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Abstract

Discrete-event (DE) models are formal system specifica-
tions that have analyzable deterministic behaviors. Using a
global, consistent notion of time, DE components commu-
nicate via time-stamped events. DE models have primarily
been used in performance modeling and simulation, where
time stamps are a modeling property bearing no relation-
ship to real time during execution of the model. In this
paper, we extend DE models with the capability of relat-
ing certain events to physical time. We propose a program-
ming model, called PTIDES (Programming Temporally In-
tegrated Distributed Embedded Systems), which has DE se-
mantics, but with carefully chosen relations between model
time and real time. Key to making this model effective is to
ensure that constraints that guarantee determinacy in the
semantics are preserved at runtime. To accomplish this,
we give a distributed execution strategy that obeys DE se-
mantics without the penalty of totally ordered executions
based on time stamps. Our technique relies on having a dis-
tributed common notion of time, known to some precision.
Based on causality analysis of DE models, we define rele-
vant dependency and relevant orders to enable out-of-order
execution without compromising determinism and without
requiring backtracking.

1 Introduction

Distributed embedded systems are computer-based sys-
tems where multiple computers are connected on a network.
Typically, each computer is connected to sensors, actuators
or human-computer interfaces. Applications include manu-
facturing, instrumentation, surveillance, multi-vehicle con-
trol, avionics systems, automotive systems and scientific
experiments. Since each computer interacts with physical
processes, the passage of time becomes a central feature; it
is this key constraint that distinguishes these systems from
distributed computing in general.

In addition to interacting over a communication network,
the nodes in a distributed embedded system interact through
the physical world. Driving an actuator at one node, for ex-
ample, may affect the data sensed at another node. More-
over, actuation may need to be orchestrated across nodes.
The required precision of that orchestration, of course, de-
pends on the application. Robotic applications, e.g. in man-
ufacturing, may require precisions on the order of millisec-
onds. Instrumentation, where stimuli are generated and re-
sponses are measured, may require precisions on the order
of nanoseconds or even higher. The question we address in
this paper is how to construct the distributed software for
such systems.

General-purpose distributed software is dominated by
distributed object-oriented programming [32] using frame-
works such as CORBA, SOAP, DCOM, EJB, and XML
Web Services. Some extensions of these frameworks, such
as ACE/TAO [31], support real-time scheduling concepts,
and have caught on in certain communities (such as avion-
ics) [30]. These technologies are viewed as being too
heavyweight for many embedded applications such as in-
dustrial control, where software may be written in spe-
cial purpose languages (e.g. based on the International
Electrotechnical Commission’s IEC 61131) and executed
on special purpose hardware called Programmable Logic
Controllers (PLCs). Extensions of these techniques to dis-
tributed control systems (e.g. IEC 61499), have not proved
satisfactory, because of the non-determinism of implemen-
tation. That is, the same standard-compliant application
running in two different implementations of the runtime en-
vironment may result in different behaviors [7].

Our approach to the nondeterminism challenge in con-
structing distributed real-time system is to rely on network
time synchronization [20], where the computing nodes on
the network share a common notion of time to a known pre-
cision. This has the potential for being lightweight and de-
livering repeatable and predictable behaviors at a variety of
timing precisions.

Network time synchronization is available on a variety
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of platforms, including standard computers on the Inter-
net (e.g. NTP [29]), time-triggered buses such as TTA or
FlexRay [21], TCP/IP over Ethernet (e.g. IEEE 1588), and
wireless networks (e.g. RBS [11]). Implementations of
IEEE 1588 have demonstrated time synchronization as pre-
cise as tens of nanoseconds over networks that stretch over
hundreds of meters, more than adequate for many manufac-
turing and instrumentation systems. Such precise time syn-
chronization enables coordinated actions over distances that
are large enough that fundamental limits (the speed of light,
for example) make it impossible to achieve the same coor-
dination by conventional stimulus-response or client/server
mechanisms.

Our approach in this paper builds on discrete-event (DE)
modeling techniques [6, 23, 34]. DE models are concurrent
compositions of components that interact via events. An
event is a time-stamped value, where time is “logical time”
or “modeling time” [22]. Correct execution of such models
requires only that the ordering of time stamps be respected.
DE is usually a simulation technology (e.g. in hardware de-
scription languages such as Verilog and VHDL and network
modeling languages such as OPNET Modeler1 and Ns-22).
When DE models are executed on distributed platforms, the
objective is usually to accelerate simulation, not to imple-
ment distributed real-time systems [6, 12, 34].

