
Schedulability Analysis of MSC-based System Models

Lei Ju Abhik Roychoudhury Samarjit Chakraborty
Department of Computer Science, National University of Singapore

E-mail: {julei, abhik, samarjit}@comp.nus.edu.sg

Abstract
Message Sequence Charts (MSCs) are widely used for

describing interaction scenarios between the components
of a distributed system. Consequently, worst-case response
time estimation and schedulability analysis of MSC-based
specifications form natural building blocks for designing
distributed real-time systems. However, currently there ex-
ists a large gap between the timing and quantitative per-
formance analysis techniques that exist in the real-time sys-
tems literature, and the modeling/specification techniques
that are advocated by the formal methods community. As
a result, although a number of schedulability analysis tech-
niques are known for a variety of task graph-based mod-
els, it is not clear if they can be used to effectively analyze
standard specification formalisms such as MSCs. In this
paper we make an attempt to bridge this gap by proposing
a schedulability analysis technique for MSC-based system
specifications. We show that compared to existing timing
analysis techniques for distributed real-time systems, our
proposed analysis gives tighter results, which immediately
translate to better system design and improved resource di-
mensioning. We illustrate the details of our analysis using
a setup from the automotive electronics domain, which con-
sist of two real-life application programs (that are naturally
modeled using MSCs) running on a platform consisting of
multiple electronic control units (ECUs) connected via a
FlexRay bus.

1 Introduction

Message Sequence Charts (MSCs) or Sequence Dia-
grams are widely used by requirements engineers in the
early stages of reactive system design [15, 23, 2]. MSCs
can be very convenient for describing interactions between
a number of agents, e.g., a bus protocol between a bus con-
troller and a number of processing elements trying to nego-
tiate access to the bus. MSCs are therefore a natural choice
for modeling and specifying distributed real-time and em-
bedded systems. Consequently, timing and schedulability
analysis of MSC-based specifications play an important role
in the high-level design of such systems.

However, a significant portion of the work directed to-
wards analysing or reasoning about MSCs and other related
specification formalisms focus on functionality validation
(such as verification of safety and liveness properties). It is
only recently that quantitative reasoning of such formalisms
has attracted a lot of attention [8, 9]. On the other hand,
there is a large body of literature on algorithms and tech-
niques for timing and schedulability analysis of real-time
systems. However, a large fraction of these techniques are
applicable to system models that are essentially based on
the concept of task graphs [3, 4, 5, 18, 19]. Although such
graphs naturally represent data- and control-flow dependen-
cies in periodically or sporadically executing applications
[10, 20], they only provide local or processor-centric views
of a distributed system. More specifically, the structuring
mechanism used revolves around specifying all the tasks
that execute on any given processing (or communication)
element. As a result, they are not very suitable for spec-
ifying the interactions between the multiple entities of a
distributed system – which is often a more natural way of
specifying such systems.

Contributions of this paper: In this paper we make an
attempt to reconcile the abovementioned gap between the
timing/schedulability analysis techniques developed within
the real-time systems community and the specification for-
malisms commonly used for designing large-scale dis-
tributed real-time systems. Our main contribution is a
schedulability analysis technique for a standard MSC-based
system specification of a distributed real-time system. Each
MSC in such a specification denotes a scenario and captures
the partial ordering between various computation and com-
munication tasks/events constituting this scenario. Multiple
such MSCs can be combined together to form what is re-
ferred to as a Message Sequence Graph (MSG) [1, 14],
whose edges denote transitions from one scenario to the
next. Multiple outgoing edges from a node in such a graph
represent conditional transitions, where exactly one of the
outgoing edges can be activated. A complete system spec-
ification consists of a set of such MSGs denoting concur-
rently running applications that share common resources.
Examples of such applications in an automotive electron-

1

ics setting might be an adaptive cruise controller, an ad-
vanced crash preparation system and a brake controller ap-
plication, all running concurrently and sharing common re-
sources such as electronic control units (ECUs) and com-
munication buses. It may be noted that that such a specifi-
cation is completely standard [23] and is routinely used for
modeling and specifying large distributed systems.

In what follows, we use certain standard MSC-specific
terminology, which have been explained in Section 3 along
with a formal description of MSCs. We extend the sys-
tem specification described above by mapping the differ-
ent lifelines in a MSC to different processing elements and
their associated messages to different communication re-
sources (e.g. buses). Further, we annotate the events and
the messages constituting the different lifelines with lower
and upper bounds on their execution/communication times.
Such execution/communication times do not involve block-
ing times arising out of resource contentions, which is ac-
counted for by our schedulability analysis. Given this sys-
tem description, along with the scheduling/arbitration poli-
cies at the different resources, our analysis can be used to
compute upper bounds on the end-to-end delays associated
with various event (and/or message) sequences, which can
then be checked against prespecified deadlines. Examples
for such sequences might start with data arriving via a sen-
sor, getting processed on several ECUs which also involves
multiple transmissions over one or more buses, and then fi-
nally ending at an actuator.

