route discovery request to all of its neighbors. If a neigh-
bor is not the destination node itself, it forwards the request
to its other neighbors.

2 A lot of work in packet scheduling has been done in the past with vary-
ing degree of schedulable utilization bounds on the routers [16, 8, 5].



3.1.4. Basic Q-RAM Algorithm By combining Equa-
tions (1), (2) and (3), we obtain the set-points of the tasks
{Si : Bi × Di × Pi}. The utility of a set-point is ob-
tained from the QoS dimensions as{Bi → u}, while
the corresponding resource requirements are obtained
as {Bi × Di × Pi → R}. Thus a set-point is repre-
sented by{qj , uj , (rj1 , . . . , rjm), hj} where

qj = Quality level,

uj = Utility level,

(rj1 , . . . , rjm
) = resource vector representing resource

requirement at each edge of the system, and

hj = compound resource describing the cost of allocat-
ing resources.

The procedure is detailed in Algorithm 1. It is the most

input : profiles of tasks with bandwidth and network routes
output : route and bandwidth allocation of tasks by maximizing util-

ity
for Each taski = 0 to n do

Determine QoS points as bandwidthsBi;
DeterminePi as the set of resource options ;
Generate set-pointsSi = Bi ×Di × Pi for τi and map to
resource requirementsSi → R in terms of link bandwidths;
Determine “compound resource” as a scalar cost metric for each
set-point;
Determine concave majorant of the set-points based on their
(compound resource, utility) values and the corresponding
gradient;

end
Merge set-points ofn tasks with decreasing values of their gradients;
Perform a global resource allocation starting with the point of highest
gradient;

Algorithm 1 : Basic Global QoS Optimization For Networks

direct way of solving the problem of network bandwidth al-
location in Q-RAM. However, there are two main drawbacks
to this approach.

First, it requires each task toenumerateall of its set-
points, which, in turn, requires them to determine all pos-
sible routesPi between the source and destination. As the
size of the network increases,|Pi| increases exponentially,
and the complexity of the whole route discovery process su-
persedes the complexity of the optimization, making the pro-
cess intractable for large networks. Therefore, we must use
an efficient route discovery technique that can exploit the ar-
chitecture of the network, namely hierarchical route discov-
ery [7][10].

Second, suppose that each task has asmall set(≤ 10 for
example) of QoS levels for the sake of simplicity. Even in
this case, sincePi is the enumerated list ofall routes between
two nodes in the network, it can potentially be very large.
Therefore, we must select a few routes to make the prob-
lem tractable. The challenge is to pick these few routes such
that the resulting utility is close to what would be achieved if
the exhaustive lists of routes were considered.

4. Hierarchical Network Architecture

In this section, we first formulate the hierarchical net-
work architecture using Graph-theoretical techniques. Next,
we describe how this formulation can be used in decompos-
ing our optimization process.

4.1. Graph-Theoretical Representation

We follow the description of the hierarchical network
model as presented for the Internet [1, 7, 17].

The entire network is represented as a connected undi-
rected graphG = (V,E) as shown in Figure 4.1, where
V denotes the set of vertices andE denotes the number of
edges. The nodes or vertices of a graph represent switches,
and the edges represent links. Thebandwidth across each
link ej is expressed as thecapacity cj of an edge in the
graph. If the network is hierarchically organized,Gp repre-
sents the network architecture at a particular layerp.

The nodes get clustered to form the graph of the next
layer. The nodes of the same layer that are clustered into the
same higher layer are said to belong to the samepeer group
[4]. At a particular layer, a set of edges partition the graph
into multiple induced subgraphs, whose vertices form peer
groups. This set of edges defines the edges of the graph at
the next higher layer. We call these edgesbackbone-edges. If
two subgraphs are connected by a single edge, their connect-
ing backbone-edge becomes a cut-edge of the graph.

If we collapse all the vertices and edges of a subgraph
Gi of G into a single vertex, it is called asupervertex. Thus
the graph at a higher layer is the supervertex graph of that
of the next lower layer. This layered architecture is illus-
trated in Figure 4.1. Expanding each supervertex at any layer
reveals the entire network of nodes in that subgraph at the
lower layer.