We call our programming model PTIDES (pronounced
“tides”), for Programming Temporally Integrated Dis-
tributed Embedded Systems. In our approach, DE is not
a simulation technology, but rather application specification
language, which serves as a semantic basis for obtaining de-
terminism in distributed real-time systems. Applications are
given as distributed DE models, where for certain events,
their modeling time is mapped to physical time. For exam-
ple, a programmer may specify that an actuator must pro-
duce a physical output at the time determined by the time
stamp of an event sent to the actuator. When these models
are executed in a runtime environment that ensures DE se-
mantics, we know that the applications will have determin-
istic behaviors regardless of the actual implementations.

Preserving DE semantics at runtime can be challenging,
since the global, consistent notion of time may lead to a to-
tal ordering of execution in a distributed system, an unnec-
essary waste of resources. PTIDES takes an event-driven
execution strategy. Unlike many hard real-time distributed
systems that depend on domain specific network architec-
tures, our only assumption of communication behavior is
that it delivers packets reliably with a known bounded de-
lay. We divide our execution strategies into two layers:
global coordination, and local resource scheduling. When
receiving an event from the network, the global coordina-
tion layer determines whether the event can be processed

1http://opnet.com/products/modeler/home.html
2http://www.isi.edu/nsnam/ns

immediately or it has to wait for other potentially proceed-
ing events. Once it is sure that the current event can be pro-
cessed according to DE semantics, it hands the event over to
local resource scheduler, which may use existing real-time
scheduling algorithms, such as earliest deadline first (EDF)
to prioritize the processing of all pending events. This pa-
per only focuses on the global coordination layer, which is
key to achieving DE semantics in distributed systems. We
leverage and improve on distributed DE techniques to relax
constraints on execution. In particular, we define a partial
order called the relevant order that can be statically checked
to enable the global coordination layer to release received
events out of their time stamp order while preserving DE
semantics and without requiring backtracking. This out-of-
order execution also loosens some constraints for the local
resource schedulers.

This paper is organized as follows. Section 2 discusses
related work. Section 3 motivates our programming model
using a networked camera application. Section 4 devel-
ops the relevant dependency concept using causality inter-
faces [25], and defines the relevant order on events based on
relevant dependency to formally capture the ordering con-
straints of temporally ordered events that have a dependency
relationship. A distributed execution strategy based on the
relevant order of events is presented in section 5, and its
implementaion is in section 6. Future work is discussed in
section 7.

2 Related Work

Synchronous languages [4] have been effectively applied
to safety-critical embedded systems [5]. These languages
(which include Esterel, SCADE, Lustre, Signal, etc.) pro-
vide deterministic concurrent semantics, but at the expense
of tight coordination that makes distributed implementation
difficult.

Another important innovation is the development of
time-triggered languages and the concept of logical execu-
tion time [16]. One example is Simulink with Real-Time
Workshop (RTW), from The MathWorks, which is widely
used for designing embedded control systems in applica-
tions such as automotive electronics. Simulink with RTW
leverages an underlying preemptive priority-driven multi-
tasking operating system to deliver real-time behavior based
on rate-monotonic scheduling [26]. A related approach is
Giotto [16], which introduces additional latency but deliv-
ers better schedulability analysis [28]. While Giotto and
Simulink/RTW are intended primarily for periodic real-time
tasks, extensions that support less periodic behavior have
emerged [27, 14]. Our approach in this paper is closest to
timed multitasking (TM)[27], but goes a step further in em-
bracing DE semantics and relating model time to real time
at sensor and actuator interactions rather than through log-



ical execution time. Distributed implementations of time-
triggered languages [17] usually rely on TDMA network.
Our approach imposes fewer requirements on the network
and leverages distributed DE simulation concepts.

In system modeling, many paradigms incorporate the no-
tion of time in their semantics. Examples include timed
automata [2], hybrid automata [15], and timed Petri nets
[10]. Although these provide useful modeling frameworks,
we are not aware of realizations that bind logical time to
real time and provide deterministic real-time execution.

