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A typical design process for real-time embedded systems involves choosing the values of certain
system parameters and performing a schedulability analysis to determine whether all deadline
constraints can be satisfied. If such an analysis returns a negative answer, then some of the
parameters are modified and the analysis is invoked once again. This iteration is repeated till
a schedulable design is obtained. However, the schedulability analysis problem for most task
models is intractable (usually co-NP hard) and hence such an iterative design process is often very
expensive. To get around this problem, we introduce the concept of “interactive” schedulability
analysis. It is based on the observation that if only a small number of system parameters are
changed, then it is not necessary to rerun the full schedulability analysis algorithm, thereby making
the iterative design process considerably faster. We refer to this analysis as being “interactive”
because it is supposed to be run in an interactive mode. This concept is fairly general and can
be applied to a wide variety of task models. In this paper we have chosen the recurring real-time
task model because it can be used to represent realistic applications from the embedded systems
domain (containing conditional branches and fine-grained deadline constraints). Our experimental
results show that using our scheme can lead to more than 20× speedup for each invocation of the
schedulability analysis algorithm, compared to the case where the full algorithm is run.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded systems; J.7 [Computer Applica-
tions]: Computers in other systems—Real Time

General Terms: Algorithms, Design, Performance, Verification

Additional Key Words and Phrases: Schedulability analysis, Recurring real-time task model,
Interactive design, Performance debugging, Non-functional constraints

1. INTRODUCTION

Schedulability analysis plays an integral role in the system-level design of real-
time embedded systems. Once a designer chooses the values of certain system
parameters, schedulability analysis is used to determine whether it is possible to
assign to each job a processor time equal to its worst-case execution requirement,
between its ready time and its deadline. If such an analysis returns a negative result
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(i.e. there exist legal scenarios where certain jobs might miss their deadlines), then
some of the system parameters are modified and the analysis is invoked once again.
In a typical system design process, this iteration is repeated a number of times,
until a schedulable system is obtained.

Unfortunately, the schedulability analysis problem for most task models is in-
tractable (usually co-NP hard). Therefore, known algorithms for these models
have an exponential complexity and at best run in pseudo-polynomial time. As a
result, the above-mentioned iterative design process can become overly tedious for
even reasonably-sized problems. To get around this, recent research in the real-
time systems area has focused on either obtaining efficient pseudo-polynomial time
algorithms or on approximately solving the schedulability analysis problem [Albers
and Slomka 2004; Chakraborty et al. 2002; Fisher and Baruah 2005].

In this paper we propose another possible approach to beat the high running
times associated with schedulability analysis algorithms, especially in the context
of an iterative design process. It is based on the observation that if only a small
number of design parameters are changed, then it is not required to invoke the full
schedulability analysis machinery. Rather, certain data structures can be created
when the algorithm is run for the first time, and on subsequent invocations of the
algorithm it is possible to exploit these data structures and run only a small subset
of the regular schedulability analysis algorithm. We refer to this as interactive
schedulability analysis because it would typically be used in an interactive mode—a
designer would keep on modifying the values of a small number of system parameters
and use this algorithm to test whether the system becomes schedulable.

This concept of interactive schedulability analysis is fairly general and can be
applied to a number of well-known task models. In this paper, we have chosen the
recently proposed recurring real-time task model [Baruah 2003] to illustrate this
scheme. It has been shown in [Baruah 2003] that this model generalizes a number of
task models. Further, it can be used to model realistic applications with conditional
branches and fine-grained deadline constraints.

Before proceeding further, we would like to clarify what we mean by “modifying
the values of system parameters”. In the context of scheduling a set of task graphs,
the relevant system parameters are determined by the underlying task model. For
example, in the recurring real-time task model, vertices of task graphs are an-
notated with worst-case execution times and deadlines. The edges are annotated
with minimum intertriggering separation times and each task graph is associated
with a period, which specifies the minimum time interval between two consecutive
triggerings of the graph. When the schedulability analysis of a task set returns a
negative answer (i.e. not schedulable), a designer would typically relax a few dead-
line constraints associated with some of the vertices of the task graphs and run the
algorithm once again. Other possible modifications might consist of increasing the
values of some intertriggering separations, or increasing the period associated with
a task graph, or decreasing the execution times associated with some of the ver-
tices (possibly by rewriting/optimizing the code corresponding to those vertices).
It might even be possible to split a vertex into two or more vertices, i.e. change the
structure of a task graph.
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Note that once a task set becomes schedulable, it is possible that a designer
might now want to constrain (or reduce) the values of some of the above-mentioned
parameters like deadlines, intertriggering separations, or task periods. This is in
order to test whether the task set still remains schedulable with a tighter deadline,
intertriggering separation, or period constraint. Often such an iterative process
is used to obtain the tightest set of constraints under which a task set remains
schedulable.

In this paper, we will however only be concerned with two specific types of modi-
fications – relaxing and constraining the deadline associated with a vertex of a task
graph. First, these are the most likely changes for a designer to make in an iterative
design process. Second, from the standpoint of our proposed interactive schedula-
bility analysis scheme, incorporating other types of modifications would essentially
follow the same principles as those used for handling deadline modifications. Our
goal in this paper is to lay the groundwork for interactive schedulability analysis
and demonstrate the potential speedups that can be obtained. As a part of our
future work we plan to extend this scheme to handle other types of modifications
as well, such as the ones we listed above.

1.1 Overview of the Proposed Scheme

In this paper, we discuss our proposed interactive scheme in the context of dynamic
priority feasibility analysis in a preemptive uniprocessor environment. A standard
methodology based on the processor demand criteria (see [Baruah et al. 1999] and
[Buttazzo 1997]) has emerged for the feasibility analysis of such systems. Towards
this, the worst-case workload that can possibly be generated by a task (graph) is
represented by a function called the demand-bound function. The demand-bound
function of a task T , denoted by T.dbf(t), takes as an argument a positive real
number t and returns the maximum possible cumulative execution requirement of
jobs that can be legally generated by T and which have their ready-times and
deadlines both within a time interval of length t. A set of concurrently executing
tasks T is then schedulable under a fully preemptive uniprocessor model if and only
if for all 0 < t ≤ tmax,

∑
T∈T T.dbf(t) ≤ t, where tmax is a function of the execution

requirements of the tasks in T and their periods. This scheme therefore involves
two stages:

(i) Computing T.dbf(t) for all t ≤ tmax and T ∈ T , and

(ii) Checking that
∑

T∈T T.dbf(t) ≤ t, ∀ 0 < t ≤ tmax.

For the recurring real-time task model, it turns out that for an arbitrary task
graph T , computing T.dbf(t) for any t is NP-hard (see [Chakraborty et al. 2001]).
Further, tmax is pseudo-polynomial in the size of problem. Hence, a pseudo-
polynomial number of checks have to be performed in stage (ii).

While computing T.dbf(t) for different values of t in stage (i), we construct a table
for each task graph T ∈ T (the details of which are described later in this paper).
In an iterative design cycle, once the deadline d(v) of a vertex v ∈ T is changed and
the schedulability analysis algorithm is invoked, the table corresponding to T need
not be recomputed from scratch. Rather, only parts of it are updated—which is
significantly faster than recomputing the entire table. For any t, T.dbf(t) (where T
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is the task graph with the changed d(v)) can now be computed from this updated
table.

