
Access Control for Adaptive Reservations on Multi-User Systems∗

Tommaso Cucinotta

Scuola Superiore Sant’Anna

E-mail: cucinotta@sssup.it

Abstract

This paper tackles the problem of defining an appropri-

ate access control model for multi-user systems providing

adaptive resource reservations to unprivileged users. Secu-

rity requirements that need to be met by the system are iden-

tified, and an access control model satisfying them is pro-

posed that also does not degrade the flexibility available on

such systems due to the adaptive reservations framework.

Also, the implementation of the proposed model within the

AQuoSA architecture for Linux is briefly discussed.

1. Introduction

Nowadays, a wide range of time-sensitive applications

is gaining momentum, for which a few violations of the

designed timing requirements may be acceptable, provided

that their frequency and severity is kept in check. Typical

examples are multimedia streaming applications, in which

timing requirements are important, as their violation is im-

mediately perceived by users as annoyances that degrade

the quality of the offered service. Distributed applications

for interactive cooperative work, eLearning or interaction

through virtual reality, have also similar stringent timing

requirements. Even computation-intensive batch activities

may be enriched with timing requirements whenever the

computational power is made available as a service by a

provider, and such activities are embedded within work-

flows to be carried on within time frames of a few hours or

days. In fact, the availability of higher and higher computa-

tional power on individual computing systems, along with

the availability of higher and higher network bandwidth at

cheaper rates, is leading to a growing interest in sharing the

same physical system (or pool of interconnected systems)

for a multitude of applications, even running remotely on

behalf of different users, still retaining a minimum set of

timing guarantees to individual activities. Typical example

scenarios comprise compile factories, remote control of vir-

tual machines, shared multi-purpose servers, web servers

for monitoring and configuration of control plants, multi-

∗This work has been supported by the FP6/2005/IST/5-034026 Euro-

pean Project named FRESCOR.

media streaming (video / VoIP), Service-oriented Architec-

tures (SoAs) with real-time enhancements.

While on typical embedded/dedicated systems the appli-

cations that may run are usually under control of the de-

signer, on general-purpose ones this is not true anymore,

and users may have the ability to dynamically install cus-

tom applications at will, e.g., through a general remote

shell/terminal access. Though, whenever multiple users

may be allocated portions of the same underlying phys-

ical machine with certain timing guarantees, issues arise

on how to appropriately design access control (AC) mod-

els and implement corresponding security mechanisms so

that individual users cannot disturb too much activities of

other users, according to the security policy a system ad-

ministrator may want to enforce. In such cases, temporal

isolation among concurrently running applications is to be

regarded as being as important as the data isolation fea-

ture traditionally provided by nowadays operating systems

through memory-space isolation, access-control on multi-

user filesystems and inter-process protection mechanisms.

After a quick discussion of existing approaches to em-

bedding adaptive real-time technologies within a GPOS

like Linux, Section 2 highlights what are, from a security

and availability perspective, the critical issues in such ap-

proaches, then Section 3 identifies general security require-

ments that need to be satisfied in such systems, and presents

an access-control model that may be implemented at the

kernel-level for the purpose of fulfilling such requirements.

Finally, Section 4 briefly discusses implementation of the

proposed technique on a real Linux-based system.

1.1. State of the art

A quite common approach to adding real-time enhance-

ments to a GPOS kernel is the one of the RTLinux [1] and

RTAI [2] projects, where a real-time “executive” is inter-

posed between the Linux kernel and the real hardware. This

way it is possible to have a real-time scheduler that sched-

ules real-time tasks, falling back to schedule the Linux ker-

nel and tasks only when no real-time tasks are active. Also,

hardware interrupts are managed in the first place by the

real-time tasks (through a much lighter routing logics than



found in the Linux kernel), and only when no real-time tasks

are interested, they are forwarded to the Linux kernel. This

results in highly decreased scheduling and interrupt laten-

cies. Main drawback of such approaches is the inability

for the real-time tasks to exploit the services offered by the

Linux OS and higher level software components (e.g., de-

vice drivers and architectures for multimedia).

An alternative approach is the one of the Linux/RK [3]

project, a variant of Linux where real-time extensions are

directly embedded into the Linux kernel (in terms of capa-

bilities of the CPU and I/O schedulers), for the purpose of

adding predictability on its timing behaviour across multi-

ple tasks. This way, it is possible to give proper timing guar-

antees to standard Linux applications and software compo-

nents, taking advantage of the full set of capabilities avail-

able on the system.

Concerning security issues arising from the availabil-

ity of real-time extensions within a multi-user GPOS like

Linux, the RTLinux and RTAI approaches basically neglect

the issue, being focused on embedded applications. Infact,

on such systems the real-time tasks are basically part of the

kernel itself, or they require administration privileges in or-

der to be run, what is perfectly coherent with the hard real-

time focus of these projects. Instead, in [4], Rajkumar and

Miyoshi explicitly address the problem of avoiding that un-

privileged applications affect, intentionally or unintention-

ally, the timing guarantees granted to other applications by

the OS, in a context where multiple resources may be al-

located by means of reservation policies to a multitude of

applications owned by different users. The authors propose

a security mechanism based on a set of Resource Control

Lists (RCLs) to be associated to such resources as CPU,

network or disk, for the purpose of allowing for both spec-

ification of timing guarantees and constraints, and enforce-

ment of system-wide security policies.