Existing methods for addressing real-time computation
typically deal with a portion of the problem of construct-
ing and executing real-time programs. Real-time operating
systems (RTOSs) provide mechanisms for prioritizing tasks
and triggering computations in response to timer or event
interrupts. Time-triggered networking techniques such as
the Time Triggered Architecture (TTA) provide determin-
istic sharing of networking resources and insulation from
faults. Network time synchronization protocols such as
NTP and IEEE 1588 provide a common time base across
computers on a network [20]. All of these technologies,
however, are used with relatively conventional concurrency
models (threads and processes) and conventional program-
ming languages. This paper elevates timing and distribution
to the level of the programmer’s model, so that applications
are built by directly expressing timing and distribution prop-
erties [24].

Interface-based design [1], especially real-time and re-
source interfaces [18, 33, 8], also shows considerable
promise for helping with real-time embedded software. Our
analysis in this paper heavily leverages a special case of
these called causality interfaces [25].

Our work builds on distributed discrete-event simulation,
which has a rich history [13]. So-called “conservative”
techniques advance model time to t only when each node
can be assured that it has seen all events time stamped t or
earlier. In the well-known Chandy and Misra technique [9],
extra (null) messages are used for one execution node to
notify another that there are no such earlier events. For our
purposes, this technique binds the execution at the nodes
too tightly, making it very difficult to meet realistic real-
time constraints. So-called “optimistic” techniques perform
speculative execution and backtrack if and when the spec-
ulation was incorrect [19]. Such optimistic techniques will
also not work in our context, since backtracking physical
interactions is not possible.

Our approach is conservative, in the sense that events are
processed only when we are sure it is safe to do so. But
we achieve significantly looser coupling than Chandy and
Misra using relevant dependency analysis.
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Figure 1. Networked camera application.

3 Distributed Camera Application

We use a camera network as a motivating scenario and a
running example in later discussions. Throughout the paper,
we use t for model time and τ for physical time.

Consider N cameras connected via Ethernet are dis-
tributed over a football field as shown in figure 1. Suppose
that the clocks at all the cameras and the central computer
are precisely synchronized. All the cameras have computer-
controlled picture and zoom capabilities. Each camera only
has a partial view of the field. We can control a camera to
take a picture or zoom precisely at some physical time. Pre-
cise time synchronization allows cameras to take sequences
of pictures simultaneously. The images produced by each
camera are time stamped and transferred over the network
to the central computer, where the images get processed to
produce a composite view of the field or a sequence of views
for some interesting moment. A user sitting in front of the
central computer may issue commands to the cameras to
zoom or change the frequency at which images are taken.
Suppose that zooming takes time κ to stabilize, and during
this period of time no picture should be taken. Given that
the commands controlling the cameras are transmitted over
the network with a bounded delay, the challenges here are
how to coordinate the zooming and picture taking actions
properly on each camera so that the retrieved images are
precisely synchronized.

This application is inspired by the “eye vision” project3

at CMU and CBS Television. However, rather than focusing
on the challenges in real-time image processing and con-
trol, we consider how to program the whole system at a
high level and how to realize the timing relations in the sys-
tem. The principles we develop are general enough to apply
in many scenarios that require distributed time-coordinated
physical actions.

Cameras in this application are both sensors and actu-
ators. We need to generate precisely timed physical ac-
tions, like picture taking and zooming, at each camera, and
the cameras respond with time stamped images. Taking an
actor-oriented approach for building DE systems [23], we

3http://www.ri.cmu.edu/events/sb35/tksuperbowl.html



model a camera as an actor that has one input port and two
output ports, depicted graphically as follows:

Device

This actor is a software component that wraps the interac-
tion with the camera driver. We assume that it does not com-
municate with any other software component except via its
ports. (This assumption is made for functional level specifi-
cation, which focuses on input/output data and timing prop-
erties; scheduling and resource sharing between actors are
delayed to the implementation and execution stage.) At its
input port, it receives a potentially infinite sequence of time-
stamped values, called events, in chronological order. The
sequence of events is called a signal. The time stamp of
an event specifies when an action should be taken, and the
value of the event dictates what kind of action (zooming
level or shutter speed) should be taken. Obviously, in or-
der to give the actuator some leeway to react, it needs to
receive an input event with time stamp t at some physical
time τ ≤ t.