Let us consider a task that sends data from a source node
x to a destination nodey. We definePG(x, y) to be the set
of all possible routes fromx to y. For a connected graph, we
have|PG(x, y)| ≥ 1. Let us also definepG(x, y) ∈ PG(x, y)
as a particular route fromx to y. This is formed by con-
catenating a set of edges that connectx andy. This includes
the edges inside multiple sub-graphs and the backbone edges
connecting them. Let us assume thatVx andVy are sets of
vertices of two subgraphs ofG such thatx ∈ Vx,y ∈ Vy

andVx ∩ Vy = ∅. Let the superverticesv′x andv′y of the su-
pervertex graphG′ represent the sets of verticesVx andVy

in the original graphG. By definition,PG′(v′x, v′y) denotes
the set of routes between the superverticesv′x andv′y. There-
fore, for everypG′(v′x, v′y) ∈ PG′(v′x, v′y), there is at least
one correspondingpG(x, y) ∈ PG(x, y).

Definition 1 (Border vertices). The vertices in two differ-
ent induced sub-graphs that are connected by one or more
backbone-edges are known as border vertices.

Definition 2 (Sub-Route). The set of edges of a particu-
lar route connecting two border vertices of an induced sub-
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for |PG′(v′x, v′y)| = 1

graph between two backbone-edges is called a “sub-route”
or a “child-route”.

Definition 3 (Parent Route). The route in the supervertex
graph that connects the source and the destination superver-
tices is called the “parent route” of the “sub-routes” inter-
nal to each supervertex of the (supervertex) graph.

According to the above definitions, each parent route has
sub-routes within each supervertex it connects. Using the
same notation,PG′(v′x, v′y) denotes the set of parent routes,
and each element inPG(x, y) consists of a concatenation of
the edges from a route inPG′(v′x, v′y) and its sub-routes one
from each of the supervertices it traverses. As an example,
in the case of the Internet, border vertices denote the edge
routers that connect two sub-domains, a parent route repre-
sents a route corresponding to “Inter-domain routing” and
a sub-route represents that corresponding to “Intra-domain
routing”.

Next, we state Lemmas dealing with route selection for a
given flow with a fixed capacity (or bandwidth) constraint.

Lemma 1 (Backbone edge and Route selection).If all
routes inPG(x, y) share the same set of backbone edges,
in GraphG, then|PG′(v′x, v′y)| = 1.

Proof. If all routes inPG share the same set of backbone
edges, they go through the same set of subgraphs. In the su-
pervertex graphG′, these subgraphs are replaced by vertices.

Thus all routes inPG(x, y) collapse to having the same set
of supervertices and hence are connected by the same set
of edges inG′. Therefore they collapse to a single route. In
other words,|PG′(v′x, v′y)| = 1.

Let us consider the network of 3 sub-domains illustrated
in Figure 2. The source node is present in Sub-domain 1
while the destination node is present in Sub-domain 3. As
can be seen from the figure, every route connecting the
source “src” and the destination “dst” has to go through the
same sub-domains1, 2, 3 and the backbone edges1 and
2 connecting those sub-domains. Hence, in the superver-
tex graph, all routes collapse to a single route that traverses
across3 supervertices.

Next, we would like to determine the routes internal to
each sub-domain. Using the same example in Figure 2, we
build a complete route between the source and the destina-
tion by selecting a sub-route within each sub-domain that
connects the backbone edges. We can have multiple possible
choices of sub-routes inside each sub-domain. If the selec-
tion of the sub-route in one sub-domain does not affect the
same at another, we say that the sub-routes can be chosenin-
dependentlyof each other. Based on that, we state Lemma 2
under the situation where we would like to determine a route
of a particular bandwidth for a flow.

Lemma 2 (Independent Sub-Route Selection).For a fixed
route pG′(v′x, v′y) ∈ PG′(v′x, v′y) in the supervertex graph
with a fixed capacity (bandwidth) requirement, the sub-
routes inside each sub-graph can be chosen independently
of each other.

Proof. Let us consider a hierarchical GraphG consisting
of multiple induced subgraphs and backbone edges joining
them. The source node and the destination node of a par-
ticular task are denoted byx andy respectively. Any route
pG(x, y) ∈ PG(x, y) traverses a fixed set of subgraphs
g1, .., gl and a fixed set of backbone edgesL1, .., Ll−1. If
pg1 , .., pgl

are the sub-routes in the respective subgraphs
g1, .., gl of the routepG(x, y), then we expresspG(x, y) as



pG(x, y) = pg1 ·L1 · pg2 · . . . ·Ll−1 · pgl
and the correspond-

ing pG′ aspG′(v′x, v′y) = L1 · . . . · Ll−1.
The maximum capacity of the routepG(x, y) is given by

c(pG(x, y)) = min(c(pg1), c(L1), ..., c(Ll−1), c(pgl
)),

(4)
and that ofpG′(v′x, v′y) is given by

c(pG′(v′x, v′y)) = min(c(L1), c(L2), ..., c(Ll−1)). (5)

Combining Equations (4) and (5), we obtain:

⇒ c(pG(x, y)) ≤ min(c(pg1), c(pg2), ..., c(pgl
), (6)

⇒ c(pG(x, y)) ≤ c(pgi
), ∀1 ≤ i ≤ l. (7)

This shows that selecting edges inside each subgraph
can be performed independently under a fixed capacity con-
straint.