While addressing basically similar issues as the ones that

motivate the present paper, the RCL approach focuses on

the seamless integration of timing guarantees within exist-

ing applications at deployment time, in a way that does not

need any change to the application code. We believe that

such an approach, while being of great interest in the con-

text of system administration and legacy applications, does

not manage to exploit to the full extent the benefits of em-

bedding real-time scheduling strategies within the kernel.

This may be done, instead, with a tight interaction between

the application code, the scheduler and a feedback-based

QoS control loop, as done in our prior work [5, 6], based on

the AQuoSA QoS management architecture [7]. More im-

portantly, the present paper focuses deeply on the possible

menaces arising from exposing to unprivileged applications

resource reservation OS capabilities in an untrusted multi-

user environment, making an attempt for a systematic enu-

meration of the security requirements, and it presents one

possible access-control model fulfilling them.

Another interesting paper related to the work here pre-

sented, is the one recently presented by Tsafrir, Etsion and

Feitelson [8], where it is shown that, in most GPOSes, a ma-

licious underprivileged application can utilize nearly 100%

of the CPU, regardless of any fairness guarantees supposed

to be provided by the scheduler. Also of interest is the

security viewpoint of the paper, according to which such

“breach” in the fairness property of the scheduler ends up

with opening a set of possibilities of attack to a system,

where undesired services may be run and steal most of the

CPU cycles without this being reported by standard moni-

toring tools like ps or top. The technique is based on a good

knowledge of the time granularity and mechanisms based

on which the system scheduler enforces the fairness prop-

erty, and the system monitoring tools report statistics, and

on the availability to the application of a much finer time

measurement mechanism such as the CPU cycle counter.

Such technique is interestingly related to the presented work

as it constitutes a warning for scheduler implementers to not

use “poor” time measurement mechanisms, as possible at-

tackers might try to exploit them in order to break the time-

liness guarantees and properties that the new scheduler is

supposed to achieve (see also Section 3.2).

2. Criticalities in Adaptive Reservations

This section recalls basic properties of the resource reser-

vation scheduling policies, as well as a few technicalities

arising in the context of adaptive reservations, that are of

relevance for the purpose of ensuring appropriate robust-

ness/security properties for the system. For the sake of

brevity, the technical description of the mechanisms is omit-

ted, while the discussion is focused on providing the neces-

sary background for a complete understanding of the secu-

rity requirements stated in Section 3. The interested reader

may refer to [9, 10] for details.

Resource reservation schedulers may allow to associate a

single or multiple threads of execution to each reservation,

thus they schedule abstract entities usually called servers,

whereas a scheduler local to a server is responsible for

scheduling the various threads within the time frames as-

signed to the server. The typical guarantee provided by

an OS featuring resource reservation scheduling to a server

S(i), is that the task(s) associated to the server will be sched-

uled for at least Q(i) time units (whenever in need) within

every time window of duration P (i). Q(i) is known as the

maximum budget, and P (i) as the period of the server. This

kind of guarantee is also referred to as a soft reservation,

as opposed to a hard reservation, in which a server is in-

stead scheduled for exactly Q(i) time units (whenever in

need) and not more, within every time window of duration

P (i). For soft reservations, the ratio Q(i)

P (i) is the minimum

percentage of resource utilisation guaranteed to S(i), while



for hard reservations it constitutes both a minimum guaran-

tee and a maximum constraint on it. Both mechanisms may

be implemented on a GPOS, as discussed in Section 1.1,

and may allow for coexistence with non-real-time tasks,

that are scheduled in background with respect to reserved

ones. Schedulers distinguish between a minimum budget

Q
(i)
min, negotiated at the time of creation of a reservation

(used for admission control), that is always granted for each

server period (unless all tasks therein are suspended), and

an actual budget Q(i) ≥ Q
(i)
min. This may be granted by the

scheduler either statically by distributing the spare resource

capacity, or dynamically based on requested budgets Q
(i)
req

that may be changed at arbitrary points in time by applica-

tions (useful in the context of adaptive reservations).

Note that, for the sake of simplicity, the discussion that

follows refers to situations in which admission control may

be done through a simple resource utilisation test. This may

be as simple as checking that:
∑

i
Q

(i)
min

P (i) ≤ U lub, where

the value of U lub depends on the scheduling algorithm. For

example, such test is accurate when servers are scheduled

by an underlying EDF scheduler according to their dead-

lines (with U lub = 1), but it may be excessively conser-

vative when servers are scheduled by an underlying FP/RM

scheduler (with U lub = n(21/n−1), where n is the number

of servers), where methods based on response-time analysis

may be more accurate.

The server period is a critical parameter, as it constitutes

the basic time frame over which the requested utilisation is

granted by the operating system. This is usually dictated

by the typical period of time-sensitive applications (e.g., 10

or 20 ms for VoIP trans-coding, or 40 ms for video decod-

ing). However, in a context where hard reservations are

used, it may be convenient to use a granularity that is a (usu-

ally integer) sub-multiple of the application period, for rea-

sons related to jitter control, as shown in [6, 11]. Generally

speaking, setting the granularity of the resource allocation

to lower values leads to lower latencies and higher inter-

activity levels. Unfortunately, decreasing more and more

the value of even a single server period, the entire system

undergoes higher and higher scheduling overheads, up to

unacceptable values, as shown in [7]. Therefore, for robust-

ness purposes, applications should not be allowed to use

reservations with arbitrarily small server periods.