The first output port produces a time-stamped value for
each input event, where the time stamp is strictly greater
than that of the input event, to indicate the physical action
has completed. The second output port produces the time-
stamped image and sends it to the central computer. Each
output event with time stamp t′ is produced at some physi-
cal time τ ′ ≥ t′. These inequalities provide the basic rela-
tions between model time and physical time.

Figure 2 shows a distributed DE model to be executed on
the cameras and the central computer platform. The dashed
boxes divide the model into two parts, the top one to be
executed on each camera and the bottom one to be executed
on the central computer. The parts communicate via signal
s1 and s2. We assume that events in these signals are sent
over the network as time-stamped values.

The Command actor is a software component that wraps
interactions with the user input device. When a user input
comes in, the Command actor checks with its synchronized
clock for the current time, uses the returned time value to
time stamp the input message and sends the time stamped
message to all the cameras. The right part of the model
on the central computer processes the images taken at each
camera and displays the result.

The Clock actor produces time-stamped outputs where
the time stamp is some integer multiple of a period p. The
time stamps are used to control when the camera takes pic-
tures. The period can be different for each clock and can
be changed during run time upon receiving an input on the
second input port. If there is an event with value v and time
stamp t at the second input, the clock actor will scale its pe-
riod from p to p′ = p ∗ v and produce an output with time
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Figure 2. Specification of the Networked cam-
era application.

stamp t0 + np′ where t0 is the time stamp of the last output
and n is the smallest integer so that t0 + np′ ≥ t. The feed-
back loop around the clock actor is used to trigger the next
output, and we assume there is an initial event on the first
input at the beginning.

The Delay actor with a delay parameter d will produce
an event with time stamp t + d at its output given an event
with time stamp t at its input.

Two kinds of user commands are received at each cam-
era, the change frequency command and the adjust zoom
command. The Router actor separates these events and
sends the change frequency events to the Clock actor and
the adjust zoom events to the Merge actor.

The Merge actor merges the events on the two input ports
in chronological order. It gives priority to the second input
port if input events have identical time stamps. That is, we
give higher priority to the user to control a camera.

The Queue actor buffers its input event until an event is
received at the trigger port, which is the one at the top of the
actor. The Device actor sends a trigger event to the Queue
actor when a physical action is done, and we assume there
is an initial event on the trigger port at the beginning. The
feedback loop around the Queue and Device actor ensures
that the Device does not get overwhelmed with future re-
quests. It may not be able to buffer those requests, or it may
have a finite buffer.

In the above discussion, the time stamps are values of
model time. Some actors in the model bind model time to
physical time. The Command actor binds model time to
physical time by producing an event with model time cor-
responding to the physical time when the user input hap-
pens. The Device actor binds model time to physical time
by producing some physical action at the real-time corre-
sponding to the model time of each input event. The Device
actor also imposes real-time constraints on the model. The
input events must be made available for the Device actor



to process them at a physical time strictly earlier than the
time stamp. Otherwise, the component would not be able
to produce the physical action at the designated time. We
limit the relationship of model time to physical time to only
those circumstances where this relationship is needed. For
other actors in the model, there is no real-time constraint
and model time is used to define execution semantics.

As shown in this example, PTIDES programs are
discrete-event models constructed as networks of actors.
For each actor, we specify a physical host to execute the ac-
tor. We also designate a subset of the input ports to be real-
time ports, which imposes the constraint that time-stamped
events must be delivered to these ports before physical-time
exceeds the time stamp. Each real-time port can optionally
specify a setup time σ, in which case it requires that each
input event with time stamp t be received before physical
time reaches t− σ.

We view the model shown in figure 2 as a representa-
tive scenario for many distributed embedded applications.
For example, the Command actor can be viewed as an ex-
ample of sensor components, the Device actor is an exam-
ple of actuator components, and other actors in between are
the control or computation part. The problems discussed
in this paper are common to many distributed sensing and
actuation systems, such as manufacturing, instrumentation,
surveillance, and scientific experiments.