Similarly, we also avoid checking the condition
∑

T∈T T.dbf(t) ≤ t for all 0 < t ≤
tmax. When the deadline d(v) of a vertex v ∈ T is changed, we compute the values
of t at which the condition for schedulability i.e.

∑
T∈T T.dbf(t) ≤ t can possibly

change due to d(v). We then check the schedulability condition only for these
values of t, which again can be considerably faster than checking this condition for
all t ≤ tmax.

1.2 Related Work

To the best of our knowledge, the concept of interactive schedulability analysis—in
the form that we present in this paper—has not been investigated before. The
need for appropriate tool sets for interactive timing analysis has been emphasized
in [Tokuda and Kotera 1988] and several other papers. [Tokuda and Kotera 1988]
introduced an interactive tool, which helps to debug timing errors in real time
programs. However, no formal or algorithmic results were presented. Neither did
[Tokuda and Kotera 1988] present any result on how to speedup interactive timing
analysis.

Most of the previous research on obtaining efficient algorithms for schedulabil-
ity analysis for different real-time task models focused on designing either efficient
pseudo-polynomial algorithms, or polynomial time solutions for restricted versions
of task models. More recently, the concept of approximate schedulability analysis
has been investigated in a number of papers (see, for example, [Chakraborty et al.
2002], [Albers and Slomka 2004], and [Fisher and Baruah 2005]). Unlike exact
schedulability analysis, approximate schedulability analysis might return false pos-
itives or false negatives. Here, the basic idea is that if the schedulability analysis
algorithm is occasionally allowed to return a false answer, then such an algorithm
can be designed to run in polynomial time. For example, if the algorithm is allowed
to return false positives then in some cases although a task set is not schedulable,
the algorithm incorrectly returns schedulable. However, it can be guaranteed that
even in such cases no task will miss its deadline by more than a prespecified time
interval. Further, for most task sets the algorithm will return the correct answer.
A similar algorithm that only returns false negatives can also be designed.

None of the above research directions however exploit the fact that often the
schedulability analysis algorithm is repeatedly invoked, with minor modifications in
the task graphs. This is the scenario we address in this paper. Although not directly
related to the problem we address in this paper, recently there has been some work
on computing the space of task periods and worst-case execution times that lead to
schedulable systems (this is often referred to as computing the schedulable region)
[Bini and Natale 2005]. The problem we address here, on the other hand, is an
online or an interactive debugging scenario, where the designer is concerned with
identifying one set of system parameters that lead to a schedulable design.

1.3 Organization of this Paper

The rest of the paper is organized as follows. In the next section we describe the
recurring real-time task model and its schedulability analysis. Towards this, we
present a dynamic programming algorithm for computing the demand-bound func-
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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tion for this model in Sections 2.2 and 2.3. In Section 3 we then present our scheme
for interactive schedulability analysis, which partly makes use of the dynamic pro-
gramming algorithm. Our experimental results are described in Section 4. When
a task set is not schedulable, it is often helpful if the system designer can be pro-
vided feedback on the potential system parameters that can be changed to obtain
a schedulable system. In Section 5 we outline some techniques for providing such
feedback. Finally, we conclude by discussing some directions for future work.

2. THE RECURRING REAL-TIME TASK MODEL AND ITS SCHEDULABILITY
ANALYSIS

The recurring real-time task model was recently proposed by Baruah in [Baruah
1998b; 2003]. It is especially suited for accurately modeling conditional real-time
code with recurring behavior, i.e. where code blocks have conditional branches and
run in an infinite loop, as is the case in many embedded applications. Further, this
model also generalizes a number of well-known task models such as the multiframe
model [Mok and Chen 1997], the generalized multiframe model [Baruah et al. 1999]
and the recurring branching task model [Baruah 1998a].

A recurring real-time task T is represented by a task graph which is a directed
acyclic graph with a unique source (a vertex with no incoming edges) and a unique
sink (a vertex with no outgoing edges) vertex. Associated with each vertex v of this
graph is its execution requirement e(v), and deadline d(v). Whenever the vertex
v is triggered, it generates a job which has to be executed for e(v) amount of time
within d(v) time units from the triggering-time. Each directed edge (u, v) in the
graph is associated with a minimum intertriggering separation p(u, v), denoting
the minimum amount of time that must elapse before the vertex v can be triggered
after the triggering of the vertex u.

The semantics of the execution of such a task graph state that the source vertex
can be triggered at any time, and if some vertex u is triggered then the next vertex
v can be triggered only if there exists a directed edge (u, v) and at least p(u, v)
amount of time has passed since the triggering of the vertex u. If there are directed
edges (u, v1) and (u, v2) from the vertex u (representing a conditional branch) then
only one among v1 and v2 can be triggered, after the triggering of u. The triggering
of the sink vertex can be followed by the source vertex getting triggered again but
any two consecutive triggerings of the source vertex should be separated by at least
P (T ) units of time, called the period of the task graph.

Therefore, a sequence of vertices v1, v2, . . . , vk getting triggered at time instants
t1, t2, . . . , tk, is legal if and only if there are directed edges (vi, vi+1), and ti+1− ti ≥
p(vi, vi+1) for i = 1, . . . , k − 1. The only exception is that vi+1 can also be the
source and vi the sink vertex, and in that case if there exists some vertex vj , j < i,
in the sequence such that vj is also the source vertex then ti+1 − tj ≥ P (T ) must
be additionally satisfied. The real-time constraints require that the job generated
by triggering vertex vi, i = 1, . . . , k, be assigned the processor for e(vi) amount of
time within the time interval (ti, ti + d(vi)].

Once jobs are generated, they execute independently of each other (and there-
fore a restriction like first-come-first-served can not hold). Therefore, to ascertain
that a job generated by a vertex u completes execution before a job generated by
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Fig. 1. An example recurring real time task.

a vertex v, when u and v belong to the same task graph and there is a directed
edge from u to v, then either of the following conditions must hold: p(u, v) ≥ d(u),
which guarantees that the vertex v can be triggered only after the job generated by
vertex u has completed execution, or that d(u) ≤ p(u, v) + d(v), which guarantees
that the absolute deadline of the job generated by vertex v is larger than or equal
to the absolute deadline of the job generated by vertex u. In the real-time sys-
tems literature the first requirement is referred to as the frame separation property
[Takada and Sakamura 1997] and the second as the localized Monotonic Absolute
Deadlines property (l-MAD) [Baruah et al. 1999]. In this paper we assume either
one of these two properties to hold.

Two points may be noted here. First, the original recurring real-time task model
and its schedulability analysis, as proposed by Baruah in [Baruah 2003], is based
on the frame separation property assumption. Second, our assumption that the
l-MAD property leads to a job generated by a vertex u completing its execution
before a job generated by a vertex v (when there is a directed edge from u to v)
is based on the implicit assumption of the underlying scheduler uses the earliest
deadline first (EDF) policy. We believe that this is a realistic assumption because
EDF is known to be the optimal preemptive scheduling policy (i.e. if a task set is
schedulable then EDF results in a feasible schedule) and it is widely used in real-
life systems. Clearly, if the scheduling policy is not EDF then the l-MAD property
along with the processor demand criteria for schedulability does not guarantee that
a job generated by a vertex u will complete its execution before a job generated
by v whenever there is a directed edge from u to v. Hence, we will from now on
assume that the scheduling policy being used is EDF whenever the l-MAD property
is assumed to hold true.