Delay and Hierarchical RoutingLemma 2 holds true when
delay is not considered. The approximated delay is the main
drawback of hierarchical routing [10]. In order to satisfy the
delay constraint in terms of the number hops as mentioned
in Section 3.1, we divide the delay requirements equally in
each subgraph falling in the route, similar to what is done in
[8].

Based on Lemma 1 and Lemma 2, we state a lemma on
the complexity of route selections.

Lemma 3 (Complexity of Route Selections). Sup-
pose all routes inPG(x, y) share the same set of back-
bone edgesL1, . . . , Ll−1, and hence the same set of sub-
graphsg1, . . . , gl in GraphG. Furthermore, suppose that the
set of edges for the route within a subgraphgi can be cho-
sen insi different ways under a bandwidth constraint. Then
the number of possible routes is

∏l
i=1 si and the num-

ber of computational steps required to choose a route is∑l
i=1 si.

Proof. Using the notation from (4), the set of linkspg1 satis-
fying the bandwidth constraint from the sub-graphg1 can be
chosen ins1 different ways. From Lemma 2, for each choice
in g1, we can choose the set of links ing2 by s2 different
ways and so on. Therefore, the maximum number of possi-
ble ways a route can be selected iss1 × . . .× sl =

∏l
i=1 si.

Next, the number of steps required to choose thenear-
optimal set of edges inside a subgraphgi (sub-route) issi.
Since all routes map to a single route in the supervertex do-
main, Lemma 2 proved that the selection of edges in each
subgraph can be done independent of each other under a
fixed capacity requirement. Therefore, the maximum number
of steps required to choose a suitable route iss1 + . . .+ sl =∑l

i=1 si.

Based on Lemma 3, we describe our hierarchical route
discovery method next. Later, we will also discuss how it
also assists in hierarchical QoS optimization.

4.2. Hierarchical Route Discovery

We employ the hierarchical route discovery that is cur-
rently employed in the Internet. We obtain the set of routes
for a task at its highest level of network hierarchy. Next, for
each of the (super)vertices in each route, we obtain the sub-
routes inside the subgraphs represented by those vertices.
The process starts with the highest level of the task and con-
tinues to the lowest level of the hierarchy. From Lemma 3,
if we would like to determineηth number of sub-routes for
each sub-domain, the complexity of hierarchical route dis-
covery isO(pηth), wherep is the number of sub-domains.
On the other hand, a flat route discovery will have the com-
plexity of O(ηp

th) for the same set of routes.

5. Selective Routing

As proved in Lemma 3, the hierarchical scheme is able to
reduce the complexity of the route discovery process. How-
ever, it does not reduce the overall number of routes per task.
In order to reduce the complexity of the Q-RAM optimiza-
tion, we must also limit the number of routes per task.

The route discovery process employed in our scheme is
developed in three phases, starting from generating the ex-
haustive lists of routes for each task to a smart discovery of
a fewer routes, with the aim of improving on the execution
time without incurring any significant loss in overall utility.

5.1. Broadcast Routing

Broadcast routing is the basic approach that uses flooding
from the source across the network to determineall possi-
ble routes to the destination. It assumes that each node only
knows its neighbors. This process can potentially yield an
exponentially large number of routes, and can therefore be-
come intractable as the size of the network increases.

5.2. Smart Route Discovery

Instead of choosing all possible routes between a source
and a destination, we would like to select only a fewbestor
least-cost routes. We use a metric calledRoute Count Thresh-
old.

Definition 4 (Route Count Threshold). The route count
threshold is defined as the maximum number of choices of
routes for a particular source-destination pair.

We denote this limit byηth. We assume that the number
of hops is the measure of the cost of a route. Using this prin-
ciple, for ηth = 1, the only route between the source and
the destination is the shortest one. In our routing scheme that
we call “Smart Route Discovery”, we use a modified version
of the Bellman-Ford algorithm within each sub-domain of
a network, where we determineηth shortest routes for each
source-destination pair.