How to build a run-time environment to execute the dis-
tributed model shown in figure 2 to deliver the correct be-
havior and meet the real-time constrains is a challenging
problem. A first-come-first-serve strategy cannot preserve
deterministic DE semantics, since the network may alter
the order that events are delivered. A brute-force imple-
mentation of a conservative distributed DE execution of this
model would stall execution in a camera at some time stamp
t until an event with time stamp t or larger has been seen
on signal s1. Were we to use the Chandy and Misra ap-
proach [9], we would insert null events into s1 to minimize
the real-time delay of these stalls. However, as we will show
later, this brute-force technique will unnecessarily postpone
the release time of these events even when these events
can be safely processed. The so-called “optimistic” tech-
niques for distributed DE execution will also not work in
our context. Optimistic approaches perform speculative ex-
ecution and backtrack if and when the speculation was in-
correct [19]. Since we have physical interactions in the sys-
tem, backtracking is not possible.

In section 5, we describe a new coordination strategy that
permits out-of-order releasing of events without sacrificing
determinacy and without requiring backtracking. This will
give underlying resource scheduling layer looser end-to-
end delay constraints to work with, thus improve schedu-
lability. The key idea is that events only need to be pro-
cessed in time-stamp order when they are causally related.
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Figure 3. The program on the camera.

We define formal interfaces to actors that tells us when such
causal relationships exist in the next section.

4 Relevant Dependency

Model-time delays play a central role in assuring the ex-
istence and uniqueness of discrete-event system behavior.
We achieve correct, out-of-order execution by statically an-
alyzing the causality relations among events. Causality in-
terfaces [25] provide a mechanism that allows us to specify
and reason about delay relationships among actors. In this
section, we use causality interfaces to derive relevant depen-
dencies among discrete events, which is the key to achiev-
ing out-of-order execution without disobeying the formal
semantics of discrete-event specifications.

4.1 Causality Interfaces

The interface of actors contains ports on which actors
receive or produce events. Each port is associated with a
signal. A causality interface declares the dependency that
output events have on input events. Formally, a causality
interface for an actor a with input ports Pi and output ports
Po is a function:

δa : Pi × Po → D (1)

where D is an ordered set (in fact an algebra) with two bi-
nary operations ⊕ and ⊗ that are associative and distribu-
tive. That is,

∀d1, d2, d3 ∈ D,

(d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3)
(d1 ⊗ d2)⊗ d3 = d1 ⊗ (d2 ⊗ d3)
d1 ⊗ (d2 ⊕ d3) = (d1 ⊗ d2)⊕ (d1 ⊗ d3)
(d1 ⊕ d2)⊗ d3 = (d1 ⊗ d3)⊕ (d2 ⊗ d3)

(2)

In addition, ⊕ is commutative,

d1 ⊕ d2 = d2 ⊕ d1.

The ⊗ operator is for serial composition of ports, and the ⊕
operator is for parallel composition. The elements of D are



called dependencies, and δa(p1, p2) denotes the dependency
that port p2 has on p1.

For discrete-event models, D = R0 ∪{∞}, ⊕ is the min
function, and ⊗ is addition. With these definitions, D is
a min-plus algebra [3]. Note that these operators are com-
pletely defined on model time.

Given an input port p1 and an output port p2 belonging to
an actor a, δa(p1, p2) gives the minimum model-time delay
between input events at p1 and resulting output events at p2.
Intuitively, if δa(p1, p2) = d, then any event e2 = (t2, v2)
that is produced at p2 as a result of an event e1 = (t1, v1)
at p1 will satisfy t2 ≥ t1 + d. For example, a Delay actor
with a delay parameter d will produce an event with time
stamp t+d at its output p2 given an event with time stamp t
at its input p1, so δDelay(p1, p2) = d. Note that the causal-
ity interface captures the smallest possible delay, i.e. the
fastest response time. An actor may produce an event e2

with a larger time stamp, or may produce no event at all in
response to e1, and the actor still conforms with the causal-
ity interface.

When a program is given as a composition of actors, i.e.
a set of actors and connectors linking their ports, we can
determine the dependencies between any two ports in the
composition by using ⊗ for serial composition and ⊕ for
parallel composition. For example, figure 3 shows the pro-
gram running on each camera and names the ports. To deter-
mine the dependencies for ports in the model, we compute
the function:

δ : P × P → D

where P = {p1, p2, ...p17}
(3)