In the context of adaptive reservations, each application

is allowed to request a percentage of CPU utilisation in-

dependently of one another, according to its continuously

evolving needs. This allows temporary overload condi-

tions, during which the sum of all requests
∑

i

Q(i)
req

P (i) made

asynchronously by all applications overcomes the resource

capacity U lub. In such situations, a resource supervisor

is allowed to reduce the actual budgets within the limits

Q(i) ∈
[

Q
(i)
min, Q

(i)
req

]

. Once the minimum guarantees have

been conceded to the servers, various policies are possible

for the partitioning of the available capacity to the servers,

e.g., a (weighted) fair or priority-based partitioning.

Note that a change of a server scheduling parameters

cannot be immediate, but it is realized within a time-frame

whose length depends on the adopted scheduling algorithm.

However, if the request is for a budget increase that results

in a budget decrease for one or more of the other servers,

the maximum delay may depend on the maximum period

across all servers within the system. Furthermore, large

server periods usually allow for large budget values as well.

This constitutes a potential problem for the responsiveness

of the background activities running in the system without

guarantees. Therefore, applications should not be allowed

to use reservations with arbitrarily large server periods.

3. Security Requirements and Access Control

This section first introduces and motivates security re-

quirements in the context of a GPOS with support for adap-

tive resource reservations, when the system may host appli-

cations running on behalf of different users. Then, an access

control model is proposed that fulfills the identified require-

ments, while the next section will briefly discuss how the

proposed model has been implemented on Linux.

3.1. Security Requirements

The following is a list of requirements that are needed

in order to ensure security, availability and robustness of an

adaptive reservation framework that exposes its capabilities

to multiple unprivileged, potentially untrusted, users. They

will be explained in greater detail in Section 3.2:

1. the possibility for normal (non-privileged) users to ex-

ploit timeliness guarantees provided by the OS sched-

uler:

• for individual threads or processes/applications;

• for the entire user session;

2. system robustness and timeliness guarantees should

not be maliciously or non-voluntarily compromisable

and should not depend on single applications be-

haviours;

3. the possibility to run entire applications or user ses-

sions with timeliness guarantees, transparently to the

user and the applications he/she uses;

4. the availability of appropriate supervision policies:

(a) that do not allow for single users abuses/;

(b) that allow for a partitioning of the available band-

width, beyond the total guarantees level, based

on priorities and weights assignable to single

users or groups;



5. the possibility for the system administrator(s) to spec-

ify appropriate utilisation bounds for the reserved ap-

plications:

(a) limit to the total utilisation due to single servers

or to the aggregate of a set of servers (quotas);

(b) the possibility to confine entire sessions within

utilisation bounds, transparently to the user and

the applications he/she uses;

(c) the possibility to still run soft real-time appli-

cations with timeliness guarantees, even when

launching them from within a confined session

(private server);

(d) the possibility for the system administrator(s) to

forbid the use of reservations;

(e) the possibility for the system administrator(s) to

provide such constraints on a per-user or per-

group basis;

(f) the impossibility for user applications to over-

come the bounds/limits configured by the admin-

istrator(s) through non-conventional or unfore-

seen patterns of use of the soft real-time func-

tionalities;

6. the ability to create soft reservation servers: this al-

lows applications to utilise the system for more than

specified by the run-time requested reservation, there-

fore, depending on the context, a system administrator

should be able to selectively allow or deny such possi-

bility for individual users or user groups;

7. servers created by a user should not be manageable by

other users (except the privileged one), relatively to the

operations of:

(a) attach or detach of tasks;

(b) change of the scheduling parameters;

(c) destruction of the server;

8. privileged users should be able to monitor the en-

tire situation and do any server-related operation they

want;

9. the non-real-time tasks should have at least some kind

of guarantees, not only in terms of bandwidth, but also

in terms of maximum latency ;

10. configurations leading to excessive scheduling over-

heads should not be allowed;

11. configurations leading to excessive latencies in the dy-

namic change of reservation parameters should not be

allowed;

12. the system should be robust with respect to accidental

(or voluntary) crashes of applications ;

13. administration of the AC model configuration itself

should be allowed only to privileged users;

14. the overhead due to the enforcement of the access con-

trol model should be negligible.

3.2. Access Control (AC) Model

In this section we identify the rules of a security mech-

anism suitable for satisfying the requirements sketched

above. First, the set of objects that may be manipulated by

users are identified, along with the set of operations allowed

on them. Then, a discussion of the conditions under which

each operation is allowed or denied is made.

Discussion is focused on servers that allow to host zero,

one or multiple threads of execution, that will be called

tasks. Access control is traditionally enforced on GPOSes

on the basis of a set of rules that are configured both by the

system administrator(s) and by users themselves, so also re-

strictions on the timing requirements that may or may not be

granted to users and applications are expected to be speci-

fied in terms of rules. Therefore, the objects that may in-

teract raising issues related to access control are: resource

reservation servers, tasks, users, user groups and AC rules.

Furthermore, the operations that may be performed on

such objects, and that are relevant for the purposes of this

paper, are: management of AC rules, create a server, de-

stroy a server, attach a task to a server, detach a task from

a server, change a server parameters, retrieve a server pa-

rameters, list tasks attached to a server, list existing servers.

Management of AC rules For the sake of simplicity, op-

erations related to the management of the AC rules them-

selves may be thought of as being reserved to the system

administrator(s), who have the ability to set-up a static con-

figuration for the system-wide AC rules.

