
Regular Specifications of Resource Requirements
for Embedded Control Software

Rajeev Alur and Gera Weiss
University of Pennsylvania

Abstract

For embedded control systems, a schedule for the allo-
cation of resources to a software component can be de-
scribed by an infinite word whose ith symbol models the
resources used at the ith sampling interval. Dependency
of performance on schedules can be formally modeled by
an automaton (ω-regular language) which captures all the
schedules that keep the system within performance require-
ments. We show how such an automaton is constructed for
linear control designs and exponential stability or settling
time performance requirements. Then, we explore the use
of the automaton for online scheduling and for schedulabil-
ity analysis. As a case study, we examine how this approach
can be applied for the LQG control design. We demonstrate,
by examples, that online schedulers can be used to guaran-
tee performance in worst-case condition together with good
performance in normal conditions. We also provide exam-
ples of schedulability analysis.

1 Introduction

A key question in the design and implementation of em-
bedded real-time systems is: how does one specify the re-
source requirements of a component? When the resource
is CPU, the most commonly used framework for specify-
ing the usage requirements is the periodic task model [12]:
each component specifies a period, sometimes along with
a deadline, which gives the frequency at which the compo-
nent must execute. The designer of the component makes
sure that the performance objectives will be met as long as
the component is executed consistent with its period. For
implementation, the real-time operating system performs a
worst-case execution time analysis on all the components,
followed by schedulability analysis to check whether all the
timing requirements can be met (c.f. [10, 4]).

Specifying resource requirements using periods has ad-
vantages due to simplicity and analyzability, but has some
key deficiencies. First, periodic task model has limited ex-
pressiveness: a specification such as “execute the compo-

nent every 5ms” does not say whether the scheduler should
or should not execute it more frequently if enough comput-
ing resources are available. For some tasks such as updating
sensor readings of environment, as the load decreases, the
component should be executed more frequently and this will
improve the system performance. For some tasks such as re-
freshing of display, a fixed period is reasonable. For control
systems, while periodic task specifications (e.g., “once ev-
ery 5 slots”) capture only the worst-case bounds, we cannot
simply treat these as upper bounds, and use “at least once
every 5 slots” as the specification. This is consistent with
the common wisdom in control theory that more frequent
execution need not imply better performance. In general,
for complex systems consisting of a mix of tasks, the frame-
work should allow flexible and expressive specifications of
resource requirements. Second, such specifications do not
compose in the sense that a system composed of two com-
ponents cannot be specified by a single period, and when
a component is added the schedulability analysis must be
performed again on the global set of tasks.

The focus of this paper is performance of the control sys-
tem. Our goal is to guarantee that the system meets its per-
formance requirements. We take a control design with per-
formance objective such as exponential stability or settling
time, and compute a specification of resource requirement.
We use formal languages and finite automata over infinite
words as an expressive, analyzable, and composable speci-
fication framework for resource requirements. We assume
that resources are allocated in discrete slots of some fixed
duration. Such a virtual time-triggered allocation strategy
may be because of time-triggered architecture [9] or be-
cause the system supports the FLET (Fixed Logical Exe-
cution Time) programming abstraction [8]. Given a com-
ponent, the allocation of the resource to that component in
a particular execution can be described by an infinite word
σ = σ1σ2 · · · , where each symbol σi describes whether the
component was scheduled during the ith slot or not. The re-
source requirement of a component, then, can be specified
by a language L of infinite words that describes all accept-
able schedules. The designer of the component makes sure
that the performance objectives will be met on all schedules

in L, and the scheduler must ensure that the runtime alloca-
tion of the resource to the component corresponds to some
word in L. We will assume that L is specified by finite au-
tomata with acceptance conditions for infinite words (such
as Büchi automata), or equivalently, by ω-regular expres-
sions (see [21] for an introduction to theory of languages
of infinite words). In the literature, one can find other for-
malisms for expressing dependencies between tasks and ex-
ecution constraints [2, 3, 7, 17]. We use automata, because
it can express the semantics of all these models and because
we are interested in control performance, not efficient input
languages.

We consider two ways of formalizing and composing
specifications. In the first, we assume that the resource can
be allocated to only one component in any given slot. In
this case, the specification of a component with task iden-
tifiers I , is a language over the alphabet I ∪ {0}, where
0 6∈ I means that the slot is not allocated to this compo-
nent. The composition of two specifications can be com-
puted by an appropriate product construction on automata,
and test of schedulability corresponds to testing of language
emptiness. In the second style of specification, we assume
that multiple tasks can be allocated in a given slot. Then,
the specification of a component containing tasks from a
set I of identifiers is an ω-language over the alphabet 2I :
the ith symbol of the word gives the set of tasks scheduled
in the ith slot (the empty set means that none of the tasks
of this component are scheduled in this slot). Composing
two specifications L1 and L2 over task identifiers I1 and I2,
yields a language L over the task set I1 ∪ I2 obtained us-
ing an appropriate product construction. This more general
style of requirements gives platform-independent specifica-
tions. On a pacific platform P , we first need to compute
the feasible subsets of I that can be scheduled in a slot (this
can be done using worst-case execution time analysis). The
platform-specific specification is then computed by inter-
section of L with the set of all feasible schedules on P , and
tested for emptiness to determine schedulability.