Figure 1 illustrates an example recurring real-time task. In this task, vertex v3,
for instance, has an execution requirement e(v3) = 6, which must be met within 10
time units (its deadline) from its triggering time. The edge (v1, v3) has been labeled
10, which implies that the vertex v3 can be triggered only after a minimum of 10
time units from the triggering of v1 (i.e. the minimum intertriggering separation
time). Edges (v1, v2) and (v1, v3) from vertex v1 imply that either v2 or v3 can be
triggered after v1. The period of the task (the minimum time interval between two
consecutive triggerings of the source vertex) is 50.
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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2.1 Task Sets and Schedulability Analysis

A task set T = {T1, T2, . . . , Tn} consists of a collection of task graphs, the vertices of
which can get triggered independently of each other. A triggering sequence for such
a task set T is legal if and only if for every task graph Ti, the subset of vertices of
the sequence belonging to Ti constitute a legal triggering sequence for Ti. In other
words, a legal triggering sequence for T is obtained by merging together (ordered
by triggering times, with ties broken arbitrarily) legal triggering sequences of the
constituting tasks.

The schedulability analysis of a task set T is concerned with determining whether
the jobs generated by all possible legal triggering sequences of T can be scheduled
such that their associated deadlines are met. Algorithms for the schedulability
analysis of such task sets, in a preemptive uniprocessor setup, are based on certain
task independence assumptions. These are: (i) The runtime behavior of a task is
independent of any other tasks in the system. (ii) The constraints according to
which legal job sequences are generated can be specified without any references to
absolute time. Assumption (i) states that each task generates jobs independently
of the jobs generated by other tasks in the system. Therefore, it is not permissible,
for example, to require a task to generate a job in response to a job generated by
another task. Assumption (ii) states that all temporal specifications defining the
rules according to which jobs are generated by a task can only be relative to the
time at which the task begins execution, or can be relative to the ready-time of
another job of the same task. Therefore, a constraint like the ready-times of two
consecutive jobs of a task must be separated by at least p time units, conforms to
this requirement. Lastly, the time at which a task begins execution (i.e. the first
job is generated) is not a priori known. For example, a task can begin execution
in response to some external event.

Note that although the task independence assumptions restrict the job generation
process of a task (for example, by specifying the minimum separation between the
generation of two jobs), they make no assumptions about the interactions between
the jobs once they are generated. Once a job is generated, it executes independently
of any other job in the system, including those generated by the same task.

Given a sequence of jobs generated by a task set [(Ti, ai, ei, di), (Tj , aj , ej , dj), . . .]
(Ti refers to a task, ai is the ready time of a job, ei is its execution requirement,
and di is its absolute deadline), the task independence assumptions imply that the
sequence is legal if and only if all subsequences formed by jobs from the individual
tasks are also legal (follows from Assumption (i)). Assumption (ii) implies that if
[(a1, e1, d1), (a2, e2, d2), . . .] is a legal sequence of jobs generated by a task, then the
sequence [(a1 − t, e1, d1 − t), (a2 − t), e2, d2 − t), . . .] is also legal, where t is any real
number.

It directly follows from the description of the recurring real-time task model in
Section 2 that the model indeed satisfies the above task independence assumptions
(and so does a wide variety of other task models such as the sporadic, multi-
frame, generalized multiframe, and the recurring branching models). The recurring
real-time task model therefore lends itself to schedulability analysis based on the
processor demand criteria, that we outlined in Section 1.1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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2.2 The demand-bound function

Recall from Section 1.1 that a task set T is schedulable if and only if
∑

T∈T T.dbf(t) ≤
t for all 0 < t ≤ tmax. It can be proved that

tmax =
∑

T∈T 2E(T )

1 −
∑

T∈T
E(T )
P (T )

where E(T ) is the maximum cumulative execution requirement arising from a se-
quence of vertices on any path from the source to the sink vertex of the task graph
T (see [Baruah 2003] for details).

For any task graph T , computing the value of T.dbf(t) for some (large) value of
t ≤ tmax might involve multiple traversals (loops) through the task graph. It was
shown in [Baruah 2003] that if for a task graph T , T.dbf(t) is known for all “small
values” of t then it is possible to calculate from these, the value of T.dbf(t) for
any t. “Small values” of t for a task graph T are those for which the sequence of
vertices that contribute towards computing T.dbf(t) contain the source vertex at
most once. The value of T.dbf(t) for larger values of t is made up of some multiple
of E(T ) plus T.dbf(t′) where t′ is “small” in the sense described above. T.dbf(t)
for any t can hence be computed as follows (for a more detailed description, refer
to [Baruah 2003]).

T.dbf(t) = max{�t/P (T )�E(T ) + T.dbf(t mod P (T )),
(�t/P (T )� − 1)E(T ) + T.dbf(P (T ) + t mod P (T ))} (1)

To compute T.dbf(t) for “small” values of t, [Baruah 2003] constructs a new
task graph by taking two copies of the task graph of T and adding an edge from
the sink vertex of the first graph to the source vertex of the second and finally
replacing the source vertex of the first with a “dummy” vertex with execution
requirement and deadline equal to zero. The intertriggering separations on all edges
outgoing from this source vertex is also made equal to zero. (Two copies of the
task graph in Figure 1 are joined in the fashion described above, and the resulting
task graph is shown in Figure 2). T.dbf(t) for all values of t are then calculated
by enumerating all possible paths in this new graph. For arbitrary task graphs,
this incurs a computation time which is exponential in the number of vertices in
the task graph. The list alongside the task graph in Figure 2 gives us few values of
T.dbf(t) corresponding to some selected “small” values of t for this task graph. For
instance, when t = 4, the T.dbf(t) is 2, implying that within any time interval of 4
units the total execution requirement of jobs which have both their ready times and
deadlines within this interval is 2. This means that there is no other permissible
sequence of jobs which will have a demand greater than 2 within an time interval
of 4. Similar explanation applies to other pairs of values listed in the table.

2.3 Computing the demand-bound function

In this section we present a dynamic programming algorithm for computing the
demand-bound function T.dbf(t) for any task graph T . It was shown in [Chakraborty
et al. 2001] that computing T.dbf(t) for any t is NP-hard for an arbitrary task graph
T . The dynamic programming algorithm that we present here runs in pseudo-
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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Fig. 2. Finding T.dbf(t) for “small” values of t.

polynomial time and constructs a table, which is then used by our interactive
schedulability analysis framework that we describe in Section 3.

The algorithm given below constitutes stage (i) of the two stages that we listed in
Section 1.1. We first give an algorithm for computing the demand-bound function
of a task graph for “small values” of t. Using this, we then compute the demand-
bound function for any value of t as explained in Section 2.2.