Read-only operations Scheduling parameters are sup-

posed to not carry information that is required to be kept

private for users. Therefore, read-only operations (the last

three ones enumerated above) are assumed to always be al-

lowed to all users.

Creation of servers Creation of servers gives users the

ability to launch applications with scheduling guarantees,

that are run prioritarily by the system with respect to non-

guaranteed applications. Therefore, it is desirable for sys-

tem administrators to have the ability to limit this possibil-

ity to special users or to special groups of users (Require-

ment 5d and 5e). Moreover, in order to fulfill Require-

ment 5a and 5e, the system should allow administrators to



specify limits on the maximum CPU utilisation that the sys-

tem may grant as guaranteed for single servers, for the total

set of servers created by a given user, as well as created by

all users belonging to a given group.

Therefore, it is envisioned that the AC model allows for

the specification of:

• user-level AC rules, where each rule Rk refers to a spe-

cific user Uk and whose scope Sk is defined as the set

of servers that are created by user Uk;

• group-level AC rules, where each rule Rk refers to a

specific user group Gk and whose scope Sk is defined

as the set of servers that are created by any user within

the group Gk.

Each rule Rk should include specification of:

• a maximum minimum guaranteed utilisation

Umaxmin
k , that limits the minimum guaranteed

utilisation that may be requested for a single server:
Q

(i)
min

P (i) ≤ Umaxmin
k for all i ∈ Sk; a request for

creating a server with a greater minimum utilisation

should be rejected;

• a maximum aggregate minimum guaranteed utilisa-

tion U
aggmin
k , that limits the total sum of the mini-

mum guaranteed utilisations granted for all servers in

Sk :
∑

i∈Sk

Q
(i)
min

P (i) ≤ U
aggmin
k ; a request for creating

a server that overcomes such condition should be re-

jected;

• a maximum aggregate utilisation U
agg
k , that all servers

within the scope of the rule are allowed to occupy in

total:
∑

i∈Sk

Q(i)

P (i) ≤ U
agg
k ; this condition must be

enforced by the supervision policy (Requirement 5a)

while computing the granted budget values {Q(i)}

from the actual requests {(Q
(i)
req, P (i))}, e.g., through

a simple rescaling of all the granted values, occurring

whenever
∑

j∈Sk

Q(j)
req

P (i) > U
agg
j (for the sake of sim-

plicity, we assume Q
(i)
req ≥ Q

(i)
min ∀i) : Q(i) =

Q
(i)
min+

Q
(i)
req − Q

(i)
min

∑

j∈Sk
(Q

(j)
req − Q

(j)
min)

(Uagg
j −

∑

j∈Sk

Q
(j)
min

P (j)
)P (i);

(1)

• a maximum aggregate requested utilisation U
aggreq
j ,

that all servers within the scope of the rule may re-

quest in total:
∑

i∈Sj

Q(i)
req

P (i) ≤ U
aggreq
j : this is useful

in order to avoid that, by maliciously requesting an ar-

bitrarily large request, a server might achieve to “pre-

varicate” other servers legitimate requests exploiting

knowledge of the rescaling supervision algorithm (Re-

quirement 4a); in fact, for example, in Equation 1, we

have that lim
Q

(i)
req→∞

Q(i)

P (i) = U
agg
j −

∑

j∈Sk
Q

(j)
min,

thus a sufficiently large single request may easily oc-

cupy the entire utilisation available after the minimum

guaranteed values have been assigned.

Note that a zero value for all of the above limits may equally

be used, in the rule specification, to selectively forbid cre-

ation of servers (Requirement 5d). Also, whenever a server

is in the scope of multiple rules, the system should apply all

of the constraints, not just one of them. As a last remark,

it is noteworthy that, contrary to the commonly seeked be-

haviour for real-time systems of having soft reservations, in

the context of the present paper, enforcement of the men-

tioned utilisation bounds would require a hard reservation

policy. Alternatively, it should be possible to specify, within

an AC rule, a flag that allows or forbids the servers within

the rule scope to participate to the soft reservation reclama-

tion process.

Finally, if overload situations should be managed

through a prioritary and/or weighted partitioning of the

granted utilisations exceeding the minimum guaranteed val-

ues (Requirement 4b), then the shown formulas should be

accordingly changed. Their full description is omitted for

the sake of brevity.

In addition to the restrictions on the requested and

assigned reservation parameters, applying for classes of

servers as described so far, the system should also enforce

system-wide restrictions useful to keep below reasonable

bounds both the scheduling overhead and the overall re-

sponsiveness of the non-reserved activities, as well as the

maximum latencies experimented by servers between the

request of a change and the actual application of it. Such

issues, as addressed by Requirements 10 and 11, are solved

by supporting at least the possibility to define minimum and

maximum allowed values for the server periods.

Server parameters change and server destruction A

user should not be allowed to change parameters of, or to

destroy, servers created by other users (Requirement 7b).

This is achieved by introducing a concept of server owner,

i.e., the user who created a server in the first place. Such

information needs to be kept by the system at run-time, so

to be able to compare the UID of the process requesting a

server parameters change with the one of the server owner.

On Unix-like systems, for consistency with the in-place AC

model, it is recommended that the effective user ID (EUID)

is used for this purpose. Therefore, whenever a server is

created, the system associates the EUID of the process that

made the operation along with the other server-related in-

formation. Later, whenever a change of parameters or de-

struction is requested by another process, the operation is

only allowed if the EUID of the requesting process is the

same as the server owner, or if it corresponds to the system



administrator (Requirement 8).

