
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 

Network-Code Machine: Programmable

Real-Time Communication Schedules

(Supplemental Material)

Sebastian Fischmeister ∗ Oleg Sokolsky †

Insup Lee ‡

∗University of Pennsylvania,
†University of Pennsylvania, sokolsky@cis.upenn.edu
‡University of Pennsylvania, lee@cis.upenn.edu

University of Pennsylvania Department of Computer and Information Science Tech-
nical Report No. MS-CIS-06-01. Initial Paper URL on Scholarly Commons:
http://repository.upenn.edu/cis papers/230

This paper is posted at ScholarlyCommons@Penn.

http://repository.upenn.edu/cis reports/124

Network-Code Machine: Programmable Real-Time

Communication Schedules

(Supplemental Material)

Sebastian Fischmeister, Oleg Sokolsky and Insup Lee
Department of Engineering and Applied Science

University of Pennsylvania
sfischme@seas.upenn.edu, {sokolsky, lee}@cis.upenn.edu

Tech. Rep. MS-CIS-06-01

Abstract

This technical report provides supplemental material to the paper titled “Network-Code Machine:
Programmable Real-Time Communication Schedules” [2] and contains supplemental data and additional
explanations. It is not a standalone work, but should be read together with the original paper.

1 Composite Instructions

For sake of brevity, the original work did not provide the source code of the composite instructions. Here
we show, which basic instructions form the composite instruction.

• Goto.

goto (jmp) =
if (alwaystrue , #jmp)

• Nop.

nop () =
if (alwaysFalse , L0)

• Signal. In the code, values ##signal ch,##signal msgid, and ##signal len are specified in the
configuration file.

signal (signal) =
if (isClient , L0)
xsend (##signal_ch , ##signal_msgid , #signal)
goto (L2)

L0 : future (##signal_len , L1)

This research is supported in part by NSF CCR-0209024, NSF CNS-0410662, NSF CNS-0509327, NSF CNS-0509143 ARO
DAAD19-01-1-0473, ARO W911NF-05-1-0182 and OEAW APART-11059.

1

goto (L2)
L1 : receive (##signal_ch , #signal)

halt ()
L2 : nop ()

• XSend.

xsend (ch , msgid , val , loc) =
create (#msgid , #loc)
send (#ch , #msgid , #val)
destroy (#msgid)

• Wait.

wait (dl) =
future (#dl , L0)
halt ()

L0 : nop ()

• FTsend.

ftsend (ftCh , ch , val , msgid) =
if (#ftChNotEmpty , L0)
send (#ch , #msgid , #val)

L0 : nop ()

• Ftreceive.

ftreceive (ftCh , ch , loc) =
if (#ftChNotEmpty , L0)
receive (#ch , #loc)

L0 : nop ()

• Ftasync.

ftasync (ftCh , duration) =
if (#ftChNotEmpty , L0)
goto L2

L0 : mode (usched)
future (#duration , L1)
goto L2

L1 : mode (sched)
halt ()

L2 : nop ()

• Ftasyncsend.

ftasyncsend (ftCh , ch , msgid , val , duration) =
if (#ftChNotEmpty , L0)

2

send (#ch , #msgid , #val)
goto L2

L0 : mode (usched)
future (#duration , L1)
goto L2

L1 : mode (sched)
halt ()

L2 : nop ()

• Ftasyncreceive.

ftasyncreceive (ftCh , ch , loc , duration) =
if (#ftChNotEmpty , L0)
future (#duration , L1)
goto L3

L0 : mode (usched)
future (#duration , L2)
goto L3

L1 : receive (#ch , #loc)
halt ()

L2 : mode (sched)
halt ()

L3 : nop ()

2 Extended Performance Measurements

The interpreter and dispatcher introduce overhead to the running system. To quantify this, we measured
the instructions’ execution times. Node 1 hosts an Intel Pentium 4 with 1.5 GHz, 512 MB RAM, RTLin-
uxPro 2.2, and a 3c905C-TX/TX-M [Tornado] (rev 78) with exclusive interrupt access. Node 2 hosts an
Intel Pentium 4 with 1.8 GHz, 1GB RAM, RTLinuxPro 2.2, and the same network card and IRQ setup.