5.3. Route Caching

In a distance vector routing algorithm a router learns
routes from neighboring routers’ perspectives and then ad-



vertises the routes from its own perspective. We implement
a reactivedistance vector routing protocol in our simulation.

According to this protocol, each node (router) is initial-
ized with the routes of its next hop neighbors. The algorithm
discovers routes of a task starting from its source. Once a
route is established, each node across the route adds the en-
try to its routing table. The existing routing table, in turn, is
exploited in route discovery. During this process, at any in-
termediate node, we sort the neighboring vertices in increas-
ing order of the minimum cost of routing to the destination
based on their routing tables, and reject the neighbors with
more expensive routing in their tables once the number of
routes reaches the limitηth. This algorithm can provide a po-
tentially sub-optimal route compared to the exhaustive dis-
covery of the best routes. Therefore, we would like to use
this routing information to assist in this step only after we
finish discovering routes for a sufficient number of tasks. We
define a parameter calledTask Count ThresholdTth, which
should besufficientlylarge so that the optimality of the solu-
tion does not reduce significantly.

Definition 5 (Task Count Threshold). The task count
threshold is defined as the number of tasks whose routes are
determined by exhaustive search using only the next-hop
routing information for each node.

5.4. QoS Optimization in Large Networks

So far, we have discussed a single centralized optimiza-
tion scheme that distributes bandwidth among tasks. In a
large network, a centralized scheme is likely to be infeasi-
ble. In addition, it may not scale well with a very large num-
ber of tasks. In the next section, we will describe a hierar-
chical QoS optimization technique that exploits the inherent
hierarchy of the network. It can also be distributed across
the entire system, thus making the QoS optimization feasi-
ble and scalable for a large network using a large number of
tasks or flows.

6. Hierarchical QoS Optimization
In this section, we present H-Q-RAM for networks that

utilizes the hierarchical architecture of networks [17]. We
confine our discussion to only2 levels of hierarchy for ease
of presentation. The process is divided into two major steps.
They are: (1) hierarchical concave majorant operation, and
(2) distributed resource allocation. The process is described
in detail in the following sections.

6.1. Hierarchical Concave Majorant Operation

This process is divided into two steps. First, we gener-
ate separate profiles for each task in each of the sub-domains
containing its sub-routes. Second, we combine information
from each sub-domain and update the set-points.

6.1.1. Creation of Multiple Profiles At the lowest level
for each sub-graph, we obtain the set of tasks whose routes
include the sub-graph. Next, we generatelocal set-points
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Si = Bi × Dig
× Pig

for these tasks, wherePig
is the set

of sub-routes inside the subgraphg andDig
is the delay as-

signed for the route inside subgraphg. As mentioned before,
a set-point consists of a utility value, a corresponding QoS
level and a resource vector specifying the route inside the
subgraph and the bandwidth requirement of the links of that
route. Thus each task has distinct profiles within each sub-
graph.

Next, we evaluate the compound resources for set-points.
Using compound resource values, we prune the list of set-
points and discard the ones that are “inefficient”. A set-point
is called inefficient if it has a larger compound resource value
than another point at the same utility level. In other words,
if we have multiple set-points for a particular value of util-
ity, we keep the one that has the smallest compound resource
value and discard the rest. If there is more than one set-point
with the same minimum compound resource value at a util-
ity level, we keep all of those points as co-located set-points
[6].

6.1.2. Creation of Composite ProfilesWe next merge the
profiles of multiple subgraphs or sub-domains into a single
profile for each task. First, we choose a single set-point for
each utility value from each subgraph for each parent route,
and thencombinethe compound resource values of all sub-
graphs. Since all the resources in this case are considered
to be of identical type (as network links), the compound re-
source of the global set-point of a task spanning two sub-
graphsg1 andg2 is given by:

hcomp = hg1 + hg2 , (8)

wherehg1 andhg2 are the compound resource values of the
task(or flow) at its particular quality setting in the two sub-
domainsg1 andg2. The generation of a composite set-point
is illustrated in Figure 3, where the local set-points of the
subgraphs are assumed to be(Sg1 : u, q, < R >g1 , hg1) and
(Sg2 : u, q, < R >g2 , hg2) for a particular value of utilityu
and quality levelq.