To obtain the above specifications, we offer a method-
ology for designing control systems, as follows. First, a
feedback law is designed for each subset of resources that
may become available at some time. For example, if only
one resource is to be scheduled, we design two feedback
laws F0 and F1 for times where the resource is not used and
for time where it is used, respectively. Then, we identify
the functions f0 and f1 that map the state of the closed-
loop system (plant and controller) to the next state when F0

and F1 are applied, respectively. This gives us a switched
system x(t + 1) = fσ(t)(x(t)) where σ : N → {0, 1} is
such that σ(t) = 1 if and only if the resource is used at
time t. For stability requirements, in the case that f0 and f1
are linear, we give an algorithm that extracts an automaton
for the switched system. This automaton is such that the

switched system is exponentially sable for every schedule
in its ω-language. This automaton can be used to combine
the subsystem with other software components as described
above.

The theoretical part is complemented with detailed ex-
amples that demonstrate how the framework is applied
to particular case studies. The focus of the examples is
scheduling CPU resources for an LQG controller. This con-
troller takes the form of two layers. One layers is a standard
control design expressed as linear transfer functions. The
other layer is an heavy computation that feeds information
to the control design. Assuming that updating the linear
transfer functions takes negligible computational resources,
we design two modes. The first mode is the original con-
trol design and the second is a control design that does not
use data from the heavy computation. We detail the com-
putation of an automaton for this particular system. Us-
ing that automaton we show, by a simulation experiment,
how the expressiveness of the automata interface allows a
scheduler to take advantage of unused slots and, by that,
improve controller performance. We also demonstrate how
automata based interface allows schedulability analysis that
leads to refinement of control objectives, until an accept-
able schedule is found. When the system becomes non
schedulable, we demonstrate the use of the automata inter-
face in constructing an platform-independent description of
the scheduling constraints that can be used to choose an im-
plementation platform. The types of performance require-
ments considered are exponential stability and settling-time
of the step response. The examples are computed using a
prototype implementation of our algorithms. This imple-
mentation is a Mathematica notebook that uses built-in and
external tools. The amount of time needed to compute the
examples with our prototype implementation are reported
for reference.

Related Work

Many researchers have identified the lack of compos-
ability as a problem for scalable component-based design
and integration, and offered composable and hierarchical
scheduling frameworks [6, 18, 14, 19]. For example, [19]
proposes the periodic resource model, where the specifica-
tion of a component consists of (T,C) meaning that the
component should get C units of computation every T units
of time, and shows how to abstract a set of periodic tasks
with EDF or rate-monotonic scheduling policies into a sin-
gle periodic resource. While these efforts address compos-
ability, the expressiveness is still limited to specifying peri-
ods for individual components.

Formal methods literature consists of general frame-
works such as I/O automata [13], fair transition sys-
tems [15], and interface automata [5] for capturing inter-

2

faces with well-developed theories of composition and re-
finement. Our use of automata is consistent with such gen-
eral frameworks, and can be viewed as “light-weight” in-
stantiation for the specific purpose of scheduling. Timed au-
tomata have also been used for schedulability analysis [1].
The idea of using formal languages and Büchi automata as
an interface to capture the set of acceptable schedules over
the alphabet of task identifiers, was first advocated in our
recent paper [23], which focuses on specifying stability of
switched systems using automata. In the current paper we
use the proposed concepts to instantiate a methodology for
control systems design. To this end, we establish the follow-
ing additions. First, expressibility is enhanced by allowing
multiple tasks per slot. Second, we show how a switched
system is obtained for linear control designs. Thirds, de-
tailed case studies show how the resulting automaton can
be used for practical applications.

2 Automata based specifications

2.1 ω-regular languages

We review the basic definitions related to ω-automata
and ω-languages [21, 22]. Given an alphabet Σ, an ω-word
is an infinite sequence σ1σ2 . . . with each σi ∈ Σ. An ω-
language L over Σ is a set of ω-words. A Büchi automa-
ton A over Σ consists of a finite set of states Q, an initial
state q0 ∈ Q, a transition function δ : Q × Σ 7→ 2Q, and
a set F ⊆ Q of accepting states. A run of the automa-
ton A over an ω-word σ1σ2 . . . consists of an infinite se-
quence of states q0q1q2 . . . starting at the initial state such
that qi ∈ δ(qi−1, σi) for each i > 0. The run is accept-
ing iff for infinitely many positions i, qi ∈ F . The lan-
guage L(A) of the automaton consists of ω-words σ such
that A has an accepting run over σ. An ω-language L is
said to be ω-regular iff there is a Büchi automaton A such
that L(A) = L.

A Büchi automaton A = (Q, q0, δ, F) is deterministic if
for all states q and symbols a, |δ(q, a)| ≤ 1. A deterministic
automaton has at most one run over a given ω-word. A
Büchi automaton A = (Q, q0, δ, F) is a safety automaton
if F = Q, that is, a word is accepted as long as there is an
infinite run.