Organization of this paper: The rest of this paper is or-
ganized as follows. In the next section we discuss some
existing works on system-level schedulability analysis. In
Section 3, we formally define our MSC-based system mod-
els and explain the difficulties involved in analyzing them.
In Section 4 we provide an overview of our schedulability
analysis technique, followed by the details in Section 5. A
detailed case study illustrating the working of our technique
is presented in Section 6. Finally, Section 7 outlines some
directions for future work.

2 Related Work
There are two standard approaches for schedulability

analysis of task graph-based specifications of real-time sys-
tems — worst-case response time analysis-based techniques
[6, 13, 17], and the processor demand bound criteria-based
analysis [4, 7]. It turns out that neither of these approaches
can be applied to our setting in a straightforward manner.
This is primarily because in traditional task graph-based
specifications, all the vertices are mapped onto a single re-
source, whereas in our case each MSG (in fact even a vertex
of an MSG denoting an MSC) involves multiple computa-
tion and communication resources. Hence, the semantics of
MSGs are fundamentally different from the task graphs that
have been studied in the real-time systems literature.

Our proposed analysis is motivated by the response time
calculation algorithm presented in [27], which can handle
system specifications with multiple computation and com-
munication elements. We have adapted this algorithm to
the specific context of MSCs, and in particular proposed
two new extensions. (i) The algorithm in [27] is based
on a response time analysis framework, which iteratively
computes tighter estimates on the response times of various
computation and communication tasks. However, it cannot
handle conditional or non-deterministic branches which ex-
ist in MSGs. We get around this problem by combining the
response time analysis-based technique in [27] with a de-
mand bound criteria-based technique that was recently pro-
posed in [3] to handle conditional branches in a different
task model. (ii) Compared to [27], we also obtain tighter
bounds on the response times of tasks by accounting for
the dependencies in the preempting tasks/applications, by
calculating request bound from higher priority tasks during
the response time of the preempted task (event). The main
novelty of our work stems from the interesting combination
of response time analysis and demand bound criteria-based
techniques, which is not commonly seen in the real-time
systems literature. This is explained in further detail in Sec-
tion 3.3 of this paper.

Analyzing system specifications with dependencies be-
tween computation and communication tasks is known to
be a challenging technical problem. This is because the
worst-case communication behavior depends on the traf-
fic attempting to access the shared medium, whereas the
traffic generated (by the computation inside the tasks) de-
pends on the communication behavior encountered in the
past. This naturally leads to an infeasibly expensive analysis
which steps through the individual computation and com-
munication steps inside/across tasks. It leads to a further
combinatorial blow-up in the presence of conditional tran-
sitions. Our proposed analysis – using the combination of
response time and demand bound criteria-based techniques
– is able to contain this blow-up without leading to overly
pessimistic results.

Tindell et al. [26] proposed a holistic schedulability
analysis for distributed real-time systems, which bounds
the worst case delays of both local computations and inter-
processor communications. However, their analysis as-
sumes only a simple static TDMA protocol for the bus com-
munication, and the event dependencies are not taken into
consideration (thereby leading to coarse analysis and pes-
simistic results). Finally, we would like to point out that
there have been a few previous attempts towards developing
schedulability analysis techniques for MSC-based system
models [24, 25]. However, they either do not fully exploit
the event dependencies within an MSC , or are restricted
to the analysis of a single MSC (as opposed to a complete
system model).

2

Figure 1. A FlexRay-based ECU network

3 Problem Formulation

3.1 Message Sequence Graph

Formally, an MSC is a labeled poset of the form Ch =
(L, {El}l∈L,�, λ) where L is the set of processes (also
called lifelines) appearing in the chart as vertical lines, El

is the set of events that the lifeline l takes part in during the
execution of Ch. The labeling function λ, with a suitable
range of labels, describes (a) the messages exchanged by
the lifelines and (b) the internal computational steps during
the execution of the chart Ch. Finally, � is the partial order-
ing relation over the occurrences of the events in {El}l∈L.
In particular, the relation � or �Ch (we put Ch as the su-
perscript when necessary to highlight that the partial order
belongs to chart Ch) is defined as follows.

(a) �Ch
l is the linear ordering of events in El, which are

ordered top-down along the lifeline l,

(b) �Ch
sm is an ordering on message send/receive events in
{El}l∈L. If es is a send of message m by process p
to process q, and the corresponding receive event is
er (the receipt of the same message by process q), we
have es �Ch

sm er.

(c) �Ch is the transitive closure of �Ch
L =

⋃
l∈L �l and

�sm, i.e. �Ch= (�Ch
L ∪ �Ch

sm)�.