Whenever changing a server parameters, the bounds

within which parameters are allowed to be changed, and the

relationship between the requested values and the actually

granted ones by the supervisor, may follow the same rules

as for the server creation. Whenever destroying a server, af-

ter destruction tasks previously served by the server, if any,

should be returned to the default OS scheduling policy.

Utilisation limit overcome attacks Whenever servers are

dynamically created and destroyed by applications, partic-

ular attention needs to be paid in order to avoid that a mali-

cious user, by using unexpected patterns of use of the avail-

able API, manages to overcome the utilisation bounds con-

figured by the system administrator. At least a couple of

scenarios of this kind may be identified: one making use

of unexpected patterns of destruction and (re)creation of

servers, and another one making use of unexpected patterns

of block and unblock of (all of the threads within) a server.

The first potential attack may be detailed as follows:

• an application creates a server and attaches to it one of

the running threads;

• when the budget is about to be exhausted, the applica-

tion destroys the server, returning the attached thread

to the default system scheduling policy;

• then, the application immediately creates another

server, attaching again the thread to it, and keeps re-

peating the loop over and over;

• the actions of creating and destroying the server may

also be carried on by a thread served by another long-

established server with a very small utilisation, just

sufficient to keep repeating these few operations.

Unless appropriate countermeasures are taken, a too simple

implementation of server destruction might erroneously al-

low the application to overcome configured utilisation lim-

its. In fact, the key point in such a scenario is that, whenever

a server is destroyed, the system cannot (yet) completely

forget about its existence, but it must continue to consider

its utilisation as not available until the next server period

expired1.

The second potential attack is possible whenever the re-

source reservation scheduler is implemented relying on an

inappropriately large time measurement granularity within

the kernel (for example, this has been the case for a few

of the very first prototype releases of AQuoSA itself, that

were relying on the Linux kernel jiffies for the purpose of

accounting budget consumptions):

1Actually, it is sufficient to wait until an earlier time related to the con-

cept of server virtual time, that we skip here for the sake of brevity.

• an application creates a server and attaches to it one of

the running threads;

• when the time granularity is about to expire, the appli-

cation blocks the thread;

• the application wakes up the thread again;

• block/unblock cycles are repeated over and over again.

The key point in this kind of attack is that a malicious appli-

cation, letting one of its threads to run for time frames that

are below the time granularity of the system, might man-

age to make the system believe that the thread executed for

exactly 0 time units at every block, thus not decreasing the

server budget of the time the thread has actual run. Re-

peating this process multiple times, the application might

manage to overcome the utilisation limits that the scheduler

should apply to the server.

Such an attack is easily avoidable by recurring to appro-

priately precise (or at least over-estimated) time measure-

ments and timer setting mechanisms, usually available on

modern operating systems (e.g., CPU internal cycle coun-

ters, CPU-local or system-wide timer devices, and the High

Resolution Timers on Linux).

Attaching and detaching tasks For the purpose of under-

standing when the operation of attaching or detaching a task

to a server should be authorised or not, we need to distin-

guish among a few cases. In the simplest and probably most

common scenario, an application, after having successfully

created a server, asks the system to “bind” (or “attach”) one

or more of its threads to the server. Later, the same appli-

cation may need to request the system to “unbind” (or “de-

tach”) one or more of those threads from the server, either

temporarily or definitively. As these operations are made by

either the same process/thread, or by processes/threads that

are all owned by the same user (EUID, actually), then no

particular security issues arise.

On the other hand, whenever an unprivileged user at-

tempts to attach to one of its own servers a process that

is owned by another user (or by the system administrator),

such action should be prohibited, as it would allow for De-

nial of Service (DoS) attacks leading to the confinement

of threads/processes of other users within the utilisation

bounds that have been defined with a different scope. Simi-

larly, any attempt made by processes owned by an unprivi-

leged user to attach threads to, or to detach threads from,

a server not owned by the same user, should be prohib-

ited, otherwise such actions would equally allow for DoS

attacks. In fact, by attaching threads to a server owned by

another user, a malicious user might exploit timing guar-

antees configured for the other user, possibly overcoming

the limits defined in the AC rules for himself/herself, but



he/she could also disrupt the timing guarantees provided to

the other threads already running into that server, that would

share the same timing guarantees with more threads than

thought of by the application designer. On the other hand,

detaching threads of another user from the server they are

being served by, a user might simply perform plain DoS at-

tacks versus that other user. Moreover, by detaching own

threads from a server owned by another user (e.g., the sys-

tem administrator), a malicious user might simply try to re-

move the timing confinement that a system administrator

might have configured for the user session, thus it should

not be allowed either.

So, apparently, it would be sufficient to allow an attach

or detach operation of a thread to/from a server only if the

EUID of the requesting process is the same as the server

owner, or it corresponds to the system administrator (Re-

quirement 8).

Concerning possible attempts of attachment of threads

already bound to another server, it could be sufficient to

handle the situation as a request of detach from the original

server, followed by the request to attach to the new server.

Also, a desirable feature is the ability to easily “wrap”

an entire application or user session within a server (Re-

quirement 3). The key point of such a feature is allowing

applications that are bound to a server to automatically at-

tach any child processes or threads to the same server. This

way, an entire application may be easily given timing guar-

antees, or may easily be confined within specific utilisation

bounds, by simply attaching the initial thread that launches

the application, without any need to deal explicitly with all

of the threads or processes, or even external programs, that

the application spawns during its execution, because they

are bound automatically to the same server.