The ω-regular languages are effectively closed under a
variety of operations such as language intersection and lan-
guage homomorphisms. To check whether the language
L(A) of a Büchi automaton is non-empty, it suffices to con-
sider the transition graph GA of the automaton: the nodes
in GA are states of A, and there is an edge from q to q′ iff
q′ ∈ δ(q, a) for some symbol a. The language L(A) is non-
empty iff there is a cycle in GA that is reachable from the
initial state q0 and contains some state in F . The automaton
A is said to be trim if for every state q, there is a cycle inGA

that is reachable from q and contains some state in F . Ev-
ery automaton with non-empty language can be converted
into an equivalent trim one by deleting redundant states and
transitions.

2.2 Exclusive slot allocation

Suppose each slot can be allocated to at most one task.
Let I be the set of task identifiers of all the tasks in a compo-
nent. Then, from the point of view of a component, a sched-
ule can be represented by an infinite sequencew = σ1σ2 . . .
over task identifiers I , along with a special symbol 0 6∈ I:
for each slot i, σi = 0 if the slot is not allocated to the
component, and otherwise σi specifies the task that was al-
located the ith slot. The specification S of a component is
(I, L), where I is the set of task identifiers with 0 6∈ I , and
L is ω-language over the alphabet I ∪ {0}.

Note that the specification exposes the set of task identi-
fiers within a component, but this information is necessary
for the scheduler to make resource allocation.

Consider two components whose resource requirements
are specified as (I1, L1) and (I2, L2). Typically, I1 and I2
will be disjoint, but this is not required. In fact, one can
have have I1 = I2, and in this case, L1 and L2 are specify-
ing two distinct requirements on scheduling such that the
composition corresponds to conjoining the requirements.
Suppose the ω-languages L1 and L2 are given by automata
A1 = (Q1, q

1
0 , δ1, F1) and A2 = (Q2, q

2
0 , δ2, F2), respec-

tively. The composed specification is (I1 ∪ I2, L), where
the composed language L can be computed using a modi-
fied product construction. Let us first assume that the au-
tomata are safety automata. The composed automaton A
has states Q1 × Q2 with initial state (q10 , q

2
0). The transi-

tion relation δ is specified as follows: For a = 0 and for
a ∈ I1 ∩ I2, (p1, p2) ∈ δ((q1, q2), a) iff p1 ∈ δ1(q1, a) and
p2 ∈ δ2(q2, a); for a ∈ I1 \ I2, (p1, p2) ∈ δ((q1, q2), a)
iff p1 ∈ δ1(q1, a) and p2 ∈ δ2(q2, 0); and analogously, for
a ∈ I2 \ I1, (p1, p2) ∈ δ((q1, q2), a) iff p1 ∈ δ1(q1, 0) and
p2 ∈ δ2(q2, a). Thus, for a task a belonging to only one
of the components, the a-transitions of this component are
synchronized with 0-transitions of the other component. If
the automata have non-trivial accepting conditions, then we
need to add a bit to the product states to make sure that ac-
cepting states of both are visited infinitely often as in the
classical intersection of Büchi automata [22].

After constructing the product, we apply the trimming
operation to get rid of redundant states. If the result of trim-
ming is the empty automaton, then the two components can-
not be composed due to scheduling conflicts.

3

2.3 Scheduling task sets per slot

While the assumption of one task per slot gives useful
specifications, for better utilization of resources, the spec-
ification can be made richer. For a component with set I
of tasks, resource allocation from the point of view of this
component is now specified by an ω-word w = σ1σ2 . . .
such that each σi ⊆ I gives all the tasks of this component
that are scheduled during the ith slot. If σi is the empty
set, then no task of this component is scheduled during this
slot. The resource requirement of the component is given as
the specification (I, L), where L is an ω-language over the
alphabet 2I of task sets.

A direct motivation for using this type of specification is
for scheduling sets of identical resources. For example, if
we want to schedule tasks to run on a dual processor sys-
tem, we may allow two tasks per slot. Another motivation
is as follows. The FLET (Fixed Logical Execution Time)
programming abstraction [8] is a useful methodology for
designing control software. The main idea in FLET is fix-
ing the times where data is moved between internal software
variables and actuator/sensors. The standard use of this ap-
proach is to choose a set of tasks to run between updates and
make sure that they are schedulable within the given time.
We propose using automata to schedule possibly different
task sets to slots. In addition to improved performance, this
approach allows platform independent analysis that can be
combined with platform-dependent information to choose a
platform (see Section 4.3 below for examples).

Consider two components with specifications (I1, L1)
and (I2, L2). Suppose the Büchi automata A1 and A2 rep-
resent their specifications. Then the product automaton A
representing the composite specification over the task set
I1 ∪ I2 is computed as follows. The state-space is Q1 ×Q2

with initial state (q10 , q
2
0). The transition relation δ is speci-

fied by: for a task set α ⊆ I1 ∪ I2, (p1, p2) ∈ δ((q1, q2), α)
iff p1 ∈ δ1(q1, α ∩ I1) and p2 ∈ δ2(q2, α ∩ I2).