The preceding definition of MSC is an abstract one, and
does not clarify the events appearing in an MSC. The com-
plete MSC language [15] includes several types of events:
message sends and receives, local actions, lost and found
messages, instance creation and termination etc. However,
for simplicity of exposition, we assume that the events in-
side an MSC is of one of the following forms — sends,
receives and local events. A local event can denote any ter-
minating computation within a process, i.e., a terminating
sequential program.

An MSC only denotes a single scenario in a system exe-
cution, which does not form a complete system description.
The purpose of the Message Sequence Graph (MSG) is to
describe the control flow between MSCs. Each node in an
MSG is a basic MSC. We also define two special nodes ∇
and � which denotes the unique start and end state respec-
tively for each MSG. The edges represent the natural oper-
ation of chart concatenation. We consider the so-called syn-
chronous concatenation where for a concatenation of two
charts Ch◦Ch′ — all events in Ch′ start only after chart Ch
is finished. Two outgoing edges from a single node repre-
sent non-deterministic choice, so that exactly one of the two
successor charts will be executed in an execution. Finally,
an execution trace is defined to be a path from the initial
state (∇) to the final state (�) in the MSG and concatenates
the sequence of MSCs encountered on the way. Example
MSGs are shown in Figure 2 and will be discussed in next
section.

In the following we consider acyclic MSGs where there
are no loops between initial state (∇) to the final state (�).
Of course, there is always an outer loop from final state (�)
to initial state (∇) denoting periodic behavior repeated for-
ever. We can also extend our analysis to allow arbitrary
loops in between the initial state (∇) to the final state (�),
provided these (inner) loops are bounded.

3.2 Running Example

A distributed system has a number of processing ele-
ments (PEs) which are connected by shared buses. A typical
distributed application consists of a collection of local com-
putations that run on different PEs and communicate with
each other through message exchanging via buses. As an
example, Figure 1 shows a distributed FlexRay([11]) based
Electronic control unit (ECU) network from the automotive
electronics domain. There are four PEs (ECUs) and one
shared FlexRay bus in the system. Two concurrently run-
ning applications, an Adaptive Cruise Controller (ACC) and

3

Figure 2. MSG model of the ACC and ACP applications

an Advanced Crash Preparation (ACP) system, are shown in
the example.

Figure 2 shows the MSG modeling of the ACC and ACP
applications in above-mentioned system. Each local com-
putation is mapped to one local event on a lifeline (pro-
cess) in a basic MSC. Note that a lifeline can represent a
piece of software program which handles its corresponding
event(s), or a hardware functional unit. Thus, the mapping
of events onto processes can be easily obtained from the
given system specification. Several processes can share a
single PE, which implements its own scheduling policy (e.g.
the fix priority preemptive scheduling for processes P5, P7,
and P8 on ECU3). It may be noted here that our analysis
is flexible enough to handle different scheduling policies,
specified both at the MSG, and at the PE/bus level. In fact,
the example shown in Figure 1 has a TDMA implemented
on ECU1, fixed-priority scheduling implemented on the re-
maining ECUs and a FlexRay protocol implemented on the
bus.

Communication between processes in an MSC can be
modeled using message passing. Communication may take
place via a shared bus (across PEs) or between processes
running on the same PE. If the communication is done via
a shared bus, we also show the message name in the MSC
(e.g., m1 and m2 in MSC b1). We will only consider asyn-
chronous message passing in our MSG modeling/analysis.
Synchronous message passing, where the message sender
and message receiver handshake, can be obtained as a spe-
cial case of our framework. Finally, a coregion (denoted by
a dashed-line box) is used to relax the strict ordering of local
events along a lifeline, e.g. events e10 and e11 on process
P8 of MSC b3 can be executed in any order (decided by the
scheduler of ECU3).

In our example, the ACC application has three external
triggers, namely radar1, radar2 and sensor. We assume the
sensor receives input from environment twice faster than the
two radars. Consequently, in the start-up stage of a com-
plete run of the ACC application, either it receives input
data from both two radars and the sensor, which correspond-
ing to the scenario described as in MSC b1; or it receives
only the sensor’s input which triggers the scenario in MSC
b2, and uses the old output value from the “object selec-
tion”. The different system behaviors due to environment
input are modeled using the indeterministic choice opera-
tion from the start of the application.

In order to perform schedulability analysis on the MSG-
based system specification, we need to extend the standard
MSG formalism with real-time annotations. Each MSG de-
picting an application is associated with the application’s
activation period P and deadline D. Each event is as-
sociated with the best-case and worst-case execution time
(BCET/WCET) of its corresponding local computation. We
assume the intra-processor communication (e.g., from e9 to
e10 and e11 in MSC b3 of Figure 2(a)), as well as the local
events of sending/receiving a message (implicitly denoted
by the start/end of a message arrow), take zero time. Mes-
sages are labeled with their transmission time, while the ac-
tual communication time (including blocking time due to
possible bus contentions) will be calculated by our analysis.