This forms a weighted, directed graph G = {P,E}, called
the dependency graph, as shown in figure 4, where P is the
set of ports in the composition. If p is an input port and p′

is an output port, there is a edge in G between p and p′ if
p and p′ belong to the same actor a and δa(p, p′) < ∞. In
such a case, the weight of the edge is δa(p, p′). If p is an
output port and p′ is an input port, there is an edge between
p and p′ if there is a connector between p and p′. In this
case, the weight of the edge is 0. In all other cases, the
weight of an edge would be ∞, but we do not show such
edges. Note that this directed graph could by cyclic, and
the classical requirement for a DE model to be executable
is that the sum (or ⊗) of the edge weights in each cycle be
greater than zero [25].
∀p, p′ ∈ P , to compute the value of δ(p, p′), we need to

consider all the paths between p and p′. We combine par-
allel paths using ⊕ and serial paths using ⊗. In particular,
the weight of a path is the sum of the weights of the edges
along the path (⊗). The ⊕ operator is minimum, so δ(p, p′)
is weight of the shortest weighted path from p to p′. For
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Figure 4. A graph for computing the causality
interface of a composition of actors.

example, δ(p1, p11) is calculated as:

δ(p1, p11) =min(ph1, ph2, ph3), where
ph1 =δDelay(p1, p2) + 0 + δRouter(p3, p4) + 0+

δClock(p7, p8) + 0 + δMerge(p9, p11),
ph2 =δDelay(p1, p2) + 0 + δRouter(p3, p5) + 0+

δMerge(p10, p11),
ph3 =δDelay(p1, p2) + 0 + δRouter(p3, p4) + 0+

δClock(p7, p8) + 0 + δClock(p6, p8) + 0+
δMerge(p9, p11)

(4)

Note that paths with infinite weight in parallel with any
path that is shown in our graph would have no effect, which
is why we do not show such paths. If there is no path from
a port p back to itself, then δ(p, p) = ∞.

Causality interfaces form a powerful tool to analyze de-
terminism in discrete-event systems, but these dependency
values between ports do not tell the whole story. Consider
the Merge actor in figure 3, with two input ports. When we
construct the dependency graph, it is easy to find that there
is no path between these ports. But, these ports are not com-
pletely independent. In fact, the Merge actor cannot react
to an event at one port with time stamp t until it is sure it has
seen all events at the other port with time stamp less than or
equal to t. This fact is not captured in the dependencies. To
capture it, we define relevant dependencies.

4.2 Relevant Dependency

Based on the causality interfaces of actors, the relevant
dependency on any pair (p1, p2) of input ports specifies
whether an event at p1 will affect an output signal that may
also depend on an event at p2.

The relevant dependency between ports in a composi-
tion is calculated in a way similar to the dependency above,
but we aggregate some of the ports into equivalence classes.
Specifically, considering an individual actor a, two input
ports p1 and p2 of a will be “equivalent” if there is an output
port that depends on both. Formally, p1 and p2 are equiva-
lent if

∃p ∈ Po, such that δa(p1, p) < ∞ and δa(p2, p) < ∞,
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Figure 5. The relevant dependency graph for
the model in figure 3.

where Po is the set of output ports of a.
For example, in figure 3, both input ports of the Merge

actor affect its output port, i.e. δMerge(p9, p11) < ∞ and
δMerge(p10, p11) < ∞. Thus p9 and p10 are equivalent.

In addition, we assume that if any actor has state that is
modified or used in reacting to events at more than one input
port, then that state is treated as a hidden output port. Thus,
with the above definition, two input ports are equivalent if
they are coupled by the same state variables of the actor.

We next modify the dependency graph by aggregating
ports that are equivalent to create a new graph that we call
the relevant dependency graph. Consider the graph in fig-
ure 4. Suppose, as above, that p6 and p7 are equivalent,
p9 and p10 are equivalent and p12 and p13 are equivalent.
Then the relevant dependency graph for the model in figure
3 becomes that shown in figure 5.

Below we will show that the relevant dependency in-
duces a partial order on events that defines the constraints
on the order in which we can process events.

The relevant dependency for a composition of actors
is constructed as follows. Let Q be the set of equiva-
lence classes of input ports in a composition. For example,
q6,7 = {p6, p7} ∈ Q in figure 4. Then, the relevant depen-
dency is a function of the form:

d : Q×Q → D. (5)

For instance, in figure 4, we have:

Q ={q1, q3, q6,7, q9,10, q12,13, q15}
={{p1}, {p3}, {p6, p7}, {p9, p10}, {p12, p13}, {p15}}.