Default server As system/background activities run usu-

ally “in background” with respect to served applications,

they are at risk of being “starved” for arbitrarily large peri-

ods of time, until all of the threads associated to all reserva-

tions are suspended. In order to ensure a minimum level of

interactivity, responsiveness or throughput to such activities

(Requirement 9), the mechanism that seems most appropri-

ate is the creation of a default server within which all ap-

plications that do not explicitly request to be scheduled by

a resource reservation policy reside by default.

The default server may simply exist after system boot,

or it may need to be created by an appropriate privileged

system process. In both cases, it is important that the server

owner be set as the system administrator (e.g., EUID of 0 on

Unix-like systems). This allows only the system administra-

tor to change the default server parameters and, moreover,

avoids that an unprivileged user, by manipulating the de-

fault server parameters, allows to overcome the utilisation

limits that its own servers would be subject to (due to an

explicit AC rule) if he/she attempted to create his/her own

servers.

Whenever a system is configured with a server to which

all tasks are bound by default when not explicitly attached

to other servers, AC rules for allowing attach and detach of

threads get more involved and the simple two rules stated

above are not sufficient anymore. In fact, all attach and de-

tach operations become operations that move threads, re-

spectively, from the default server to the one explicitly re-

ferred to by the requesting process, and vice-versa. There-

fore, as the default server is owned by the system adminis-

trator, no user would ever be allowed to detach any thread

from it for attaching them to his/her own server. The prob-

lem is fixed by:

• allowing an unprivileged process to detach a thread

from the default server only if the process is allowed to

attach it to the new server, and only as a consequence

of an attach operation request;

• allowing an unprivileged process to attach a thread to

the default server only if the process is allowed to de-

tach it from the old server, and only as a consequence

of a detach operation request;

• forbidding any explicit attempts made by processes

owned by unprivileged users to attach threads to the

default server, or to detach threads from it.

Private default servers Whenever a system administra-

tor wants to enforce a security policy that assigns specific

utilisation bounds to entire user sessions (i.e., not only for

reservations explicitly created by a user, but also for all of

the processes that may ever run on behalf of the user, as

coming from Requirement 5c), a mechanism that seems ap-

propriate is the creation of a private default server, i.e., a

server dedicated to a user to which all tasks owned by that

user are attached by default if not explicitly bound to other

servers.

Confinement of an entire user session that does not ex-

plicitly make use of resource reservations is straightfor-

ward. At log-in time, it is sufficient that a privileged system

process creates the private server for the user (if it does not

already exists due to an already running session), and starts

the user session from a thread initially bound to such server.

Note that the server is thus owned by the administrator, not

the user, so that the user cannot detach its own threads from

it.

Whenever there is a need for allowing users to create

their own servers from within such a session, the AC rules

for allowing attach and detach of threads, as stated above,

are again insufficient. In fact, a user turns to be unable to

detach any thread from its private server, for the purpose of

attaching it to a new created server. The situation may be



Figure 1. AQuoSA Architecture: applications with static

(A2), dynamic (A3) and without (A1) reservations coexist.

fixed similarly to what done for the default server. One last

last remark on such issues is due to the dynamic change of

a process EUID, as allowed by the standard UNIX seteuid()

and related system calls. Detailed discussion of these topics

is omitted for the sake of brevity.

4. The AQuoSA supervisor implementation

We implemented the above proposed access control

model within the open-source project “Adaptive Quality of

Service Architecture” (AQuoSA) for the Linux kernel [7, 5].

The project was born for the purpose of improving and

maintaining open-source components that had been devel-

oped for the Linux kernel in the context of the OCERA EU-

funded project. Now, it is being extended and improved

in the context of the FRESCOR EU-funded project, with

multi-resource, power-aware, QoS management and secu-

rity features. Briefly, the architecture is composed of the

following components (see Figure 1):

GSP The Generic Scheduler Patch is a minimally invasive

modification to the kernel allowing external dynami-

cally loadable modules to add scheduling policies.

KAL The Kernel Abstraction Layer aims at providing an

interface towards the kernel scheduling-related ser-

vices that are needed in order to write a scheduler:

such services comprise the ability to measure time, set

timers, efficiently associate external data to tasks, etc.

RRES The Resource REServation layer implements the

basic resource reservation scheduler, along with the

supported variants, and makes their services available

to further kernel modules through a well-designed and

complete kernel-level programming interface (KPI).

The RRES layer does not address such issues as ad-

mission control or security.

QRES The QRES layer deals with interfacing the RRES

functionality with the applications, mediating all the

requests through the supervisor component (QSUP).

QSUP This component mediates all the requests made by

applications to the kernel so to enforce the security

policies configured by the administrator. The QSUP

component is responsible for ensuring the correct par-

titioning of the CPU allocation during overload condi-

tions, so to respect the minimum guarantees promised

to applications according to the minimum guaranteed

budget values specified at server creation time.

QRESLIB This is the application-level library that makes

all the resource reservation functionality available to

applications through a well-defined API.

QSUPLIB This is the application-level library that makes

all the supervisor configuration functionality available

to a special privileged system tool that needs to be run

after the activation of the resource reservation mod-

ules, so to inject into the system the appropriate secu-

rity policies configured by the system administrator.

QMGRLIB This library allows applications to use adap-

tive reservations, providing a set of simple QoS con-

trollers that are of general use for applications, and al-

lows for the definition of custom controllers.