We determine the concave majorant of these global set-
points after that. Next, we replace the compound resource
values of the local set-points in each sub-domain by the cor-



Figure 4. Distributed QoS Optimization

responding composite compound resource values. For exam-
ple, as shown in Figure 3, the set-points for a task in sub-
graphsg1 andg2 are changed from(Sg1 : u, q, < R >g1

, hg1) and (Sg2 : u, q, < R >g2 , hg2) to (Sg1 : u, q, <
R >g1 , hg1 + hg2) and (Sg2 : u, q, < R >g2 , hg1 + hg2)
respectively. In addition, since the concave majorant oper-
ation eliminates set-points, a few global set-points may be
discarded. In that case, we also discard the corresponding lo-
cal set-points in the subgraphs.

Finally, we merge all the local set-points of tasks in each
sub-domain to create lists of set-points calledslope lists[6],
which are going to be traversed for resource allocation pur-
poses. The set-points in the slope list are ordered by increas-
ing slope or marginal utility values.

for Each sub-domain in the networkdo
for Each task in the sub-domaindo

Determine set-pointsQi = Bi ×Di × Pg(i) ;
//Pg(i) = number of sub-routes for task τi

in the domain;

end
end
for Each task in the entire networkdo

Generate global set-points by combining compound resource at
each utility level;
Perform concave majorant on global set-points;

end
for Each sub-domain in the networkdo

for Each task in the sub-domaindo
Discard the set-points whose global counter-part has been
eliminated by concave majorant operation;

end
Merge the remaining set-points of all tasks in the sub-domain in a
single list;

end
for Each sub-domain in the networkdo

Execute transaction-based resource allocation as described in
Figure 15;

end

Algorithm 2 : Hierarchical Distributed QoS Optimization

6.2. Transaction-based Resource Allocation

We perform concurrent resource allocation within each
sub-domain. Thus, the entire global resource allocation prob-
lem is partitioned into multiple sub-problems within each
subgraph, similar to the situation in [6]. However, the sub-
problems are not completely independent of each other in
this case, since some tasks may be present in more than one

sub-problem. Such tasks must be assigned the resources to
achieve thesameutility value (or quality setting) in all the
sub-problems that they are present in. This requires coordi-
nation between these sub-problems, since a resource alloca-
tion in one sub-domain may be infeasible in another sub-
domain. In this context, we define three parameters.

Definition 6 (Local Task). A task is called a local task if its
source and destination nodes are in the same sub-domain.

Definition 7 (Global Task). A task is called a global task
if its source and destination nodes are in different sub-
domains.

Definition 8 (Locality of Tasks). The locality is the fraction
of tasks that are local,

6.2.1. Distributed Negotiation The resource allocator in
each sub-domain sequentially goes through its slope list. If it
finds the set-point in the list belonging to a local task, it de-
termines its feasibility of allocation locally, and accepts or
rejects it based on the availability of local resources. Hence
it works independently for local tasks assuming that the best
route for a local task Is available within the sub-domain it be-
longs to.

When the allocator comes across a set-point of a global
task that needs to have a route spanning multiple subgraphs,
it does the following. First, it checks if the corresponding
global set-point has already been rejected. It happens when
another sub-domain that is included in the parent route of
the task fails to allocate the corresponding local set-point.
In that case, the current allocator also discards the set-point
and moves on. Otherwise, it marks the set-point as allocable
and waits until every other sub-domain along the route de-
cides the allocations of their corresponding set-points. Dur-
ing this time, it goes to sleep and and wakes up only when all
other sub-domains make their decisions. Upon waking up, it
checks if the allocation has been successful. The allocation
becomes successful when all sub-domains are able to allo-
cate their corresponding local set-points that complete the
route with a specific utility value. The allocation is unsuc-
cessful if one of the sub-domains fails. Upon a successful
allocation, it finalizes the local allocation. Otherwise, it re-
jects the initial tentative allocation. Next, it proceeds further
to complete the operation of QoS-based resource allocation.

6.2.2. Deadlock Avoidance in NegotiationSince allo-
cators negotiate the allocation for set-points belonging to
global tasks, it is important to ensure that a deadlock never
happens. Since an allocator follows the slope list that is or-
dered in the increasing marginal utility3 values, it is fea-
sible to have the same marginal utility values for multiple
set-points belonging to different tasks or flows or for differ-
ent routes of the same task. In that case, we must implement

3 The marginal utility of a task is defined as the ratio of the difference
between the utility values and the compound resource values between
two successive set-points of different utility values.



an ordering mechanism of set-points to avoid any dead-
lock.

We implement two levels of ordering to avoid the dead-
lock. First, we assign a global number to each flow or task
in the entire network. This global number can obtained as a
combination of IP addresses of the source and the destina-
tion nodes, and the corresponding port numbers.