Given a task graph T , let T ′ denote the graph formed by joining two copies of T
by adding an edge from the sink vertex of the first graph to the source vertex of the
second, and replacing the source vertex of the first copy by a “dummy” vertex. If
the frame separation property is followed then the newly added edge is labeled with
an intertriggering separation of p = d(vsink), and if the l-MAD property is followed
then it is labeled with p = max{0, d(vsink) − d(vsource)}, where vsource and vsink

denotes the source and the sink vertices of T . Now we give a pseudo-polynomial
time algorithm based on dynamic programming, for computing T ′.dbf(t) for values
of t that do not involve any looping through T ′, i.e. we consider only “one-shot”
executions of T ′.

Let there be n vertices in T ′ denoted by v1, . . . , vn, and without any loss of
generality we assume that there can be a directed edge from vi to vj only if i < j.
Following our notation described in Section 2, associated with each vertex vi is
its execution requirement e(vi) which here is assumed to be integral (a pseudo-
polynomial algorithm is meaningful only under this assumption), and its deadline
d(vi). Associated with each edge (vi, vj) is the minimum intertriggering separation
p(vi, vj).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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Algorithm 1 Computing T ′.dbf(t)
Input: Task graph T ′, and a real number t ≥ 0
1: for e ← 1 to nE do

2: t1,e ←
�

d(v1) if e(v1) = e
∞ otherwise

3: flag1,e ←
�

SELF if e(v1) = e
PREVIOUS otherwise

4: t11,e ← t1,e

5: end for
6: for i ← 1 to n − 1 do
7: for e ← 1 to nE do
8: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

9: ti+1
i+1,e ←

���
��

min{tij

ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

10: ti+1,e ← min{ti,e, t
i+1
i+1,e}

11: if ti+1,e = ti+1
i+1,e then

12: flagi+1,e ←SELF

13: else
14: flagi+1,e ←PREVIOUS

15: end if
16: end for
17: end for

18: T ′.dbf(t) ← max{e | tn,e ≤ t}

Let ti,e be the minimum time interval within which the task T ′ can have an
execution requirement of exactly e time units due to some legal triggering sequence,
considering only a subset of vertices from the set {v1, . . . , vi}, if all the triggered
vertices are to meet their respective deadlines. Let tii,e be the minimum time interval
within which a sequence of vertices from the set {v1, . . . , vi}, and ending with the
vertex vi, can have an execution requirement of exactly e time units, if all the
vertices have to meet their respective deadlines. Lastly, let E = maxi=1,...,n e(vi).
Clearly, nE is an upper bound on T ′.dbf(t) for any t ≥ 0 for one-shot executions
of T ′.

It can be shown by induction that Algorithm 1 correctly computes T ′.dbf(t), and
has a running time of O(n3E). This algorithm, in addition, computes the values of
a set of boolean variables which are referred to as flagi,e. For any given value of
i and e, flagi,e is set to PREV IOUS if ti−1,e < tii,e else it is set to SELF . The
use of this variable will be explained in Section 3 when we describe our interactive
schedulability analysis framework.

3. INTERACTIVE SCHEDULABILITY ANALYSIS FOR THE RECURRING REAL-
TIME TASK MODEL

Having introduced all the necessary background, we are now in a position to de-
scribe our framework for interactive schedulability analysis. Recall from Section 1.1
that this framework is composed of two steps: (i) Computing T.dbf(t) for all
t ≤ tmax and T ∈ T , and (ii) Checking that

∑
T∈T T.dbf(t) ≤ t, ∀ 0 < t ≤ tmax.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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When the schedulability analysis algorithm is invoked for the first time, for each
task graph T ∈ T , Algorithm 1 is used to compute the values of tii,e, ti,e, and
flagi,e, which constitutes step (i). These are then stored in a table, which we will
refer to as the dbf-table. For any task graph T , its dbf-table consists of rows which
correspond to the vertices of T (ranging from 1 to n, assuming that T consists of
n vertices) and columns which correspond to the different execution requirements
that may be demanded by T due to a triggering of these vertices (ranging from 1 to
nE). A cell (i, e) in this table contains three different values: ti,e, tii,e and flagi,e.

Now suppose that the schedulability analysis algorithm fails in step (ii), i.e. there
exists some t̂ ≤ tmax such that

∑
T∈T T.dbf(t̂) > t̂. Then the system designer might

choose to modify certain system parameters and run the schedulability analysis
algorithm once again. Typically, this would involve rerunning steps (i) and (ii) from
scratch. However, using our scheme for interactive schedulability analysis, we would
instead only update the existing dbf-tables and recompute the appropriate T.dbf(t)
values from the updated tables. In most cases, this would be considerably faster
than recomputing all the T.dbf(t) values from scratch. Clearly, only the dbf-tables of
task graphs that have been modified will have to be updated. Once the appropriate
T.dbf(t)s have been recomputed, depending on the nature of the modifications made
(e.g. deadlines have only been relaxed), the checking involved in step (ii) can be
resumed from t̂ onwards. There is no need to check the condition

∑
T∈T T.dbf(t) ≤

t for values of t < t̂ since the task set already passed the schedulability test for these
values of t.

The second possible scenario is when the task set T satisfies the schedulability
test in step (ii) for all t ≤ tmax (i.e. T is schedulable). In this case, the de-
signer might still want to modify certain system parameters (e.g. constrain the
deadlines associated with some of the vertices) and run the schedulability analysis
algorithm once again. This might be to test if the task set remains schedulable
under a tighter set of constraints. In this case, we would again update the dbf-
tables and recompute the appropriate T.dbf(t) values from the updated tables, as
before. However, step (ii) will now become more involved—rather than checking
the condition

∑
T∈T T.dbf(t) ≤ t for all t ≤ tmax, we check this condition only for

those values of t at which the sum
∑

T∈T T.dbf(t) might have changed.
In the following two subsections we discuss the details of the two above-mentioned

scenarios. Recall from Section 1 that in this paper we shall only be concerned with
deadlines associated with vertices of task graphs being modified.

3.1 Relaxing the Deadline of a Vertex

Given a task graph T , let us assume that T ′ is obtained by joining two copies of
T , followed by adding an edge from the sink vertex of the first copy to the source
vertex of the second and replacing the source vertex of the first copy by a “dummy”
vertex (as described in Section 2.3). We also assume that the dbf-table of T ′ has
been computed. Now let us suppose that the deadline d(v) associated with a vertex
v ∈ T has been relaxed. Unless v is the source vertex of T , this results in the
deadlines of two vertices in T ′ (both of which correspond to the same vertex v in
T ) getting changed. Algorithm 2 then correctly updates dbf-table to reflect this
change. Note that it has to be invoked either once or twice depending on whether
v is a source vertex of T or not.
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Algorithm 2 dbf-table update: Deadline relaxed case
Input: Task graph T ′, a real number t ≥ 0, and a vertex number node such that deadline

associated with vertex vnode in T ′ has been relaxed.
1: for e ← 1 to nE do
2: for i ← node − 1 to n − 1 do
3: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

4: ti+1
i+1,e ←

���
��

min{tij

ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

5: ti+1,e ← min{ti,e, t
i+1
i+1,e}

6: if ti+1,e = ti+1
i+1,e then

7: flagi+1,e ←SELF

8: else
9: flagi+1,e ←PREVIOUS

10: end if
11: if i + 1 = node then
12: if flagi+1,e = PREVIOUS then

13: break;

14: else if flagi+2,e = SELF then

15: break;

16: end if

17: else if flagi+2,e = SELF then

18: break;

19: end if

20: end for
21: end for

22: T ′.dbf(t) ← max{e | tn,e ≤ t}

To understand how Algorithm 2 works, let us assume that the deadline associated
with the vertex vnode in T ′ has been relaxed, where the vertices of T ′ are v1, . . . , vn,
with a directed edge from vi to vj only if i < j. The algorithm traverses the rows
of the dbf-table starting from the row node and recomputes the values of all the
cells in these rows. Note that the lines 3 to 10 of this algorithm are the same as
lines 8 to 15 of Algorithm 1; they compute the value of the (i + 1, e)th cell of the
dbf-table. From lines 11 to 19 of Algorithm 2 it may be seen that cells corresponding
to vertices numbered higher than node are recomputed depending on the values of
the flag variables.