With respect to the mechanisms for resource reservations

introduced in Section 2, the core AQuoSA scheduler,

namely the RRES dynamically loadable kernel module, im-

plements hard resource reservations with multi-tasking ca-

pabilities. Also, it embeds a simple soft reservation mecha-

nism that works as follows: if the application enables a spe-

cific flag at server creation time (QOS_F_SOFT), then the

threads attached to the server are scheduled not only while

the server is scheduled by AQuoSA, but also together with

the other non-served threads running into the system in the

background (when no servers are scheduled by AQuoSA).

As compared to traditional mechanisms for soft reserva-

tions such as CBS [12], GRUB [9] or IRIS [13], this mech-

anism allows to mix very well soft real-time applications

with background activities, as the latter ones are not com-

pletely starved by soft real-time tasks that never suspend.

The supervisor component, composed of the QSUP ker-

nel module and the QSUPLIB library, implements the core

functionality realising (partially) the AC model proposed

in this paper. Essentially, with respect to the model de-

tailed in Section 3.2, the AQuoSA supervisor lacks only



the functionality related to the private default servers, im-

plementing all of the other security mechanisms that have

been described. Concerning configuration of the AC rules,

the QSUPLIB library allows a privileged system tool (qsup-

admin) to inject into the kernel AC rules that are statically

configured by the system administrator through a configu-

ration file /etc/qossup.conf. The program qsup-admin, to be

launched as a privileged process, parses this file, performing

the corresponding API calls to the QSUPLIB library. This

process is automatically handled by the script that starts the

AQuoSA framework (/etc/init.d/aquosa-qosres). The same

script may be used to restart the AQuoSA service whenever

the configuration has been updated (unfortunately this de-

stroys all existing servers, if any).

The availability of a system-wide default server may be

either included or excluded through a compile-time con-

figure switch. Also, the default server, whenever avail-

able, must be explicitly created through a call to the server

creation function, enabling the QOS_F_DEFAULT flag.

Such operation is only allowed to be done by a privileged

process and is automated, in the init.d script that starts AQu-

oSA, through an invocation of the qres command-line pro-

gram that exports to the command-line the entire set of

available application-level API.

For robustness purposes, AQuoSA embeds a mechanism

for automatic destruction of a server as soon as the last task

has been detached from it. This allows to free automati-

cally resources reserved by applications that, accidentally

or voluntarily, crash, what is a very useful feature while de-

bugging soft real-time applications (Requirement 12). For

the particular cases in which such behavior is not desirable,

it is possible to request to the system to create servers as

persistent, setting the QOS_F_PERSISTENT flag in the

parameters supplied at server creation time. For security

purposes, such possibility may be forbidden for single users

or classes of users by the system administrator by setting the

same flag in the forbidden flags mask that may be specified

within an AC rule specification. However, it is planned to

slightly modify the mechanism so to allow for a maximum

time a server is allowed to exist without attached threads, af-

ter which it is destroyed (unless it is persistent). This would

be useful to protect against “garbage” servers also with re-

spect to crashes occurring during an application start-up,

i.e., between the time an application creates a new server

and the time it attaches the first thread.

The same AC rule flags mask may be used to forbid cre-

ation of soft reservations, by setting the QOS_F_SOFT

flag (Requirement 6).

Concerning the issue of rescaling utilisation requests

above the minimum guaranteed values, that overcome the

total available capacity, the AQuoSA supervisor configura-

tion allows for specification of multiple priority levels. The

general idea is allowing for the co-existence of higher pri-

ority applications, to be served before lower priority ones in

case of overloads. Each AC rule specifies, in addition to the

parameters detailed in Section 3.2, a level identifier, with

the meaning that the user or entire group of users being ad-

dressed by the rule are considered in the scope of that level.

Each level may also be associated a total utilisation bound.

Basically, starting from a single server, while traversing the

AC rules configured for the user that owns the server, the

groups the user belongs to, and the level the server owner or

owner group belongs to, more and more checks of the total

utilisation bounds are performed, along with aggregation of

requests made by other servers within the same scope. This

gives a system administrator the flexibility to define a pri-

oritary and hierarchical partitioning of the utilisation that

is dynamically assigned to servers, covering a wide set of

requirements scenarios.

Despite the described mechanism might seem quite com-

plex at a first glance, in order to ensure appropriate scala-

bility with respect to the number of servers, an algorithm

has been developed that avoids linear-time re-computation

of granted utilisations, what would not have been very ap-

propriate for the so called (and so much advertised) “O(1)”
scheduler of the 2.6.x series of the Linux kernel (note that,

in order to implement the EDF low level scheduler the AQu-

oSA RRES module relies upon, the scheduler has already a

logarithmic complexity in the number of servers). This al-

gorithm allows for an O(L) re computation of the utilisation

values, with L being the number of actually used AC lev-

els, and is based on the following concept. An accumulator

is kept within the supervisor stating, for each aggregation

point (user, user group, level), what is the total utilisation

(minimum and above minimum) that is currently being as-

signed to it. These accumulators are incrementally managed

in O(1) time, by:

• each time a user creates a new server, adding to them

the utilisation increment;

• each time a server is destroyed, deleting from them the

utilisation decrement;

• each time a server is changed its utilisation parameters,

summing to them the algebraic utilisation difference;

For each of these situations, the change is made by travers-

ing the accumulators starting from the server itself, up to the

user, group and level aggregation points (a fixed number of

3 items are traversed for each change). For each one of these

accumulators, if the aggregate request of the servers in the

current scope exceeds the allowed maximum aggregate util-

isation, then a rescaling of the requests is performed. Such

rescaling is not done by iterating all of the servers within the

current scope, but simply by setting a rescaling factor asso-

ciated to the aggregation point in the hierarchy. This pro-

cess needs actually to proceed iteratively from the level of



the server causing the change, down to the other lower lev-

els (higher levels are of course not affected by the change),

what leads to the final O(L) theoretical complexity.