For schedulability analysis, given a component with task
set I , we must first determine, for each set α ⊆ I , if α is fea-
sible: during one slot, can all tasks in α be executed. This
requires estimates of the execution times of all the tasks in
I . Formally, a platform P is a mapping from 2I to {0, 1}
indicating feasibility of each task set. A schedule σ1σ2 . . .
is feasible on a platform P if P (σi) = 1 for each i. Let
the set of all feasible schedules on a platform P be LP .
Given a component specification S = (I, L) and a plat-
form P : 2I 7→ {0, 1}, the platform-specific specification
is (I, L ∩ LP). Given an automaton A over 2I represent-
ing the resource specification L, we can obtain the feasible
schedules in L by deleting all transitions corresponding to
infeasible task sets, and trimming the automaton. If the re-
sulting language L ∩ LP is empty, then the component is
not schedulable on the platform P .

Note that, with this approach, the same specification can
be used for different platforms. Also, the exclusive slot al-
location discussed in Section 2.2 is a special case of a plat-
form where only singleton task sets are feasible.

3 Scheduling resources for control software

In this section we outline a methodology for design-
ing resource usage schedulers in software based controllers
(software which monitors and affects a physical plants).

The proposed methodology relies on the analysis ex-
posed in [23], where the synthesis of schedules (switching-
signals) for switched systems is discussed. Here, we show
how this framework can be used to schedule resources in
control software. Specifically, we show how scheduling us-
age of resources in control software translates to finding a
switching signal in a switched system. We also show how
scheduling automata can be used to improve the design of
software controllers. Automata based scheduling is best
suited for scheduling computational resources, where it is
critical that the scheduler itself does not consume signifi-
cant computational resources.

Software control systems typically operate at a fixed fre-
quency. After reading each new sample from the sensor, the
software reacts to the plant’s changed output by recalculat-
ing and adjusting the drive signal. The plant responds to
this change, another sample is taken, and the cycle repeats.
Eventually, the plant should reach the desired state and the
software will cease making changes. When disturbances ar-
rive or a new setpoint is chosen, the process repeats itself.

We assume that a linear model, which is an approxima-
tion of the dynamics of a physical plant, is given. Specifi-
cally, consider a plant modeled as a, so called, discrete-time
linear time-invariant system (see e.g. [20])

xp(t+ 1) = Apxp(t) +Bpu(t)
y(t) = Cpxp(t)

consisting of state equation, defined in terms of the matrices
Ap and Bp, and output equation that maps the state to the
output, defined in terms of Cp. The state is denoted by xp,
the output by y, and the control input by u.

A feedback control software for this plant takes the out-
put y and decides what action should be taken by the ma-
nipulated variable u to remove errors. Many controller de-
signs take the form of a dynamic feedback, that is, the con-
troller is a dynamical system by itself. More specifically,
the controller is designed as a linear time-invariant system
such that, when the output of the controller is attached to
the input of the system and vice verse, the composed sys-
tem is stable. Mathematically, assume that the controller is

4

described by the discrete-time linear time-invariant system

xc(t+ 1) = Acxc(t) +Bcy(t)
u(t) = Ccxc(t)

where xc is the state of the controller andAc,Bc andCc are,
respectively, the state transition matrix, the input map, and
the output map for the controller. Then, it is easy to verify
that the dynamics of the composed system (the controller
and the plant together) can be described by

x(t+ 1) =
(
Ap BpCc
BcCp Ac

)
x(t)

where x = (xTp , x
T
c)T is the concatenation of the states of

the plant and the controller.
To model limitation of resources, we use switched sys-

tems [11]. More specifically, assume that access to certain
input and/or output variables requires allocation of shared
resources. By rewiring the Bc matrix, for output variables,
and Cc matrix, for input variables, we model resource al-
location as follows. A switched system is defined with a
mode for every subset of resources that may be available at
a time. The modes that correspond to not using the ith in-
put or output variable have zero at the ith entry of the Cc
or Bc matrix, respectively. The Ac matrices are designed
accordingly. With this abstraction, switching sequences for
the resulting switched system correspond to allocation of re-
sources to the control loop. Let m be the number of modes.
For every mode i = 1, . . . ,m we have the controller

xc(t+ 1) = Aci
xc(t) +Bci

y(t)
u(t) = Cci

xc(t).

The composition of the system with the controller modes
gives the closed-loop switched system

x(t+ 1) = Aσt
x(t) (1)

where σ = σ1σ2 . . . is such that σt reflects the resources
used at time t and

Ai =
(

Ap BpCci

Bci
Cp Aci

)
, i = 1, . . . ,m.

The next step is an analysis of the system (1). We
use formal-languages techniques to characterize the set of
schedules that meet performance specifications. Specifi-
cally, an automaton is computed whose language is the set
of schedules that guarantee exponential stability.

For the parameters l ∈ N and ρ ∈ (0, 1], a system is said
to be (l, ρ)-exponentially-stable if ‖x(t + l)‖/‖x(t)‖ < ρ
for every t ∈ N and x(t) ∈ Rn. For the system (1), consider
the language

Gl,ρ = {σ :
‖x(t+ l)‖
‖x(t)‖

< ρ for all t and x(t)}

= {σ : ‖Aσt+l
· · ·Aσt+1‖ < ρ for all t and x(t)}.