3.3 Issues in Analyzing the Model

Before proceeding to present our schedulability analysis
method, let us examine the inherent difficulties in finding
end-to-end delay of such an MSG model of distributed ap-
plication. In order to obtain an accurate analysis for the
above-mentioned model, we need to consider the effect of

4

Figure 3. Overview of our analysis framework

resource contention, event dependencies, as well as condi-
tional execution of MSCs in a MSG specification.

The possible contentions and data dependencies bring
the timing anomaly phenomenon ([12]) when the execution
times of events are not constant. In such case, the local
WCET of an event may not lead to the global worst case
end-to-end delay of the application. Thus, the worst-case
delay of an application cannot be simply obtained by sim-
ulating the system using WCET of each individual events,
over the LCM of all applications’ periods.

Existing works on schedulability analysis of MSC-based
specifications of distributed systems (e.g. [25] and [24])
compute the local worst-case response time for each indi-
vidual event in critical instance, which assumes all events
are independent. The global worst-case delay is then ob-
tained by summing up these local worst-case response
times. However, the dependencies between set of preempt-
ing events and preempted events restrict the possible pre-
emption scenarios, which results in the critical/optimal in-
stance assumed for worst/best case response time analysis
for set of independent tasks to be too pessimistic/optimistic.
For example, suppose events ei and ej belong to different
applications in a system, and they are mapped to the same
PE where ei has a higher priority than ej . If ei and ej are
ready at the same time (ei imposes the maximum interfer-
ence on response time of ej), we have the following.

• Dependency between preempting events: the succes-
sor of ei (say ek) cannot be ready at the same time
as ej , resulting in ek preempting ej fewer number of
times than it could have preempted in the worst case
scenario (where ek is ready at the same time as ej).

• Dependency between preempted events: subsequent
releases of ei may not be ready at the same time as
the successor of ej (say ep) which also mapped on the
same PE, results in less number of preemptions from
ei on ep.

[27] proposes a schedulability analysis based on task
(precedence) graph model, which captures the dependency
between preempted tasks by capturing phase adjustment be-

1 step = 0; /*number of iterations*/
2 for (each application Ai) /*initialization*/
3 latest[∇r

i] = earliest[∇r
i] = 0;

4 do { /*fixed-point iteration*/
5 for (each application Ai) {
6 for (each MSC Mj of Ai in topologically sorted order) {
7 LatestTimes(Mj);
8 EarliestTimes(Mj);
9 latest[Mf

j] = maxe∈Mj
{latest[ef]};

10 earliest[Mf
j] = maxe∈Mj

{earliest[ef]};
11 for (each successor MSC Mk of Mj) {
12 latest[Mr

k] = max(latest[Mf
j], latest[Mr

k]);

13 earliest[Mr
k] = min(earliest[Mf

j], earliest[Mr
k]);

14 }
15 }
16 /*worst case delay of Ai*/
17 wcrt[Ai] = latest[�f

i];
18 }
19 step++;
20 } while(any time instance changed and step < limit);

Figure 4. Delay estimation algorithm.

tween a preempting task and preempted tasks. We adopt the
analysis framework from [27] and extend it to consider (a)
the dependencies between preempting events, and (b) con-
trol flow, in particular non-deterministic branches, among
the MSCs in an MSG. In our case, an event e in an applica-
tion A can be preempted by events in a different application
A′. Conditional executions of events in A′ should be ex-
ploited to avoid gross overestimation of the preemption cost
of e. This is done in our analysis by adapting ideas from the
recurring real-time task model in real-time systems litera-
ture [3], which allows for conditional branches.

4 Analysis Overview
Figure 3 shows the overview of our feasibility analysis

framework for MSG-based system models. Given a set of
MSGs each representing a real-time distributed application
and annotated with required timing information, our analy-
sis will return an upper bound on the end-to-end delay for
each MSG. We present our analysis method in two levels. In
this section, we present the top-level analysis for computing
end-to-end delay of MSG-based distributed real-time appli-
cations, which is a modified longest path algorithm adopted
from [27] with necessary modifications to handle MSC con-
catenation and conditional branching in the MSG model. In
the next section, we will present response time analysis of

5

1 LatestTimes(MSC) {
2 /*compute latest[er

i] and latest[ef
i] for all ei in MSC*/

3 for (each source event ei in MSC) /*initialize*/
4 latest[er

i] = latest[MSCr];
5 for (each event ei respecting the partial order �MSC) {
6 wi = WCRT of ei /* See Section 5 for details */
8 latest[ef

i] = latest[er
i] + wi;

9 for (each immediate successor ek of ei) {
10 if (latest[er

k] < latest[ef
i])

11 latest[er
k] = latest[ef

i];
12 }
13 }
14 }

Figure 5. The LatestTimes algorithm.

individual events.
To facilitate the analysis, four time instances are defined

for each event e and MSC M in a MSG.
• earliest ready time (earliest[er], earliest[Mr])
• latest ready time (latest[er], latest[Mr])
• earliest finish time (earliest[ef], earliest[Mf]), and
• latest finish time (latest[ef], latest[Mf]).