Now, whenever a server needs a budget refill, the ac-

tual budget is instantaneously computed by multiplying the

server request by the rescaling factors that apply for the ag-

gregation points of that server (a fixed number of opera-

tions, carried on in fixed-point precision for speeding up

operations and avoiding to use the floating-point unit within

the kernel context, as it is highly recommendable). There-

fore, the trick is that a rescaling of utilisations due to an

overload, that needs the change of budgets of a potentially

high number of servers, is reduced to an O(L) operation

for the server causing the conditions change, plus an O(1)
operation by all of the affected servers at each budget refill

time. A few preliminary measurements made on a Pentium

M at 1.73 GHz with two levels and a few servers configured

showed an overhead for changing the required bandwidth

below 0.13 microseconds.

Note also that, due to rounding occurring with manage-

ment of server utilisations, the supervisor needs a periodic

update of the entire set of accumulators and multiply fac-

tors, an operation that is not necessarily needed to be done

synchronously for all servers. Within AQuoSA, this is go-

ing to be handled by a periodic kernel thread, but the mech-

anism is still under development.

5. Conclusions

This paper addressed various security issues of concern

for deploying in a secure, robust and safe manner, adaptive

resource reservations in the context of multi-user general-

purpose operating systems, where applications taking ad-

vantage of soft real-time capabilities of the kernel may be

dynamically installed and launched by unprivileged users.

After a description of the security requirements of inter-

est, an access control model has been proposed for satis-

fying them in the context of an adaptive reservation sched-

uler. Also, it has been described how such issues have been

faced with in the implementation of the supervisor com-

ponent within the AQuoSA architecture for adaptive QoS

management on Linux. Most of the requirements identified

in this paper showed up as practical issues that needed to be

solved during implementation of the AQuoSA components,

in order to enhance with appropriate robustness and security

properties the provided services.

Probably far from being exhaustive, hopefully the

overview made in these few pages may shed some light on

how security may be appropriately taken into account while

enhancing GPOSes with adaptive reservation technologies,

so to build the secure and QoS-aware systems of tomorrow.

References

[1] V. Esteve, I. Ripoll, and A. Crespo, “Stand-alone rtlinux-

gpl.” Fifth Real-Time Linux Workshop, November 2003.

Department of Computer Engineering, Universidad Politec-

nica de Valencia, Valencia, Spain.

[2] P. Mantegazza, E. L. Dozio, and S. Papacharalambous, “Rtai:

Real time application interface,” Linux Journal, vol. 72,

April 2000.

[3] S. Oikawa and R. Rajkumar, “Portable RK: A portable re-

source kernel for guaranteed and enforced timing behavior,”

in Proceedings of the 5
th IEEE Real Time Technology and

Applications Symposium, pp. 111–120, 1999.

[4] A. Miyoshi and R. Rajkumar, “Protecting resources with re-

source control lists,” in Proceedings of the seventh IEEE

Real-Time Technology and Applications Symposium, (Taipei,

Taiwan), June 2001.

[5] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and

L. Palopoli, “QoS management through adaptive reserva-

tions,” Real-Time Systems Journal, vol. 29, March 2005.

[6] L. Palopoli, T. Cucinotta, and A. Bicchi, “Quality of service

control in soft real-time applications,” in Proc. of the IEEE

2003 conference on decision and control (CDC03), (Maui,

Hawai, USA), December 2003.

[7] T. Cucinotta, L. Palopoli, L. Marzario, and G. Lipari, “AQu-

oSA – adaptive quality of service architecture,” to appear in

Software – Practice and Experience, 2008.

[8] D. Tsafrir, Y. Etsion, and D. Feitelson, “Secretly monopoliz-

ing the CPU without superuser privileges,” in Proceedings of

the 16th USENIX Security Symposium, (Boston, MA), Au-

gust 2007.

[9] G.Lipari and S. Baruah, “Greedy reclaimation of unused

bandwidth in constant bandwidth servers,” in IEEE Proceed-

ings of the 12th Euromicro Conference on Real-Time Sys-

tems, (Stokholm, Sweden), June 2000.

[10] L. Abeni and G. Buttazzo, “Hierarchical QoS management

for time sensitive applications,” in Proceedings of the IEEE

Real-Time Technology and Applications Symposium, (Taipei,

Taiwan), May 2001.

[11] L. Palopoli and T. Cucinotta, “Feedback scheduling for

pipelines of tasks,” in Proc. of 10th conference on Hybrid

Systems Computation and Control 2007 (HSCC07), (Pisa,

Italy), Springer Verlag, Lecture notes in computer science,

April 2007.

[12] L. Abeni and G. Buttazzo, “Constant bandwidth vs. propor-

tional share resource allocation,” in Proceedings of the IEEE

International Conference on Mutimedia Computing and Sys-

tems, (Florence, Italy), June 1999.

[13] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS:

a new reclaiming algorithm for server-based real-time sys-

tems,” in Real-Time Application Symposium (RTAS 04),

(Toronto (Canada)), May 2004.