The equivalence follows from the definition of matrix norm.
Given l ∈ N and ρ ∈ (0, 1], we propose the following

algorithm: (1) Construct the set B = {σ : ‖Aσl
· · ·Aσ1‖ ≥

ρ}. (2) Build the regular expression {1, . . . ,m}∗ −∑
σ∈B{1, . . . ,m}∗σ{1, . . . ,m}∗. (3) Translate the regular

expression to a deterministic finite automaton. (4) Delete
all states from which there is no path to an accepting state.

Proposition 3.1. The above algorithm computes a Büchi
automaton for Gl,ρ.

Proof. The set B contains all the words of length l that
are not allowed as subwords. For a word σ ∈ B, the
sub-expression {1, . . . ,m}∗σ{1, . . . ,m}∗ defines the lan-
guage of words that contain σ as a subword. The sum∑
σ∈B{1, . . . ,m}∗σ{1, . . . ,m}∗ is the language of all

words that contain a word in B as a subword. Therefor,
the whole expression defines the set of words that do not
contain any of the words in B as a subword.

Next, we argue that same conclusion remains if we con-
sider the automaton as a Büchi automaton. Because all non
accepting states are traps, an infinite run is accepted iff all
the states are accepting. Since this is also the accepting con-
dition for finite words, the conclusion that the automaton
accepts all words that do not have a word inB as a subword
remains valid also for infinite words.

When infinite words are concerned, a word can be re-
jected once the automaton gets to a state from which there
is not path to an accepting state. Thus, deleting such states
does not change the language of the automaton.

The resulting automaton is a description of all schedules
inGl,ρ. When the requirement for the system is exponential
stability, it is a finite representation of all acceptable sched-
ules. It can be used both for schedulability analysis and as
a practical tool for online scheduling, as follows.

For schedulability analysis, assume that we have com-
puted automata for all the subsystems that share a resource.
Then, using algorithms for automata intersection, we can
compute an automaton for the language of all schedules that
meet the requirements of all subsystems. If this language is
not empty, the system is schedulable. Having a representa-
tion of all the schedules that satisfy the specifications allows
the selection of a good schedule based on optimization cri-
teria. See the next section for examples of using automata
for schedulability analysis.

For online scheduling, the automaton can be used as an
effective decision procedure. Following the scheduled tasks
and updating the current state of the automaton should not
take significant computational resources. Since the automa-
ton represents the set of allowed schedules, it can be used to
infer the set of tasks that can be scheduled in every compu-
tation slot. If, at each slot, we only choose a task that labels
an edge that exists the current state of the automaton, we

5

are guaranteed that we will be able to do this forever and
that the resulting schedule is acceptable for all subsystems.
Examples for using automata as online schedulers are given
in the next section.

4 Case studies in control and scheduling

In this section we explore applications of the proposed
methodology. We give an explicit controller design with
two operating modes - one that uses heavy computational
resources and one that only use lightweight computations.
Using this example, we show how automata can be used for
both schedulability analysis and online scheduling.

4.1 A controller design

Consider a system where reading the plant output is com-
putationally demanding (e.g. an heavy image processing al-
gorithm is needed for obtaining the output). We propose
two modes of operation for the controller – one that uses
the output measurement and one that does not use it. Then,
schedules of invocation of the heavy algorithm correspond
to mode switches of the control system. The controller itself
is built of blocks with linear dynamics that can be computed
with negligible resources.

Linear quadratic Gaussian (LQG) control is a standard
method of designing feedback control laws for linear sys-
tems with additive Gaussian noise. We examine how this
method can be adopted to operate when there are not
enough computational resources to get the output in every
sampling interval.

An LQG controller is a combination of the solutions of
estimator and full-state feedback, based on the so-called
separation principle. It can be automatically computed us-
ing the lqg command in MATLAB [24]. The structure of
the controller is depicted in Figure 1.

u
u

u

y

y

x x

DisturbanceDisturbance

Estimator

Plant

State Feedback

Figure 1. Closed loop with LQG feedback.

If the output can be computed in every slot, we can use
this design as is and get best performance. Otherwise, we

need to specify how the control signal is produced when the
output is not available.

The second mode of the controller, that operates when
the output cannot be computed, carry a simulation of the
plant. As seen in Figure 2, the structure is very similar to
that of the LQG controller. The difference being that a sim-
ulation block replaces the estimation block and the output
of the plant is not used.

u u

u y

x x

Disturbance

Simulator

Plant

State Feedback

Figure 2. Simulation mode.

The dynamics of the simulation blocks are the dynamics
of the system. The idea is to use the last estimation as a
starting point and then simulate the dynamics of the system,
assuming no noise. Similar ideas have been proposed in
networked control systems (see e.g., [16]).

Formally, let

xp(t+ 1) = Apxp(t) +Bpu(t)
y(t) = Cpxp(t)

be a linear time-invariant model of the plant and

xc(t+ 1) = Ac1xc(t) +Bc1(t)y(t)
u(t) = Cc1xc(t)

a linear-time invariant model for the LQG controller.
The simulation mode, depicted in Figure 2, is formally

modeled by

xc(t+ 1) = Ac0xc(t) +Bc0y(t)
u(t) = Cc0xc(t)

where Ac0 = Ap +BpCc1 , Bc0 = 0 and Cc0 = Cc1 .
The composition of the system with the controller modes

gives the closed-loop switched system

x(t+ 1) = Aσt
x(t) (2)

where

A0 =
(
Ap BpCc1
0 Ap +Bc1Cp

)
, A1 =

(
Ap BpCc1

Bc1Cp Ac1

)
.