Figure 4 presents the top-level iterative algorithm for
computing worst case end-to-end delay (wcrt[Ai]) for each
application Ai. It uses information of individual events’ re-
sponse times to generate latest and earliest time instances,
which in turn will be used to refine the results of the re-
sponse time analysis in the next iteration. The algorithm
terminates when (a) no time instance for any of the events
is changed (the fixed point is reached), or (b) the maximum
number of iteration steps are executed. The top level frame-
work captures the dependencies between individual MSCs.
Since exactly one of the conditional edges are taken for each
branch, the earliest ready time of a MSC is set to be the min-
imum value of the earliest finish times of its predecessors,
while the latest ready time of a MSC is set to be the maxi-
mum of the latest finish times of its predecessors. The algo-
rithm begins with a very coarse approximation for the start
and completion times of the events, and the worst/best case
delay it may suffer. The results are refined in each iteration
based on the information computed in last iteration. The
algorithm is safe in the sense that it never produces under-
estimation for the worst case delays or over-estimation for
the best case. For an application Ai with deadline Di, our
analysis considers it schedulable if wcrt[Ai] ≤ Di.

The LatestTimes calculation, shown in Figure 5, is
similar to the LatestTimes algorithm in [27]. Basically,
the algorithm in Figure 5 uses a modified longest-path algo-
rithm to take into account data dependencies within a single
MSC. Based on dependencies between events of the MSC
being analyzed, the main purpose of the algorithm is to up-
date the latest ready and finish times for each event. This
updating is independent of the resource scheduling policies
on the PEs. The scheduling policy is only taken into account
in the calculation of the WCRT of an event; this calculation
is elaborated in the next section.

Given the LatestTimes algorithm, we can easily
transform it in to the EarliestTimes algorithm, which

updates the earliest ready and finish times by calculating the
best-case response time for each event.

5 Response Time Calculation

The procedure for computing the earliest/latest ready and
finish times of MSC events, as discussed so far, only pro-
vides an algorithmic framework. In particular, it depends
on worst case and best case response time (WCRT/BCRT)
estimates of individual events inside MSCs. We now elabo-
rate the WCRT/BCRT calculation of MSC events. Clearly,
this will require us to consider the scheduling policy inside
the PEs on which these events are executed. We use fixed
priority preemptive scheduling for our response time calcu-
lation in this section.

The standard WCRT calculation for fixed-priority
scheduling of independent periodic tasks is given by the fol-
lowing recursive equation [17].

wn+1
i = ci +

X

tj∈hp(ti)

cj · �wn
i

Pj
� (1)

Here wi, ci, and Pi are the response time, computation time,
and period for task ti respectively. The set hp(ti) denotes
the set of higher priority tasks mapped to the same PE as
ti. The fixed point computation starts with w0

i = ci, and
terminates when the response time calculated in n + 1th
iteration (wn+1

i) equals to the value in previous iteration
(wn

i). Equation 1 computes the WCRT of a task ti in its
critical time instance (i.e. all higher priority tasks are ready
when ti is ready).

The BCRT calculation is proposed in [22] as

bn+1
i = ci +

X

tj∈hp(ti)

cj · (� bn
i

Pj
� − 1) (2)

for the same setting. It is based on the best case phasing (or
optimal instance) where ti finishes simultaneously with the
release of all its higher priority tasks.

However, in our distributed MSC-based system model,
we can obtain far more accurate WCRT/BCRT estimates
by taking into consideration the dependencies between pre-
empting events as discussed in Section 3.3. We divide the
worst and best preemption cost on the execution of any
event ei as follows — (a) preemption on ei by other events
in the same application (denoted as WSi and BSi), and
(b) preemption on ei by events from other applications (de-
noted as WDi and BDi), respectively. Thus, our WCRT
and BCRT equations are given as follows.

wn+1
i = ci + WSn

i + WDn
i (3)

bn+1
i = ci + BSn

i + BDn
i (4)

We now elaborate the calculation of these four quantities —
WSi, BSi, WDi, BDi.