Let us understand the principle behind the lines 11 to 19 first, and then we will
work through an example. Let k be such that node < k ≤ n. Note that the value
tkk,e(for any k, and any e, where 1 ≤ e ≤ n) is not changed if we relax the deadline
of vnode(this follows from line 4.). Thus, a variable tk,e might change if and only
if tk−1,e has changed(see line 5). Also, recall that the variable flagnode,e had been
assigned to either PREV IOUS or SELF . If flagnode,e = PREV IOUS, it implies
that tnode,e has not modified. From the above two observations we conclude, that
we need not update any cell on the column e, if flagnode,e = PREV IOUS.

On the other hand, if flagnode,e = SELF , tnode,e would change with the relaxing
of the deadline. This implies that tnode+1,e would change too, if flagnode+1,e =
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.
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Fig. 3. The task graph T .

Fig. 4. The task graph T ′.

i↑ e →
1 2 3 4 5 6

6 2, 2, S 4, 5, P 7, 8, P 10, 10, S 13, 13, S, ∞, ∞, S

5 2, 3, P 4, 6, P 7, 8, P 11, 11, S ∞, ∞, S, ∞, ∞, S

4 2, 2, S 4, 4, S 7, 7, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

3 2, 2, S 5, 5, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

2 3, 3, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

1 ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

Table I. dbf-table of T ′.

PREV IOUS. The change might then propagate along the higher cells of the
column e, depending on the value of their respective flags. This selectively com-
putation is what exactly taken care of in the lines 11 to 19, and where in many
cases, a large chunk of computation is avoided, compared to recomputing the entire
dbf-table from scratch.

To appreciate why Algorithm 2 will often be computationally less expensive com-
pared to recomputing the entire dbf-table, let us consider a small example. Let T be
a task graph with 3 vertices, v1, v2, v3, such that an edge from vi to vj exists if and
only if j = i + 1. Let e(vi) = 1 for all 1 ≤ i ≤ 3 in T . The deadlines of the vertices
are d(v1) = 2, d(v2) = 3, and d(v3) = 2. The minimum intertriggering separation
times associated with the edges are p(v1, v2) = 3, and p(v2, v3) = 3. (see Figure 3)
Let T ′ be the graph that is formed by joining two copies of this task graph T in
the fashion described in Section 2.3. T ′ is shown explicitly in Figure 4.

The dbf-table of T ′ is shown Table I. For any 1 ≤ i ≤ 6 and 1 ≤ e ≤ 6, the
(i, e)th cell of this table contains the values of ti,e, tii,e, and flagi,e (in this order),
where P and S denotes the PREV IOUS and SELF values of flagi,e respectively.

Assume the deadline of source vertex of T has been changed from 2 to 3. This
implies the deadline of v4 in T ′ is relaxed from 2 to 3. The task graph with its new
deadlines is illustrated in Figure 5. We then update the dbf-table using Algorithm 2.
The new dbf-table is shown in Table II. Only the cells of Table I which were updated
using Algorithm 2 are shown using a bold-italic font in Table II.
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Fig. 5. Graph T ′ after relaxing the deadline associated with the vertex v4 from 2 to 3.

i↑ e →
1 2 3 4 5 6

6 2, 2, S 5, 5, S 8, 8, S 10, 10, S 13, 13, S, ∞, ∞, S

5 2, 3, P 5, 6, P 8, 8, S 11, 11, S ∞, ∞, S, ∞, ∞, S

4 2, 3, P 5, 5, S 8, 8 S ∞, ∞, S ∞, ∞, S ∞, ∞, S

3 2, 2, S 5, 5, S ∞, ∞, S ∞, ∞, S ∞, ∞,S, ∞, ∞, S

2 3, 3, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

1 ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

Table II. The updated dbf-table after relaxing the deadline associated with the vertex v4

from 2 to 3.

Since only the deadline of v4 was relaxed, the execution demand arising from any
vertex numbered less than 4 remains unchanged. Hence, the only potential cells of
Table I which might be effected are on or above row 4. Algorithm 2 first traverses
row 4 of this table and recomputes the values of its cells. However, it does not
“propagate” a change upwards, along the column of a cell, if the flag in the cell
is equal to PREV IOUS. If the value of the flag equals to PREV IOUS, then it
implies that the value of t4,e is equal to t3,e. This means that t44,e > t3,e. Since
the deadline of v4 is being relaxed, the new value of t44,e will definitely be greater
than its previous value, and hence also greater than t3,e. So any tj,e, where j > 4,
need not be changed as a result of relaxing d(v4). For example, we can verify from
Table II that when e = 1, this is the scenario that occurs. This clearly saves a
significant amount computation, compared to the case where the full dbf-table is
recomputed.

The second scenario is when one of the cells has its flag set to flag = SELF . In
our example, cells (4, 2), and (4, 3) illustrate this scenario. Let us consider cell (4, 3),
where flag4,3 = SELF implies that t44,3 < t3,3. Hence, the value of t4,3 will change
and might in turn lead to changes in the higher cells along this column. Therefore,
we need to check whether any higher numbered vertices might also be effected.
The cell (5, 3) has flag = PREV IOUS and hence t5,3 needs to be recomputed.
Similarly cell (6, 3) is also recomputed. Note that cell (4, 4), has its flags set to
SELF , however since flag5,4 = SELF we need not propagate the change along
the higher numbered columns. This follows from line 17 of Algorithm 2.

If the schedulability test for a task set T fails at t = t̂ then in this case (i.e.
when deadlines associated with vertices are only being relaxed), after the deadlines
associated with one or more vertices are relaxed, the check in step (ii) of our scheme
can be resumed at t = t̂.
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Algorithm 3 dbf-table update: Deadline constrained case
Input: Task graph T ′, a real number t ≥ 0, and a vertex number node such that deadline

associated with vertex vnode in T ′ has been constrained.
1: for e ← 1 to nE do
2: for i ← node − 1 to n − 1 do
3: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

4: ti+1
i+1,e ←

���
��

min{tij

ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

5: ti+1,e ← min{ti,e, t
i+1
i+1,e}

6: if ti+1,e = ti+1
i+1,e then

7: flagi+1,e ←SELF

8: else
9: flagi+1,e ←PREVIOUS

10: end if
11: if i + 1 = node then
12: if flagi+1,e = PREVIOUS then

13: break;

14: else if flagi+2,e = SELF then

15: if ti+1,e ≥ ti+2
i+2,e then

16: break;

17: end if

18: end if

19: else if flagi+2,e = SELF then

20: if ti+1,e ≥ ti+2
i+2,e then

21: break;

22: end if

23: end if

24: end for
25: end for

26: T ′.dbf(t) ← max{e | tn,e ≤ t}

3.2 Constraining the Deadline of a Vertex

Let us now consider the case where the deadline of a vertex v ∈ T is constrained.
As in the previous case, depending on whether v is a source vertex in T or not, this
would result in two vertices in T ′ getting affected (where T ′ is obtained by joining
two copies of T ). Again, let vnode be a vertex in T ′ whose deadline is constrained.
Then Algorithm 3 updates the dbf-table corresponding to T ′.