Second, we also assign a global number to each “Parent
Route” within a flow. Using these numbers, we resolve the
contention in the slope list when multiple set-points have the
same marginal utility value. First, we order them in the in-
creasing order of their global flow IDs. Next, for multiple
co-located set-points of the same flow, we order them in the
increasing order of their Parent Route IDs. For the co-located
points of the same Parent Route of the same task, we do not
require any ordering since their selections are independent
in sub-domains, as proved in Lemma 2. The allocation pro-
cess is illustrated in Figure 4 and is detailed by a flow-chart
in Figure 15 the appendix.

6.3. Complexity of Network QoS Optimization

In this section, we compare the complexities of the Q-
RAM and the H-Q-RAM optimization.

6.3.1. Q-RAM Complexity Suppose there aren tasks
in the entire network. Using the same notation as be-
fore, let us assume that|Qm| denotes the maximum
number of QoS settings,ηth = maxn

i=1|PG(i)|. This def-
inition yields the the maximum number of set-points
L = |Qm||etath|. Hence, the complexity of the concave ma-
jorant operation isO(n|Qm| log |Qm|), and the complexity
of the merging operation isO(n|Qm||etath| log(n)).

Since the complexity of the Q-RAM optimization
is the sum of the complexities of the concave majo-
rant and the merging operation, we have the total complexity
asO(n|Qm|(log |Qm|+ |etath| log(n)))

6.3.2. H-Q-RAM Complexity For H-Q-RAM, initial local
set-point pruning hasO(lnl|Qm|ηth) complexity per sub-
domain, wherel equals the number of sub-domains andnl

equals the maximum number of tasks per sub-domain. Un-
like the Q-RAM optimization,ηth denotes the upper limit on
the number of routes inside each sub-domain for a task.

Next, we have the concave majorant operation that has
theglobal complexity ofO(n|Qm| log(|Qm|)). The second
pruning operation after the concave majorant also has the
same complexityO(lnl|Qm|ηth).

The merging operation requiresO(lnl|Qm|ηth log(nl))
steps, and the distributed transaction requires a maximum of
O(nlηth|Qm|) steps per sub-domain.

We can now express the generic complexity ex-
pression for H-Q-RAM, namely: O(lnl|Qm|ηth) +
O(n|Qm| log(|Qm|))+O(lnl|Qm|ηth)+O(lnl|Qm|ηth log(nl))+
O(nlηth|Qm|) = O(n|Qm| log(|Qm|)+O(n|Qm|(log |Qm|+
lnl

n ηth log(nl))).

From the expression, in the worst case, when every task
has a profile in every sub-domain, we havenl = n. Then,
the complexity of H-Q-RAM ishigherthan that of Q-RAM.
In the best case, which corresponds to the case when every
flow is a local task that does not span sub-domains, we have
nl = n/l, which is better than that of Q-RAM. However, in
a very large network (the size of the Internet), it is very un-
likely that a task traverses across all sub-domains. Therefore,
H-Q-RAM performs better than Q-RAM for practical cases.
Since H-Q-RAM computations can be distributed (one node
per sub-domain), we can further reduce the complexity to
O(n

l |Qm|(log |Qm|+ nl

n ηth log(nl))). Thus, H-Q-RAM can
scale well with large networks.

7. Experimental Evaluation
Our experimental evaluation is intended to quantify the

performance of H-Q-RAM and Q-RAM in terms of the
trade-off between optimality and scalability. We focus on
measuring two main parameters:
• the global utility obtained by the optimization, and
• the total execution time of the algorithm.
First, we investigate the efficiency of our enhancements in

route discovery. We determine how a selective set of routes
obtained through our smart route discovery process can elim-
inate the necessity of selecting a large number of routes for
the optimization purposes. We also investigate the perfor-
mance of the optimization when we vary the parameterTth.
Second, we compare the performance of H-Q-RAM opti-
mization with respect to Q-RAM optimization.

7.1. Experimental Configuration

QoS dimensions Bandwidth and delay
Length of bandwidth dimension random(1, 4)
Length of delay dimension 1
Minimum Bandwidth(Bmin) min((Rayleigh

Distr. : µ = 152 Kbps),
8000.0 Kbps)

Bandwidth Increment 0.3Bmin

Maximum Delay random(16, 20) hops
Utilities for QoS dimension (u(q)) (0.5,0.7,0.8)

Table 1. Settings of Tasks

In order to validate our technique, we generate network
topologies using BRITE [13] a topology generation tool. The
bandwidth distribution of the network links is presented in
Table 2.