Table 1 shows the interpreter’s and dispatcher’s execution times in nanoseconds. The measurements
do not fit a normal distribution, so we only give the median, mode, minimum, and the range. The raw
data with all the histograms is available at the web-site.

The column Count shows the number of valid measurements. They differ, because some instructions
occurred twice in the sampling program and some measurements were missed at the application’s manual
start up. The column Median shows the number designating the ordered set’s middle value. The column
Mode shows the value with the largest number of obervations. The columns minimum and range provide
an overview of the jitter in the system. The high range results from the implementation’s prototype status,
e.g., we do not turn off interrupts during the execution.

The upper part of the table shows the execution times of individual instructions. Some instructions are
missing, because their execution time is similar to some listed ones (e.g., the instruction mode is similar to
the instruction handle). The instruction nop shows the overhead introduced by the timing. The statistics
show that the interpreter introduces only a low overhead. All instructions have a mode of just a few
nanoseconds; we can even subtract 171 or 143 nanoseconds for the timing overhead.

The lower part of Table 1 shows the dispatcher’s execution time. The rows isr@nx show the interrupt
service routine’s (IRQ) execution time. Whenever the network card receives a packet, this routine executes
and stores the arrived packet in the NCM’s packet queue. As the statistic shows, this routing usually
takes a few microseconds. However, other programs can preempt the ISR and this results the ISR’s large

http://www.seas.upenn.edu/∼sfischme/nc or contact one of the authors

3

Count Median Mode Min. Range
create@n1 999.964 944 425 419 47.524
create@n2 999.984 717 366 355 27.455
future@n1 499.981 380 377 227 27.126
future@n2 499.990 346 346 191 22.606
handle@n1 999.964 177 179 173 46.416
handle@n2 999.984 165 191 146 26.007

if@n1 499.982 351 348 195 48.847
if@n2 499.991 331 317 159 21.357

nop@n1 499.983 174 174 171 24.822
nop@n2 499.992 150 148 143 21.595

send@n1 999.964 390 372 371 46.181
send@n2 999.982 330 315 310 21.748

isr@n1 998.248 4.349 3.560 3.432 102.804
isr@n2 998.304 3.983 3.423 3.131 103.511

sendp@n1 999.964 27.092 22.864 22.227 63.989
sendp@n2 999.982 25.643 21.887 20.478 43.128

Table 1: The interpreter’s and dispatcher’s execution times in nanoseconds of n1 and n2.

range. Finally the rows sendp@nx show how the execution time of sending a data packet. From similar
measurements done for [1], we know that the worst case communication delay is described by the equation:
latency = 0.18979 ∗ datasize + 165. This value has been identified by an empirical latency test of about
one million interchanges for data length of the Ethernet frame starting at size 30 up to the maximum of
1500. The execution times of sending a packet vary according to this equation.

3 Example Program for Raw TDMA Network Access

The following program shows, how to code raw access to TDMA slots. Node 1 and node 2 split up the
bandwidth evenly. First at each round, they synchronize their clocks. Then Node 2 is allowed to use
the medium for 50 time units. Afterwards, Node 1 has exclusive access. After each TDMA access, we
programmed a safety delay of five time units.

Node N1:
L0 : signal (sync)

wait (55)
mode (usched)
wait (50)
mode (sched)
wait (5)
goto (L0)

Node N2:
L0 : signal (sync)

mode (usched)
wait (50)
mode (sched)
wait (60)
goto (L0)

References

[1] M. Anand, S. Fischmeister, J. Kim, and I.Lee. Distributed Code Generation from Hybrid Systems
Models for Time-delayed Multirate Systems. In Proc. of the ACM Conference on Embedded Software
(EmSoft’05), Short paper, 2005.

4

[2] S. Fischmeister, O. Sokolsky, and I. Lee. Network-Code Machine: Programmable Real-Time Commu-
nication Schedules. In Proc. of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’06), 2006.

5