Algorithm 3 is similar to Algorithm 2, except for a pair of extra conditions in
lines 15 and 20. The reason behind these will be clarified in the following discussion.

Let us assume that the deadline of vertex vnode is constrained. Let k be such
that node < k ≤ n. Note that the value tkk,e(for any k, and any e, where 1 ≤ e ≤ n)
is not changed if we constrain the deadline of vnode. A variable tk,e might change
if and only if tk−1,e has changed. If flag flagnode,e = PREV IOUS, the case is
exactly similar to the case of deadlines being relaxed.

On the other hand, if flagnode,e = SELF , then we know that tnode,e = tnode
node,e

and consequently, constraining the deadline of vnode implies tnode,e decreases. In
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such a case, if flagnode+1,e = PREV IOUS, then the scenario is again similar to
the case when the deadline of vnode was relaxed and the value tnode+1,e will have
to be updated. The change might then “propagate” along the higher cells of the
column e, depending on the value of their flags.

However, if flagnode+1,e = SELF (which implies that tnode+1,e = tnode+1
node+1,e), the

scenario is different from when the deadline of vnode was relaxed. The reason for this
being, after the deadline was constrained, it might now be that tnode,e < tnode+1

node+1,e.
Hence, despite flagnode+1,e = SELF being true, tnode+1,e will change and we need
to update the cell (node + 1, e). Similar reasoning also holds true when we select
any cell (i, e) for updating, where i > node. This explains the need of the extra
pair of conditions.

3.2.1 Efficiently Performing Step (ii). As we discussed before, here we would
like to avoid performing the check

∑
T∈T T.dbf(t) ≤ t for all values of t ≤ tmax.

Let us assume that the deadline associated with a certain vertex of T has been
constrained. We also assume that T belongs to a task set T , which was originally
schedulable. Algorithm 3 is then used to update the dbf-table associated with T .
Now our goal is to identify those values of t at which the sum

∑
T∈T T.dbf(t) was

modified; we would like to check the condition
∑

T∈T T.dbf(t) ≤ t only at these
values of t. Towards this, we first scan the updated dbf-table and identify those
values of t for which t < P (T ) and either T.dbf(t) or T.dbf(t + P (T )) have been
updated. Let tchange be the first such value of t in this table. Let tcheck be a
possible value of t that we are interested in identifying. It then follows from Eq. 1
of Section 2.2 that for each value of tchange, there will be multiple tchecks. These
tchecks are given by:

tcheck = tchange + kP (T )
where k = 0, . . . , N and N is the largest integer satisfying the inequality tchange +
NP (t) ≤ tmax.

The above procedure has to be repeated for all possible values of tchange in the
updated dbf-table and the corresponding tchecks are identified. The schedulability
test

∑
T∈T T.dbf(t) ≤ t is then performed at these tchecks.

3.3 Running Times

Note that both the algorithms for updating the dbf-table (i.e. Algorithms 2 and 3),
have a worst-case running time of O(n3E). Hence, in the worst-case, updating the
dbf-table involves the same computational cost as that involved in computing this
table from scratch. Clearly, at least from a theoretical standpoint, our scheme would
have been more attractive had this been otherwise. However, as we have pointed
out in Section 3.1, for most problems the actual running time incurred by our
algorithms would be significantly less than what would be involved in recomputing
the entire dbf-table. As an example, let us consider Algorithm 2. We saw that when
the deadline of a vertex vnode was relaxed, then the cells 1, 2, . . . , nE of row node
were unconditionally recomputed. However, any cell on a row numbered higher
than node will have to be updated depending on the conditions in lines 11 to 19 of
the algorithm. Hence, updating a single column of the dbf-table will incur the worst-
case cost only when the value of tnode,e is less than ti,e for all i > node. Further,
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for the worst-case (in terms of updating the dbf-table) to occur, the worst-case
update scenario of a column must happen for all columns 1, 2, . . . , nE. For most
problem instances, such corner cases are unlikely to happen and as our experimental
results show in Section 4, our scheme results in a significant speedup compared to
recomputing the dbf-table for each change.

Similarly, in the worst-case, stage (ii) might also require that the condition∑
T∈T T.dbf(t) ≤ t to be checked for all t ≤ tmax. But once again, for most

problem instances, this is unlikely to happen.
Finally, note that the space complexity of storing a dbf-table with n vertices is

O(n2E). For each vertex i we store ti,e, tii,e, and flagi,e, where e ranges from 1 to
nE.

4. EXPERIMENTAL RESULTS

We conducted two broad categories of experiments. In Section 4.1 we report some
experimental results that were obtained by running the dynamic programming al-
gorithm (Algorithm 1) and our proposed algorithms for interactive schedulability
analysis (Algorithms 2 and 3) on a set of synthetic task graphs. In Section 4.2 we
illustrate the benefits of efficiently performing Step(ii) of the schedulability analysis
(which we described in Section 3.2.1).

4.1 Experiments with Step (i)

For our experiments we randomly generated synthetic task graphs using two pa-
rameters. The first is the maximum execution requirement, E, associated with
any vertex of a graph. The second parameter is called the connectivity factor. If
v1, . . . , vn are the vertices of a task graph such that there is an edge from vi to vj

only if j > i, then while generating the graph, for each vertex vj we construct an
edge from vi to vj with a probability equal to the connectivity factor of the graph,
for all i = 1, . . . , j − 1.

The parameters (i.e. E and the connectivity factor) used to generate our syn-
thetic graphs were chosen such that the graphs represent realistic network packet
processing applications. The details of this application may be found in [Chakraborty
et al. 2002]. A connectivity factor equal to 0.4 was used to generate all the task
graphs since this results in graphs which are similar to those arising in practice. It
may be noted here that a higher connectivity factor would clearly result in more
paths in any graph. Hence, this would lead to higher savings from our scheme com-
pared to when all the paths in a graph are exhaustively enumerated to compute
the demand-bound function. E was set equal to either 200 or 600, representing two
possible cases in the above-mentioned application.

Figure 6 shows the running times involved in computing the dbf-table of a single
task graph. Once the deadline associated with a vertex of this task graph was
relaxed, we have (i) recomputed the entire dbf-table using Algorithm 1, and (ii)
updated the dbf-table using Algorithm 2. Figures 6(a) and 6(b) show the running
times incurred for task graphs with number of vertices ranging from 50 to 200,
which were generated by setting E = 200 and E = 600 respectively. The task
graphs formed by joining together two copies of our original task graphs had 100
to 400 vertices (as explained in Section 2.3), and the computation of the dbf-table
used these graphs.
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Fig. 6. Running times for updating the dbf-table when the deadline of a vertex was relaxed

(a) E = 200 and (b) E = 600.