6

and σ = σ1σ2 · · · ∈ {0, 1}ω is such that σt = 1 iff the
output y(t) is available to the controller (the computation
that evaluates y is scheduled).

As a specific example, consider the plant

ẋp =
(
−1 1
1 −1

)
xp +

(
1
0

)
u

y = (0, 1)xp.

Sampling every time unit gives the discrete-time matrices:

Ap =

(
1+e2

2e2
−1+e2

2e2
−1+e2

2e2
1+e2

2e2

)
,

Bp =
(

3
4 −

1
4e2

1
4

(
1 + 1

e2

)) ,
Cp = (0, 1).

The lqg MATLAB command gives

Ac1 =
(

0.21029 −0.31865
0.29069 −0.027978

)
,

Bc1 =
(

0.41233
0.46143

)
,

Cc1 = (−0.49902,−0.47288).

The closed loop matrices are

A1 =
(

Ap BpCc1
Bc1Cp Ac

)

=


0.568 0.432 −0.357 −0.339
0.432 0.568 −0.142 −0.134

0 0.412 0.210 −0.319
0 0.461 0.291 −0.028

 ,

A0 =
(
Ap BpCc1
0 Ap +BpCc

)

=


0.568 0.432 −0.357 −0.339
0.432 0.568 −0.142 −0.134

0 0 0.210 0.094
0 0 0.291 0.433

 .

As a performance specification for the system x(t+1) =
Aσt

x(t) , we consider the set

G8, 12
= {σ :

‖x(t+ 8)‖
‖x(t)‖

<
1
2

for all t ∈ N, x(t) ∈ Rn}.

of all schedules that achieve (8, 1/2)-exponential-stability.
In order to get an automaton for this requirement, we

compute the setB = {σ ∈ {0, 1}8 : ‖Aσ8 · · ·Aσ1‖ ≥ 1/2}
by enumerating all words of length 8. An automaton that
accepts all infinite sequences whose subwords are not in B
is depicted in Figure 3. The fact that the structure of this
automaton is nontrivial gives some evidence for the value
of automata-based specifications.

1
0

0

1

0

1

0

1

0 1

1

1

1

01

0

1

0 1

1

1

0

1

0

1

0

1

1

1

0 1

1

0

1

0 1

1

01

1

1

1

0

0

1

0

1

0

1

1

0 1

0

1

0

1

0

1

0

0

1

0

1

0

1

Figure 3. An automaton for G8, 12
.

4.2 An online scheduler

To see the power of automata as online schedulers, con-
sider the following experiment: given a number 0 ≤ γ ≤ 1
(load factor), a random word is generated as follows. The
word is generated by a random walk over the graph. If the
current state has two outgoing edges - choose 0 with prob-
ability γ and 1 with probability 1 − γ. If the state has only
one outgoing edge, take it.

This experiment simulates a control systems with an on-
line scheduler and the LQG controller scheme described
above. The factor 0 ≤ γ ≤ 1 models an external com-
putation load that the controller has to share computational
resources with. The controller has priority over the exter-
nal load but its load should be proportional to 1− γ. When

7

γ = 1, the controller uses the resources only if necessary to
guarantee the minimal required performance. When γ = 0
it takes all available resources. When 0 < γ < 1, it leaves
the needed proportion of resources to the external load. In
all cases, it is guaranteed that the requirements for the con-
trol system are met because the generated sequence is al-
ways in G8,1/2.

In Figure 4, the output of the plant when simulated with
different load factors is displayed. In this simulation, the
initial plant state is the equilibrium and the initial estimator
state is (2, 2)T . No noise is inserted during the simulation.

10 20 30 40 50 60 70

-0.5

-1

-1.5

Load factor is 0.3

Load factor is 0.6

Load factor is 0.9

Figure 4. Performance under varying load.

These graphs highlight the advantage of using automata
over static scheduling. With static scheduling, one has to
plan for the worst case. With automata, it is possible to as-
sure performance in the worst case and adjust the schedule
for better performance when resources are available.

An alternative to our approach, provided that the load-
factor is confined to a finite number of values, is to de-
sign and analyze a schedule for each load value. This so-
lution is only relevant if the load factor does not change too
frequently, because transient schedules are not analyzed.
Our approach allows frequent mode switches and “infinite”
number of modes.

4.3 Schedulability analysis

Often, a single microprocessor is used to implement sev-
eral control loops. We demonstrate how this can be done
with performance guarantees.

As an example, consider a computer that implements
three control loops. Assume that these are three indepen-
dent copies of the plant described in Section 4.1. A block
diagram for this system is given is Figure 5.