The specifications of the tasks are presented in Table 1.
As seen from the table, the minimum bandwidth is ran-

Network topology generator BRITE [13]
Intra-domain link bandwidth 10.0 Mbps
Inter-domain link bandwidth 10000.0 Mbps

Table 2. Settings of Networks



domly chosen following a Rayleigh distribution withµ =
152 Kbps. This distribution ensures a positive value for the
minimum bandwidth of any task. For simplicity, we choose
a single value of delay, which is expressed by a certain max-
imum number of hops for a route. The source and the desti-
nation nodes of a task are chosen randomly across the entire
network. The experiments are performed on a2.0 GHz Pen-
tium IV processor with768 MB of memory.

7.2. Performance Evaluation of Selective Routing

In this section, we evaluate the performance of the selec-
tive routing algorithms.
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7.2.1. Results on Smart Route SelectionIn this experi-
ment, we demonstrate the effectiveness of smart route selec-
tion as described in Section 5.2.

First, we compare the smart route discovery algorithm
with the random route discovery algorithm, where we ran-
domly selectηth routes out of all possible routes. We vary
the number the number of tasks in the system in geomet-
ric progression asN = 10, 20, 40, . . . , 640. We plot the ac-
crued utility against the number of tasks forηth = 5 under
both schemes in Figure 5. The results show that a random

route selection scheme yields a much lower utility (29.5%
for N = 320) compared to the smart route selection.

Next, we compare smart route selection for different
values of ηth. In this case, we use5 values of ηth as
[1, 2, 5, 80,∞]. The value∞ signifies that all possible routes
are chosen for each source-destination pair. The plots of util-
ity against the number of tasks are shown in Figure 6. The
“ηth = ∞” case is shown by the bar graph instead of a line.

From the bar graph, we observe that we do not have any
data beyondN = 40 for ηth = ∞. This is because for
N ≥ 80, the route discovery and the optimization processes
become intractable. This is further confirmed by its steep rise
in execution time as shown in Figure 7.

On average, the utility increases asηth increases since it
provides more alternative routes for each task. However, the
difference between utilities atηth = 5 andηth = ∞ is statis-
tically insignificant(< 0.09%), whereas the reduction in ex-
ecution time forηth = 5 is 93.6% (or, 15.6 times). Overall,
we observe a99.997% (or, 38239.4 times) reduction in exe-
cution time forηth = 5 relative toηth = ∞ when the num-
ber of tasks is40. Even forηth = 2, the reduction in util-
ity is only 3.57% relative toηth = 80 for 640 tasks, with a
run-time reduction of96.9%.
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Net-ID Sub-domains Nodes Links
1 5 100 207
2 8 160 334
3 15 450 930
4 20 600 1240

Table 3. Specifications of Networks

7.2.2. Results on Route CachingThis experiment demon-
strates how caching route information helps in reducing the
execution time of the optimization. In this case, we fix the
number of tasksN to 640 and vary the parameter Task Count
ThresholdTth. Figure 8 shows the percentage drop in util-
ity for different values ofTth compared to the same under no
Route Caching, orTth = ∞. The value ofηth is kept con-
stant at5.

We observe that even forTth = 1, for example, we start
exploiting route discovery information right after the first
task’s routes have been determined. The percentage loss of
utility is less than3%. On the other hand, we also observe
a huge drop in execution time (> 60%) as shown in Fig-
ure 9. Using the route caching technique, the route discov-
ery time per task will reduce with time as nodes keep adding
more entries to their routing tables. In other words, we can
claim that in a dynamic scenario, in steady state, the opti-
mization timedominatesthe route discovery time.

7.3. Performance Evaluation of Hierarchical Opti-
mization

In this section, we evaluate the performance of Hierarchi-
cal QoS optimization. We use2 levels of hierarchy for our
experimental evaluation. We use the same specifications of
tasks as mentioned in Table 1. In order to validate the use-
fulness of H-Q-RAM, we use larger networks, consisting of
5, 8, 15 and 20 sub-domains respectively. Their specifica-
tions are presented in Table 3, and their bandwidth distribu-
tions as specified in Table 2. For these large networks, we use
ηth = 2, andTth = 1, since these settings have provided rea-
sonably good utility values(< 5%) with great reductions ex-
ecution time for smaller networks.

In the first experiment, we use Network 3 from Table 3.
In this case, we vary the number of tasks for optimization
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between100 and10240 in a geometric progression with a
power of2. Figure 10 shows the variation of utility between
Q-RAM and H-Q-RAM against the number of tasks. Fig-
ure 11 shows the variation of execution time against the num-
ber of tasks.