(6)

Similar to ordinary dependencies, relevant dependencies are
calculated by examining weights of the relevant dependency
graph. ∀q, q′ ∈ Q, to compute the value of d(q, q′), we
need to consider all the paths between q and q′. We again
combine parallel paths using⊕ and serial paths using⊗. So
d(q, q′) is the weight of the weighted shortest path from q
to q′ in the relevant dependency graph.

Intuitively, relevant dependency indicates how much we
can advance time at a port without knowing all the events
on the other ports in a composition. A relevant dependency
d(q, q′) = r for some r ∈ R0, means that any event with

time stamp t at ports in q′ can be processed when all events
at ports in q are known up to time stamp t− r. In particular,
a relevant dependency d(q, q′) = ∞ indicates that events
at ports in q′ can be processed without knowing anything
about events at ports in q.

Consider the model running at each camera as shown in
figure 3. The causality interface for each actor in the model
is:

δDelay(p1, p2) = d,

δRouter(p3, p4) = 0, δRouter(p3, p5) = 0,

δClock(p6, p8) = Tmin, δClock(p7, p8) = 0,

δMerge(p9, p11) = 0, δMerge(p10, p11) = 0,

δQueue(p12, p14) = 0, δQueue(p13, p14) = 0,

δDevice(p15, p16) = ∆, δDevice(p15, p17) = 0

(7)

where Tmin is the minimum time interval between two con-
secutive picture taking actions at the camera, and ∆ > 0 is
the response delay of the digital output device (i.e. the min-
imum model-time delay across the input and the first output
of the Device actor).

Based on the dependencies specified for each actor, It
is easy to check the relevant dependency in this composi-
tion. As an example, the relevant dependency d(q1, q9,10)
is d, where using the same notation as above, q4 = {p4}
and q9,10 = {p9, p10}. This means that any event with time
stamp t at port p9 can be processed when all events at port
p1 are known up to time stamp t − d. Assume the network
delay is bounded by d′, at physical time τ = t − d + d′

we are sure that we have seen all events with time stamps
smaller than t − d at p1. Hence, an event e at p9 with time
stamp t can be processed at physical time τ or later. Note
that although the Delay actor has no real-time properties at
all (it simply manipulates model time), its presence loosens
the constraints on the execution. By choosing d properly,
i.e. d > d′, we can deliver e to p15 before physical time
reaches t and thus satisfy the actuation constraint at p15.
This is precisely the result we were after. It would not be
achieved with a Chandy and Misra policy. And unlike opti-
mistic policies, there will never be any need to backtrack.

5 Execution Based on the Relevant Order

What we gain from the dependency analysis is that we
can process certain events out of their linear chronological
order. In fact, we effectively defined a partial ordering of
discrete events.

5.1 Relevant Order

We define the relevant order as follows. Suppose e1 is
an event with time stamp t1 at a port in q1 and e2 is an event



with time stamp t2 at a port in q2. Then

e1 <r e2 ⇔ t1 + d(q1, q2) < t2.

We use notation <r for the relevant order. It is straight-
forward to show that this is a partial order on events. We
interpret e1 <r e2 to mean that e1 must be processed be-
fore e2. Two events e1 and e2 are not comparable, denoted
as e1||re2, if neither e1 <r e2, nor e2 <r e1. If e1||re2,
then e1, e2 can be processed in any order. What we mean
by “processed” is that the event is released to the actor that
reacts to the event.

5.2 Execution Strategies

We now design execution strategies based on the relevant
order to enable out of order execution without hurting de-
terminism. One execution algorithm may work as follows:

1. Start with E, a set of events in the event queue.
2. Choose r ⊂ E, s.t. each event in r is minimal in E.
3. Process events in r, which may produce a set of new

events E′.
4. Update E to (E \ r) ∪ E′.
5. Go to 2.

An event e is minimal in E if ∀e′ ∈ E, e <r e′, or e||re′.
This strategy, however, fails when there are events com-

ing over the network. The pitfall here is that it assumes all
the events that have been generated in the system are in E,
but in a distributed system with network delays, this is not
true.

An input port is called a network port if it receives events
from external hardware. Here we use the word “network”
in a loose sense, which covers both communication network
and external I/O. For the model shown in figure 3, p1 is a
network port as it receives events from another computer.
But, p13 is also a network port as it receives events from an
external device. Let Pd denote the set of all network ports
in a composition.