First, we assume that at most one task can run in each
computation slots (as described is Section 2.2). In partic-
ular, only one of the control loops can evaluate the output

Plant 1

Plant 2

Plant 3

Computer

y1

r1
u1

u2

u3
y3

r3

y2

r2

Figure 5. Independent control loops.

of the corresponding plant. The other two loops evolve in
simulation mode (the mode in which the current output of
the plant is not used, as described in Section 4.1 above).

To compute the composition, we make three copies of
the automaton depicted in Figure 3. Then, we replace each
0 in the first automaton with 0, 2, 3; each 0 in the the second
automaton with 0, 1, 3 and each 0 in the third automaton
with 0, 1, 2. For i = 1, 2, 3, we also replace every 1 in the
ith automaton with i.

The renamed automata are over the alphabet {0, 1, 2, 3}.
The language of the ith automaton represent the allowed
schedules from the point of view of the ith component. To
compute the language of scheduled that are allowed by all
the subsystems, we take the intersection of these languages.

For this specific case, it turns out that the intersection is
empty (the computation takes few seconds on a 2 GHz Intel
Core Duo laptop). This means that the system is not schedu-
lable. One option, in such case, is relaxing performance
requirements. For example, we can repeat the same pro-
cedure for the language G10,1/2 instead of G8,1/2 (require
that any subsequence of length 10 and not 8 is contracting
at least by 1/2). This results with an automaton with 263
states that accepts a non empty language. One can extract
a cyclic schedule from this automaton by following a cy-
cle. For example, the schedule (323121312)ω is extracted
in this way.

Another option, when the system is not schedulable, is
a better implementation platform. This corresponds to the
analysis method described in Section 2.3. In this case, we
replace every i in the ith automaton with the list of subsets
of {1, 2, 3} that contain i. Zeroes are replaced with the list
of subsets that do not contain i.

The intersection of the three set-based automata is an au-
tomaton over the alphabet 21,2,3 with 8001 states (the com-
putation takes about 30 minutes on a 2 GHz Intel Core Duo
laptop). This automaton can be used to choose an imple-
mentation platform. For example, we can check if the sys-
tem can run on a platform that allows any pair of the three
tasks to run concurrently by intersecting it with the lan-
guage ({}+ {1}+ {2}+ {1, 2}+ {1, 3}+ {3, 2})ω . This
computation takes about about 40 minutes (on the same 2
GHz Intel Core Duo laptop) and yields an automaton with

8

13121 states and a non-empty language. As another ex-
ample, we can also check if the system is schedulable on
a platform that allows tasks 1 and 2 to run concurrently
but task 3 must get an exclusive slot. This amounts to
intersecting the requirements automaton with the language
({}+{1}+{2}+{1, 2})ω . After another 40 minutes, we get
an automaton with a nonempty language, which means that
the system is schedulable on such a platform. The resulting
automata can be used to extract platform specific schedules.
Note that, if the platform is fixed, we can optimize the pro-
cedure by only considering the allowed alphabet in the first
place.

4.4 Using automata to assure step re-
sponse properties

In many control applications, a step-response with de-
sired properties is required. We show, as an example, how
settling-time can be guaranteed. Consider a system with
two modes of operation

x(t+ 1) = Aσtx(t) +Bσtu(t),
y(t) = Cσtx(t)

where

A1 =
(

0.37134 −0.54025
0.54025 0.75658

)
,

B1 =
(

0.69138
0.31152

)
,

C1 =
(
0.24614 0.80616

)
and

A0 =
(
−0.37134 0.54025
0.54025 0.75658

)
,

B0 =
(

0.1212
0.01152

)
,

C0 =
(
−0.5 0.3

)
.

When the loops is closed, the state equation is x(t + 1) =
(Aσt

−Bσt
Cσt

)x(t)+Bσt
r(t) where r(t) is the value of the

reference signal at time t and x(t) is the state of the system.
The particular requirement that we want to guarantee is

G(15, 5, 0.6, 0.86) =
{σ : if r(0) = · · · = r(t− 1) = 0

and r(t) = · · · = r(t+ 15) = 1
then y(t+ 5), . . . , y(t+ 15) ∈ (0.6, 0.86)}.

In words: we want the step response to settle in the interval
(0.6, 0.86) in 5 steps.

To compute an automaton for this set, we compute the set
B of all schedules of length 15 that do not satisfy the above

requirement. The computation takes few seconds (on a 2
GHz Intel Core Duo laptop) and give a list of 1174 words
(out of 215 = 32768).

The computation of an automaton whose language are
all words that do not contain any substring in B takes 15
minutes (on the same machine) and yields an automaton
with 355 states. If we want a periodic schedule of length
4, we can intersect the resulting automaton with the lan-
guage ‖σ∈{0,1}4σω . This gives the automaton depicted in
Figure 6.

1

0

1

0

1
0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0
1

0
1

0
1

1

0

0

1

1, 0

1

0

0
1

1
0

0
1

1
0

0
1

1
0

0

1

1
0

0
1

1
0

0
1

10

0

1

1

0

1, 0

Figure 6. Automaton for periodic schedules
that satisfy the settling-time requirement.