Fig. 7. Running times for updating the dbf-table when the deadline of a vertex was

constrained (a) E = 200 and (b) E = 600.

For each randomly generated task graph, we randomly selected a vertex of this
graph and relaxed its deadline by a certain amount. The dbf-table associated with
this task was then (i) entirely recomputed, and (ii) updated using our proposed
scheme. For each task graph, this process was repeated for five randomly selected
vertices. The results in Figures 6(a) and 6(b) report the maximum dbf-table update
time incurred among these five vertices, along with the time required to recompute
the entire dbf-table. These results illustrate the savings achieved by our proposed
scheme. With E = 600, we obtain a speedup of more than 20×, which translates
into the schedulability analysis running in approximately 2 minutes instead of 40
minutes. In an interactive design environment, the former waiting time is clearly
more tolerable than the latter. It should also be noted that with larger values of E,
even higher speedups will be obtained. Figures 7(a) and 7(b) show similar results
for the case where the deadline of a vertex was constrained.

We also conducted another set of experiments with relatively smaller task graphs
(containing 50 vertices), while varying the value of E from 1000 to 10000. Here, it
may be noted that the execution requirement associated with any vertex of a graph
is expressed in terms of time units. Such time units depend on the application at
hand and might denote milliseconds, microseconds, or even the number of clock
cycles of the processor on which the task graphs are required to execute. Hence,
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Fig. 8. Running times for updating the dbf-table for a task graph with 50 vertices, as the

maximum execution requirement associated with a vertex (E) is increased. (a) Deadline

of a randomly chosen vertex is relaxed, and (b) Deadline of a randomly chosen vertex is

constrained.

experiments with large values of E are completely realistic. Our motivation behind
experimenting with small task graphs is that most realistic applications are likely to
be represented by task graphs containing relatively few vertices. The steps involved
in this set of experiments are exactly similar to those of the earlier experiments.
Figure 8(a) shows how the dbf-table update time and computation time changes
with increasing E (the maximum execution time associated with a vertex), when
the deadline associated with a randomly chosen vertex of a task graph is relaxed.
Figure 8(b) shows the corresponding results when the deadline associated with a
vertex is constrained. Note that in both the cases we obtain speedups of around
5×, which are significant if a design tool is to be used in an interactive fashion.

All the CPU times reported above were measured on a Linux machine with Fedora
Core 3, running on a 3.0 GHz CPU with a 2 GB RAM.

It may be noted that all our implementations were done in C++, did not make use
of any graphical interfaces for specifying the task graphs, and the code was specif-
ically optimized for running the schedulability analysis. In practice, a design tool
supporting schedulability analysis would be more involved. More specifically, the
task graphs might be integrated with other application-specific data structures that
are not be optimized for the schedulability analysis algorithm. In such cases, the
speedups obtained by our interactive schedulability analysis might be considerably
higher compared to the results reported here. This is because it involves fewer tra-
versals through these task graphs in subsequent invocations of the analysis, thereby
saving the overheads associated with these traversals due to the potentially compli-
cated data structures. This observation stems from our attempt to integrate this
schedulability analysis algorithm inside a tool-suite [Esser and Janneck 2001] where
the task graphs were specified using a graphical user interface and were embedded
inside other data structures that were a part of this tool-suite. In this implementa-
tion we observed 20× speedups using our algorithm for task graphs with less than
40 vertices. However, with the optimized C++ implementation of our algorithm,
such speedups could only be seen for task graphs with around 200 vertices.
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Task Sets Task Graphs
Set 1 T1 1.647 × 103

#vertices/task graph = 10 T2 1.799 × 103

max. exec. req. of a vertex (E) = 200 T3 4.474 × 103

tmax = 54.6 × 103

Set 2 T1 3.759 × 103

#vertices/task graph = 20 T2 2.662 × 103

max. exec. req. of a vertex (E) = 200 T3 84.634× 103

tmax = 368.353× 103

Set 3 T1 8.657 × 103

#vertices/task graph = 30 T2 4.975 × 103

max. exec. req. of a vertex (E) = 200 T3 104.517× 103

tmax = 823.834× 103

Set 4 T1 7.017 × 103

#vertices/task graph = 40 T2 13.906× 103

max. exec. req. of a vertex (E) = 200 T3 55.96 × 103

tmax = 806.714× 103

Set 5 T1 6.861 × 103

#vertices/task graph = 50 T2 13.005× 103

max. exec. req. of a vertex (E) = 200 T3 8.945 × 103

tmax = 1431× 103

Table III. Number of checks required in Step (ii) of the proposed interactive schedu-
lability analysis, versus tmax, which is equal to the number of checks that a regular
schedulability analysis algorithm would perform. This table shows the results for
five task sets, with each set containing three task graphs. The numbers in the right-
most column are the number of checks in Step (ii) when the deadline associated
with a randomly chosen vertex of the task graph in the same row is constrained.

4.2 Experiments with Step (ii)

In Section 3.2.1, we had outlined an efficient method to perform Step(ii) of our
proposed interactive schedulability analysis. This section illustrates the savings
obtained by using that method. For our experiments, we generated five task sets
with each set consisting of three task graphs. The number of vertices in these task
graphs ranged over 10 to 50, with the first task set consisting of task graphs with
10 vertices, the second task set consisting of task graphs with 20 vertices, and so
on. The value of E for all the task graphs was set to 200.

We randomly chose a vertex of a task graph and constrained its deadline. We
then computed the number of checks that were needed to perform Step(ii), follow-
ing the description in Section 3.2.1. The results obtained are shown in Table III.
This experiment was repeated for each task graph in the five task sets. Note from
Table III that there are cases where the number of checks of the schedulability con-
dition reduce to almost 0.5% of the total number of checks that would be performed
by a regular schedulability analysis algorithm. This again illustrates the potential
savings that our interactive schedulability analysis can achieve.
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5. PROVIDING FEEDBACK TO THE SYSTEM DESIGNER

In what we have seen so far, if a task set fails the schedulability test for a certain t̂,
a system designer is allowed to randomly select some of the vertices of certain task
graphs, relax their deadlines and rerun the analysis. However, relaxing the deadline
of some randomly selected vertex might not make the task set schedulable. Hence,
it would be meaningful to provide some feedback to the designer about potential
vertices, whose deadlines might be changed to make the task set schedulable. Other
types of feedback like changing the periods of certain task graphs or increasing the
intertriggering separation times associated with some of the edges of a task graph
might also be meaningful. Such feedback can be provided using the scheme we have
presented in this paper.

Towards this, the algorithm used for computing the dbf-table (i.e. Algorithm 1)
needs to be changed, so that some additional data structures are computed. These
data structures, Qi,e and Qe

i,e, are computed by Algorithm 4.
Recall that each cell in our dbf-table contains three different values: tii,e, ti,e, and

flagi,e. In addition to these, we now store two lists Qi,e and Qe
i,e in each cell. Qi,e

records the subset of vertices from the set {v1, . . . , vi}, whose triggering demands
an execution time of e, within any time interval of length ti,e. Similarly, Qe

i,e lists
the subset of vertices from {v1, . . . , vi}, which ends with the vertex vi and has an
execution requirement of e within any time interval of length tii,e. Algorithm 4 not
only returns T ′.dbf(t), but also the list of vertices Q(t) whose triggering results in
the execution demand of T ′dbf(t).