We observe that H-Q-RAM reduces the optimization time
for 10, 240 tasks by64% while incurring a utility reduction
of less than2% utility than Q-RAM. From Figure 11, we also
observe that the difference between Q-RAM and H-Q-RAM
increases further with the increase in the number of tasks.

Implementation Considerations:As can be seen from Fig-
ure 11, the execution time of the optimization increases ex-
ponentially for a large number of tasks to be deployed in
larger networks. This is because the simulation becomes
memory-intensive under this situation and hence many page
faults and swapping operations cause the non-linear (expo-
nential) increase in the execution times. Consequently, it be-
comes difficult tosimulatethe hierarchical optimization of a
very large network in a single host, as the memory require-
ment for the optimization process also increase. This effec-
tively suggests the necessity of studying the performance im-
provement of distributed transaction-based optimization us-
ing H-Q-RAM. The execution time for H-Q-RAM will be
reduced further if the optimization is distributed over multi-
ple hosts. This will be the only option available, since run-
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ning the Q-RAM optimization for all the tasks in a single
host becomes intractable.

Next, we measure the performance of H-Q-RAM relative
to the locality of tasks in different sub-domains. From our
complexity analysis, we know that H-Q-RAM performs best
when the source and the destination of a task are confined
within a single domain, which in turn also eliminates trans-
actions between sub-domains during the optimization step.
In this experiment, we keep the number of tasks constant at
6400 and vary the locality of tasks between0% and96% and
measure the performance of Q-RAM and H-Q-RAM. The re-
sults are taken for Networks1, 3 and4 from Table 3.

Figure 12 plots the percentage loss in utility under H-Q-
RAM, which does not exceed4.5%. In addition, the loss
drops with the increase in the locality of the task and with
the increase in the size of the network.

Figure 13 plots the percentage gain in execution time un-
der H-Q-RAM. As seen from the figure, H-Q-RAM actually
has20% higher execution time under0% task locality for the
smallest network (Network 1 with 5 sub-domains). However,
it increases with the size of the network as well as with the lo-
cality of the tasks. Moreover, the rate of increase in percent-
age gain decreases with the increase in the size of the net-
work. In other words, for a very large network, H-Q-RAM

performs better than Q-RAM and the significance of local-
ity on this performance decreases.

The above experiment shows that H-Q-RAM provides a
significant gain in performance when (a) the size of the net-
work is large, and (b) the locality of the tasks is high. These
results are in agreement the complexity analysis of H-Q-
RAM.

In Figure 14, we also plot the number of transactions
against the locality of the tasks. As expected, the number
of transactions decreases with the increase in task locality.
However, we observe a larger number of transactions with
the increase in the size of the network. This affects the abso-
lute execution time of H-Q-RAM in our simulation due to a
large number of switching among optimization threads and
the consequent page faults.
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Based on the above results, we conclude that H-Q-RAM
performs well for large networks compared to Q-RAM,
which makes it feasible to employ QoS-based optimization
in large networked environments. However, we also observe
that the number of transactions also increases with the in-
crease in the size of the network. Therefore, we would like
to reduce the number of transactions for future implementa-
tions.

8. Concluding Remarks

In this paper, we have discussed a resource allocation
scheme for a networked system based on Q-RAM. First, we
proposed several pruning algorithms for smart route selec-
tions that makes the basic optimization more scalable with-
out any significant loss in the optimality of the solution. Our
main goal was to analyze the trade-off between optimality
and the execution time of our QoS optimization. Although
the specific values may vary depending on the topology, re-
stricting the maximum number of routes only to2 reduces
the optimality only by5%. In addition, exploiting the cached
route information across the network becomes more useful
as the size of the network increases.



Next, we presented a transaction-based hierarchi-
cal scheme (H-Q-RAM) that can make the problem more
scalable by exploiting the presence of hierarchy in net-
works. The performance of H-Q-RAM improves with the in-
crease in the size of the network and the locality of the
tasks. We also observed that the simulation is memory in-
tensive, and it becomes increasingly expensive in a single
host with the increase in the size of the network. There-
fore, a centralized scheme becomes infeasible for a network
with the size of the Internet. Since H-Q-RAM can be exe-
cuted concurrently on multiple machines using distributed
transactions, it can be run in parallel to address large net-
works. In addition, we would also like to reduce the num-
ber of transactions which increases with the size of the
network. This can be done if we can aggregate multi-
ple tasks into a few “super-tasks” and perform transactions
for “super-tasks”. Hence our future work will investigate ef-
ficient methods of task aggregation.
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