5 Conclusions and Future Work

We have illustrated the use of formal languages and
Büchi automata over infinite words as an expressive, an-
alyzable, and composable specification framework for re-
source requirements. In the proposed methodology, the con-
trol designer, instead of specifying a fixed period, specifies
an ω-regular language L of schedules that are acceptable
for control performance. As components are added, their
resource specifications are composed using automata theo-
retic operations, and the system is schedulable as long as the
specification language of acceptable schedules in nonempty.
We have presented a case study that shows that, for certain
performance objectives, automata have the suitable expres-
siveness, and allow performance varying with the load.

We are designing a prototype implementation for
scheduling of control systems. As the number of compo-
nents grow, we will have to address scalability issues (since
checking of emptiness requires constructing the product of

9

component specifications, followed by the trimming opera-
tion). We hope that the symbolic representations developed
in the model checking literature will be useful for this pur-
pose. We have recently shown that the performance gap
between the model-level semantics of proportional-integral
(PI) controllers and their implementation-level semantics
can be rigorously quantified if the controller implementa-
tion is executed on a predictable time-triggered architecture
according to a given periodic schedule [16]. We are ex-
ploring if this result can be lifted to ω-regular languages of
schedules.

Scanning all possible words, as proposed in the algo-
rithm proposed in Section 3, is not always necessary. Find-
ing better ways to explore the possible evolutions and quan-
tify their performance is a subject for future research. We
hope that clever algorithms will allow construction of au-
tomata for larger systems and more complicated require-
ments.

We focus on scheduling a single computational resource,
but it is clear that the developed methods can be used for
other applications such as scheduling network access and
multiple resources. Possible extensions to the framework
include distributed and observation-guided scheduling.

Acknowledgments

We thank George Pappas for fruitful discussions related
to this paper. This research was partially supported by NSF
grants CPA 0541149 and CSR-EHS 0509143.

References

[1] Y. Abdeddaı̈m and O. Maler. Job-shop scheduling using
timed automata. In proc. of 13th Conf. on Computer Aided
Verification (CAV), pages 478–492, 2001.

[2] M. Anand, S. Fischmeister and I. Lee. Composition Tech-
niques for Tree Communication Schedules In 19th Euromi-
cro Conference on Real-Time Systems (ECRTS), 2007.

[3] S.K. Baruah. A general model for recurring real-time tasks.
In Proceedings of the 19th IEEE Real-Time Systems Sympo-
sium, pages 114–122, 1998.

[4] G.C. Buttazo. Hard real-time computing systems: Pre-
dictable scheduling algorithms and applications. Kluwer
Academic Publishers, 1997.

[5] L. de Alfaro and T.A. Henzinger. Interface automata. In
Proc. of the 9th symp. on Foundations of Software Engineer-
ing (FSE), pages 109–120. ACM Press, 2001.

[6] Z. Deng and J. Liu. Scheduling real-time applications in an
open environment. In Proceedings of the 18th IEEE Real-
Time Systems Symposium, pages 308–319, 1997.

[7] C.C Han, K.J. Lin and C.J. Hou. Distance-constrained
scheduling and its applications to real-time systems. In IEEE
Trans. Comput., 45(7):814826, 1996.

[8] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A
time-triggered language for embedded programming. Pro-
ceedings of the IEEE, 91(1):84–99, 2003.

[9] H. Kopetz and G. Bauer. The time triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[10] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, 2000.

[11] D. Liberzon. Switching in systems and control. Birkhäuser,
2003.

[12] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1), 1973.

[13] N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O
automata. Information and Computation, 185(1):105–157,
2003.

[14] A.K. Mok and A.X. Feng. Towards compositionality in real-
time resource partitioning based on regularity bounds. In
Proceedings of the 22nd IEEE Real-Time Systems Sympo-
sium, pages 129–138, 2001.

[15] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems: Specification. Springer-verlag, 1991.

[16] J. Nilsson, Real-time control systems with delays, Ph.D.
Thesis, Lund Institute of Technology, 1998.

[16] T. Nghiem, G.J. Pappas, A. Girard, and R. Alur. Time-
triggered implementations of dynamic controllers. In Pro-
ceedings of the 6th Annual ACM Conference on Embedded
Software (EMSOFT), pages 2–11, 2006.

[17] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for sys-
tems with data and control dependencies. In Euromicro Con-
ference on Real-Time Systems, pages 201–208, 2000.

[18] J. Regehr and J.A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium, pages 3–14, 2001.

[19] I. Shin and I. Lee. Compsitional real-time scheduling frame-
work. In Proceedings of the 25th IEEE Real-Time Systems
Symposium, pages 57–67, 2004.

[20] E.D. Sontag. Mathematical control theory: Determinis-
tic finite-dimensional systems, volume 6 of Texts in Applied
Mathematics. Springer, 1998. Second Edition.

[21] W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, vol-
ume B, pages 133–191. Elsevier Science Publishers, 1990.

[22] M.Y. Vardi and P. Wolper. Reasoning about infinite compu-
tations. Information and Computation, 115(1):1–37, 1994.

[23] G. Weiss and R. Alur. Automata based interfaces for con-
trol and scheduling. In Proc. 10th Int. Workshop on Hybrid
Systems: Computation and Control, LNCS 4416, pages 601–
613. Springer, 2007.

[24] http://www.mathworks.com/products/matlab/

10