For network ports, we assume that events that are re-
ceived on those ports have time stamps that are related to
physical time. Specifically, let ∆p be a non-negative real
number associated with network port p. Then we assume
that an event with time stamp t on port p will be received
at real time no later than t + ∆p. We call ∆p the network
delay associated with port p.

For any input port p, let Q(p) denote the equivalence
class that contains p. An event e with time stamp t at a
port p is said to be ∆-minimal if e is minimal in E, and the
current physical time is no less than T = maxp′∈Pd

{t −
d(Q(p′), Q(p)) + ∆p′}. That is, an event is ∆-minimal if
it is minimal in E and we are assured that we have seen all
events that are less than it in the relevant order.

The execution algorithm becomes:

Figure 6. Skeleton code of the Device actor

1. Start with E, a set of events in the event queue.
2. Choose r ⊂ E, s.t. each event in r is ∆-minimal in E.
3. Process events in r, which may produce a set of new

events E′.
4. Update E to (E \ r) ∪ E′.
5. Go to 2.

When clocks in the distributed systems are not perfectly
synchronized, we also need to take into account the time
synchronization errors in the estimated physical time T . In
particular, if the difference of the clock time between any
two nodes in the systems is bounded by ξ, we need to wait
until the current physical time is T + ξ to make sure e is
minimal.



6 Implementation

We use a lab prototype systems with Agilent IEEE
1588 implementation to illustrate the PTIDES program-
ming model. These platforms include a Linux host and sim-
ple timing-precise I/O hardware. Specifically, one of the fa-
cilities is a device driver API where the software can request
that the hardware generate a digital edge (from voltage level
0 to level 1) at a specified time. The edge can be used to trig-
ger some sensor (e.g. an camera) to perform an action (e.g.
taking a picture). After generating this pulse, the hardware
interrupts the processor and resets itself to voltage level 0.
This physical setup makes it easy to measure very precisely
the real-time behavior of the system (for example using an
oscilloscope probe).

Figure 6 shows the skeleton code of our implementation
of the Device actor in C++ on that platform. The fire
method is called by the run-time environment when there
is an event at the input port. It takes the time stamp of the
input event as specification of when to produce the level
change. That is, it requests the hardware, using the ioctl
function of the device driver, to produce a rising edge at
physical time equal to the model time of an input event. The
initialize method is invoked at the beginning of an ex-
ecution and shall be invoked exactly once per execution of a
model. The initialize method in the Device actor sets
the real-time flag of the input port to be true and creates a
new thread to listen to the hardware interrupts after the level
changes have been generated. The handleInterrupt
method defines the execution of the thread. When an inter-
rupt happens, the thread wakes up, outputs an event to the
first output to indicate the completion of the level change
with time stamp equal to the physical time at which the level
is restored to its original value, and outputs another event
that encapsulates the sensor data to the second output with
time stamp equal to the time when the data is generated.

A set of C++ classes, including Actor, Event, Scheduler,
Time, Token and TypedPort have been implemented as the
core package of PTIDES run time. Developers only need
to focus on the functionality of each actor in a model. For
example, other actors in the model shown in figure 2 can
be implemented in a similar manner as the Device actor by
defining how to react to input events. These actors are gen-
erally easier to implement than the Device actor since they
do not need to interact with the hardware drivers and deal
with threads.

7 Conclusions

This paper describes the use of discrete-event models
as programming specifications for time-synchronized dis-
tributed real-time systems. We call the technique PTIDES
— Programming Temporally Integrated Distributed Em-

bedded Systems. We relate model time and physical time
only where this relationship is necessary, and provide an
analysis framework and an execution strategy that permit
out of order processing of events without sacrificing de-
terminacy and without requiring backtracking. We give a
formal foundation based on the concepts of relevant depen-
dency and relevant order. The resulting foundation is partic-
ularly valuable in time-synchronized distributed real-time
systems, since we can take advantage of the globally con-
sistent notion of time as a coordination channel.

A key requirement for preserving runtime determinism
of PTIDES programs is that each event e with model time t
at a real-time port must be received before the physical time
exceeds t−σ, where σ is the setup time of the real-time port.
We call a PTIDES program deployable if this requirement
can be guaranteed. We are working on methods for stati-
cally checking deployability for a given PTIDES program
and a system characteristic such as communication delay
and execution time bounds.
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