6

5.1 Preemption within an MSC

Equation 1 and 2 assume deadline less than or equal to
period for all tasks (D ≤ P). This guarantees that, for a
schedulable task set, a task instance will not get delayed by
any its previous instances. In our analysis, we also assume
that deadline is less than or equal to period for all the ap-
plications being analyzed. Thus, to show that application
A is schedulable (wcrt(A) ≤ D), interference from events
in previous instances of A need not be considered for the
critical and optimal time instances. Suppose ei and ej are
events in the same application A, and there is no depen-
dency between them (neither ei � ej nor ej � ei). For ej

to possibly preempt ei, the events ei, ej cannot be events in
different MSCs of the MSG model of A, since MSCs in a
MSG are synchronously concatenated. Moreover, ej may
preempt ei at most once owing to assumption that deadline
is less than or equal to period for all the applications.

Furthermore, for event ej to preempt an event ei in the
same MSC M , there must be overlap between their execu-
tion intervals. Let event NCP (i, j) be the nearest common
predecessor event for ei and ej in M . If such a predecessor
event does not exist, we set NCP (i, j) to be the start of M .
Using the notion of NCP, we define the following quantities.

• smallest time interval between NCP (i, j) finishing
and ei becoming ready

SFR
NCP (i,j)
i = earliest[er

i] − earliest[NCP (i, j)f]

which corresponds to the scenario that all events on
path from NCP (i, j) to ei execute in their BCRT.

• largest time interval between NCP (i, j) finishing and
ei becoming ready

LFR
NCP (i,j)
i = latest[er

i] − latest[NCP (i, j)f]

which corresponds to the scenario that all events on
path from NCP (i, j) to ei execute in their WCRT.

• smallest time interval between NCP (i, j) finishing
and ei finishing,

SFF
NCP (i,j)
i = earliest[ef

i] − earliest[NCP (i, j)f]

• largest time interval between NCP (i, j) finishing and
ei finishing,

LFF
NCP (i,j)
i = latest[ef

i] − latest[NCP (i, j)f]

Executions of two events ei and ej from the same vertex are
guaranteed to be separated in one execution of the MSG if
and only if

separated(i, j) = ei � ej ∨ ej � ei ∨ (LFF
NCP (i,j)
i ≤

SFR
NCP (i,j)
j) ∨ (LFF

NCP (i,j)
j ≤ SFR

NCP (i,j)
i)

Figure 6. Projection of Events on same PE.

evaluates to true, i.e. either there is a dependency between
ei and ej (as per the partial order for the MSC), or ei always
finishes before ej releases, or vice versa. Note that the in-
stances of ei and ej involved in the preemption belong to
the same run of the MSG. Thus, the above intervals should
be measured w.r.t their nearest common predecessor event
(instead of start of the MSG ∇), which gives a much more
accurate estimation.

Finally, the worst case preemption cost imposed on event
ei by events from same application can be calculated as fol-
lows: let cu

j be the WCET of event ej .

WSi =
∑

{ cu
j | contend(j, i) ∧ ¬separated(i, j)}

where contend(j, i) is true if and only if the events ej and
ei are mapped to the same PE and ej has higher priority
than ei (as per the scheduling policy of the PE).

For the BCRT calculation of ei, we find the events ej that
are guaranteed to be ready during ei’s execution.

concurrent(i, j) = ¬(ei � ej) ∧ ¬(ej � ei) ∧ (LFR
NCP (i,j)
i

≤ SFR
NCP (i,j)
j) ∧ (LFR

NCP (i,j)
j ≤ SFF

NCP (i,j)
i)

The best case preemption cost imposed on event ei by
events from same application can be calculated as follows:
let cl

j be the BCET for event ej .

BSi =
∑

{ cl
j | contend(j, i) ∧ concurrent(i, j)}

5.2 Preemption by Other Applications

In this section, we will briefly present how to compute
WCRT and BCRT of individual events accurately using de-
mand bound approach [3] and earliest / latest time informa-
tion. An expanded version of this section can be found in
our technical report [16]. Let G be a recurring real-time
task graph, the request bound function, G.rbf(t), accepts
a non-negative real number t, and returns the maximum cu-
mulative execution requirement by releasing of nodes in G
that have their ready times within any time interval of du-
ration t. To utilize the request bound calculation presented
in [3], our goal is to construct, for each application A in
the system, a preemption graph PGA

ei
that captures depen-

dencies and timing information for all events in A that can
preempt event ei.