We now explain how Q(t) can be used to provide useful feedback to a system
designer. Recall from Section 2.2 that we create a list of T.dbf(t) for all “small”
values of t. To this list, we now add the data structure Q(t) containing the vertices
that contribute to T.dbf(t). During the schedulability test in step (ii), suppose
the test fails at t̂. If t̂ is “small”, then we can find the desired list of vertices
Q(t̂) directly from the table. If t̂ is “large”, we check whether T.dbf(t̂) is equal
to �t̂/P (T )�E(T ) + T.dbf(t̂ mod P (T )) or (�t̂/P (T )� − 1)E(T ) + T.dbf(P (T ) +
t̂ mod P (T ))(see Eqn. 1) (T.dbf(t̂) has to be equal to either of these two values).
If T.dbf(t̂) is equal to the former expression then we select the vertices listed as
Q(t̂ mod P (T )) from our table, otherwise we select the vertices corresponding to
Q(P (T ) + t̂ mod P (T )).

Hence, given any t̂ for which the schedulability test failed, for any task graph
T we can identify the legal sequence of vertices whose triggering contributed to
T.dbf(t̂). This sequence of vertices can now be used by the system designer to
modify their associated deadlines or the intertriggering separations associated with
their edges. In what follows, we refer to this sequence of vertices as the critical path
of a task graph that is responsible for its (non-) schedulability.

5.1 Illustration of the Feedback Provided for an Example Task Set

Consider a task set τ , consisting of two task graphs T1 and T2, shown in Figure 9.
Now assume that we would like to verify whether τ is schedulable, and in case it is
not, we would like to change the deadlines of the appropriate vertices in order to
make it schedulable. Here we illustrate how the scheme that we presented above
can be used to effectively identify such appropriate vertices.
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Algorithm 4 Computing of T ′.dbf(t) with data structures for providing feedback
Input: Task graph T ′, and a real number t ≥ 0
1: for e ← 1 to nE do
2: if e(v1) = e then
3: t1,e ← d(v1)
4: flag1,e ← SELF

5: enqeue(Q1,e, v1)
6: else
7: t1,e ← ∞
8: flag1,e ← PREVIOUS

9: end if
10: t11,e ← t1,e

11: end for
12: for i ← 1 to n − 1 do
13: for e ← 1 to nE do
14: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

15: ti+1
i+1,e ←

���
��

min{tij

ij ,e−e(vi+1)
− d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

16: Let vmin be the vertex from amongst the set of vertices vi1 , vi2 , . . . , vik , which
gave us the minimum value for the expression evaluated in line number 15

17: if e(vi+1) < e then
18: Qi+1

i+1,e ← Qmin,e−e(vi+1)

19: enqueue(Qi+1
i+1,e, vi+1)

20: else if e(vi+1) = e then
21: enqueue(Qi+1

i+1,e, vi+1)
22: end if
23: ti+1,e ← min{ti,e, t

i+1
i+1,e}

24: if ti+1,e = ti+1
i+1,e then

25: Qi+1,e ← Qi+1
i+1,e

26: flagi+1,e ←SELF

27: else
28: Qi+1,e ← Qi,e

29: flagi+1,e ←PREVIOUS

30: end if
31: end for
32: end for
33: T ′.dbf(t) ← max{e | tn,e ≤ t}
34: Q(t) ← Qn,e

T ′
1 and T ′

2 (shown in Figure 10) were obtained by joining two copies of T1 and T2

respectively, and will be used to compute dbf(t) for “small” values of t.
Clearly, the schedulability analysis returns a negative answer for the task set

τ . Further, Algorithm 4 provides the following feedback concerning the potential
vertices whose deadlines may be relaxed:

—Critical Path for Task Graph T ′
1: v6

—Critical Path for Task Graph T ′
2: v7
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Fig. 9. Task graphs (a) T1 and (b) T2 of our example task set τ .

Fig. 10. Task graphs (a) T ′
1 and (b) T ′

2 obtained from T1 and T2 respectively.

Indeed from Figure 10, we see that v6 of T ′
1 and v7 of T ′

2, both demand 1 unit
of execution time within a time interval of 1 unit. Thus,

∑
T∈T T.dbf(1) = 2,

implying that the condition
∑

T∈T T.dbf(t) ≤ t is not satisfied at t = 1. Now, one
might choose to relax the deadlines associated with v3 and v7 of T ′

2 from 1 to 2. It
may be noted here that in practice, the task graphs T ′

1 and T ′
2 will not be visible

to a designer and he or she will only work with the original graphs T1 and T2.
Any changes made in these two task graphs can easily be translated to appropriate
changes in T ′

1 and T ′
2.

Now we re-run the analysis and find that the task set is still not schedulable,
along with the following feedback:
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—Critical Path for Task Graph T ′
1: v3, v4

—Critical Path for Task Graph T ′
2: v8

To see that these paths are indeed critical to schedulability, note that from the
path v3, v4 we get T ′

1.dbf(2) = 2. Similarly, in task graph T ′
2, v8 leads to T ′

2.dbf(2) =
1. Thus,

∑
T∈T T.dbf(t) > t, at t = 2. Again, to move towards a schedulable

system, we now relax the deadline of v4 of T ′
1 from 1 to 2, and rerun the analysis.

However, the task set is still not schedulable, and the feedback provided is as
follows:

—Critical Path for Task Graph T ′
1: v3, v4, v5, v6

—Critical Path for Task Graph T ′
2: v3, v4, v5

One can verify that the above sequence of paths lead to
∑

T∈T T.dbf(6) = 7,
thereby failing the schedulability test. This time we select v5 of T ′

2, and relax its
deadline from 2 to 3, thereby obtaining a schedulable system.

In the above example, we have seen the benefits of the feedback mechanism on a
small task set. In larger systems where many more task graphs and more vertices
would be involved, this mechanism would certainly be of immense benefit.

6. CONCLUDING REMARKS

In this paper we presented a scheme for efficient schedulability analysis of recurring
real-time task sets, where the schedulability analysis is repeatedly invoked with
small modifications in the task set. Since this scheme is used in an interactive
fashion, we referred to it as interactive schedulability analysis.

Although in this paper we have focused on the specific problem of schedulability
analysis, we believe that such a scheme can be used for a variety of timing analysis
problems e.g. worst-case execution time analysis of programs using program path
analysis techniques. To the best of our knowledge, the idea of such interactive
timing analysis has not been studied before.

There are a number of other directions in which our work can be extended, the
most notable among which is handling modifications other than extending or relax-
ing deadlines associated with the vertices of a task graph. As we have mentioned
before, such modifications can include changing intertriggering separations associ-
ated with the edges of a task graph. We also believe that it would be interesting to
identify specific classes of changes for which updating the dbf-table can be done in
polynomial time. Further work should also be done towards providing more directed
feedback to a system designer, compared to what we have presented in this paper.
Lastly, there are a number of recently developed tools for timing/schedulability
analysis of embedded systems (see for example, [Amnell et al. 2003; Hamann et al.
2004]). It would certainly be meaningful to explore if our analysis can be incorpo-
rated inside these tools in a smooth way.
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