We start by building a preemption chain for a single
MSC in the preemption application. Considering a sce-
nario where an event e1 in application A1 get preempted by

7

1 ConstructPC(psM
ei

){ 1 merge(n,n1){
2 /*initialize*/ 2 Cu(n1) = Cu(n1) + Cu(n); //update computation time
3 PC = empty; /*the preemption chain*/ 3 earliest(nr

1) = min{earliest(nr
1), earliest(nr)};

4 for(each ej in psM
ei

as the partial order �M of MSC M){ 4 latest(nr
1) = min{latest(nr

1), latest(nr)};

5 create a node n containing ej ; 5 earliest(nf
1) = max{earliest(nf

1), earliest(nf)};
6 /*insert n into PC*/ 6 latest(nf

1) = max{latest(nf
1), latest(nf)};

7 if(PC is empty) PC.insert(n); 7 }
8 else if(¬separated(n, source(PC))
9 merge(n, source(PC)); /*merge n into source(PC)*/ 1 insertAfter(n, n1){
10 else if(earliest[nr] > earliest[source(PC)r]) 2 if(succ(n1) not exist)
11 insertAfter(n,source(PC)); /*insert n after source(PC)*/ 3 insert n as the sink node of PC;
12 else /*n is ready before source(PC)*/ 4 else if (¬separated(n, succ(n1))
13 insert n as the source node of PC; 5 merge(n,succ(n1));
14 } 6 else if(earliest[nr] > earliest[succ(n1)

r])
15 for(each edge E(n, n1) in PC) 7 insertAfter(n,succ(n1));
16 W (n, n1) = earliest[nr

1] − earilist[nr]; 8 else
17 W (sink(PC), source(PC)) = P (M) − latest[sink(PC)r] 9 insert n between n1 and succ(n1);
18 +earliest[source(PC)r]; 10 }
19 } pred(n)/succ(n) denote immediate predecessor,

and successor of n in the preemption chain.

Figure 7. Constructing a preemption chain.

evnets in MSC MSC2 of another application A2. Figure 6
gives the projection of the events in MSC2 executed on the
same PE as e1, including dependencies and priority assign-
ments for the fixed-priority preemptive scheduling on PE.
Note that there might be events in between ei and ej , which
are executed on other PEs. Assume that the set of events
within an MSC M that can preempt an event ei is denoted
as psM

ei
. For instance, in the example given in Figure 6 we

have psMSC1
e1 = {e2, e3, e4}.

Preempting events in psM
ei

may either have dependen-
cies (e.g. e2 and e4) or execute concurrently with other
events (e.g. e3). In order to explore number of preemptions
they may impose on a particular preempted event (e1), we
first construct a preemption chain to capture the possible re-
lease times of events in psM

ei
. A preemption chain PCM

ei
=

{N̂ , Ê}, is a sequence of nodes n ∈ N̂ , and each directed
edge E(n1, n2) ∈ Ê is labeled with weight W (n1, n2) rep-
resenting the minimum time interval between release times
of nodes n1 and n2. A node n contains a set of events
from psM

ei
. Similar to our handling of events in Section 5.1,

four time instances earliest[nr], latest[nr], earliest[nf],
latest[nf] are defined for each node n in the preemption
chain. The upper and lower bound computation time of a
node n are denoted as Cu(n) and Cl(n) respectively; these
estimates are obtained from summing up the WCET/BCET
of the events in node n.

The algorithm to construct preemption chain is shown in
Figure 7. Events that may execute concurrently are grouped
into one node - the release of any of these events may
cause all of them to preempt ei in the worst case. Thus,
a node is ready when any of its events is ready (see line 4
of the merge procedure in Figure 7). Intuitively, for the
WCRT calculation of ei, events in a node n will have the
same number of preemptions on the preempted event ei in
the worst case if their execution intervals are not separated
(as defined in Section 5.1). In Figure 6, suppose e2 exe-
cutes between time interval [3, 6], and e3 executes between

[4,7]. Then every time e2 preempts e1, it is also possibly
for e3 to preempt e1 before e1 resume its execution. Thus,
when considering the worst-case preemption scenario, we
can group e2 and e3 into a single node n1, which has an ear-
liest ready time of 3, and execution time of cu

2 +cu
3 . On other

hand, suppose e4’s earliest ready time is 10. In this case,
e1 could finish its execution in the interval between — (a)
e2 and e3 finishing execution, and (b) e4 getting released.
Thus, number of preemptions caused by node n1 and the
node containing e4 could be different. Finally, the distance
between two nodes will be the minimum time elapsed be-
tween their ready time (line 16 of constructPC).

A preemption graph for a full-fledged MSG model
of application A can be constructed by connecting indi-
vidual preemption chains for each MSC with conditional
branches defined by the MSG. If M ′ is a successor MSC
of M in the MSG for application A, we create a directed
edge E(M, M ′) from sink(PCM

ei
) to source(PCM ′

ei
) with

weight of

earliest[source(PCM ′
ei

)r] − earliest[sink(PCM
ei

)r]

that is, the minimum distance between ready time of
sink(PCM

ei
) and source(PCM ′

ei
). Our preemption graph

has a similar semantics as the graphical representation of
a recurring real-time task. Thus, our problem of find-
ing PGA

ei
.rbf(wn

i), the maximum cumulative execution re-
quirement by releasing of nodes in PGA

ei
over ei’s nth iter-

ation response time wn
i , can be converted to the problem of

computing the request bound function of a recurring real-
time task over a given time interval. In Equation 3, we have

WDn
i =

∑

A s.t.¬(ei∈A)

PGA
ei

.rbf(wn
i)

The best case preemption cost from other application BDn
i

can be calculated similarly with necessary changes in pre-
emption graph construction and rbf computation.

8

ACC ACP
Proposed analysis 48 ms 95 ms
Saksena and Karvelas [24] 60 ms 110 ms

Table 1. End-to-end delay (from sensor/radar to actuator)
for the ACC and ACP applications shown in Figure 1.

6 Case Study

6.1 Experimental Setup

In this section, we illustrate our analysis method by ap-
plying it to a setup from the automotive electronics do-
main. The system architecture of a FlexRay-based ECU
network and two distributed applications (ACC and ACP)
were presented in Section 3.2. The underlying system archi-
tecture consists of four ECUs communicating via a shared
FlexRay bus, as shown in Figure 1. We assume ECU1 im-
plements a Time Division Multiple Access (TDMA) sched-
uler, while the remaining three ECUs use preemptive fixed-
priority scheduling.

Communication on the FlexRay bus takes place in peri-
odic cycles (or bus cycles), where each cycle is partitioned
into a static (ST) and a dynamic (DYN) segment. The ST
segment is divided into several fixed static slots, and mes-
sages can only be sent during their allocated slots. The DYN
segment implements an event-triggered bus protocol based
on fixed priority scheduling. Further details of the FlexRay
communication protocol can be found in [11, 21]. We com-
pute the best and worst response times for each FlexRay
message between its ready time (generated by the sender)
and finish time (available to the receiver). For a ST mes-
sage mi with a transmission time of Ci, we have

bi = Ci; wn+1
i = Ci + T + St(wn

i) × T ;

where T is the length of the bus communication cycle, and
St(wn

i) is the number of occurrences of higher priority ST
messages using the same ST slot as mi, within a time in-
terval of length wn

i . For a DYN message mi, the response
time is calculated as

bi = Ci; wn+1
i = Ci + T + Dyn(wn

i) × T ;

where Dyn(wn
i) is the number of occurrences of higher pri-

ority DYN messages mj within wn
i time units, such that mj

and mi are not allowed to be transmitted in the same bus cy-
cle (due to size restriction of the DYN segment).

The two applications receive data periodically from the
external environment (i.e. radars and sensors), and are re-
quired to complete before the next arrival of their input data
(i.e. deadlines are equal to periods). We assume input data
received by the four radars and the sensor every 100 ms and
50 ms respectively. Thus, the period/deadline of the ACC
and ACP applications are 50 ms and 100 ms respectively.
Furthermore, we assume the FlexRay bus has a communi-
cation cycle of 5 ms. The detailed BCET, WCET, and pri-

 400
 500

 600
 700 400

 500

 600

 700
 80
 90

 100
 110
 120
 130

proposed analysis
Saksena and Karvelas[ECRTS’00]

ECU2 (MHz)

ECU4 (MHz)

Figure 8. Delay bound for ACP obtained using our pro-
posed analysis and the technique presented in [24].

ority for each individual events are listed in our technical
report [16].

6.2 Results

In this section we present the results obtained by ana-
lyzing the setup described above using our proposed anal-
ysis technique. Further, we compare these results with
those obtained from response time analysis techniques for
UML-based system models of multi-threaded implementa-
tions of objects/processes [24], where the dependency be-
tween events are not considered. Our proposed analysis as
well as the one in [24] are safe (i.e., if analysis returns
“schedulable” then it is guaranteed to be so).

Table 1 shows the results obtained using the two tech-
niques when all the ECUs run at a clock frequency of
500 MHz. Note that while our analysis returns a “schedu-
lable” result (i.e. the end-to-end delays of the two ap-
plications are lower than the sampling periods of the
radars/sensors that feed data into them), the analysis pro-
posed in [24] returns “not schedulable”.

Figure 8 shows the estimated end-to-end delays of the
ACP application using the two analysis techniques when
the clock frequencies of ECU2 and ECU4 are chosen be-
tween 400 to 700 MHz at a scale of 100 MHz, with the
execution times of the associated tasks being scaled accord-
ingly. The frequencies of the remaining ECUs are kept
at 500 MHz. Clearly, the delay estimates obtained using
our technique are considerably tighter than those obtained
using [24] (12% to 16% improvements). Such tighter es-
timates immediately translate into better resource dimen-
sioning and system design. In Figure 8 the clock frequen-
cies are scaled in steps of 100 MHz. It may be noted that
our analysis returns “not schedulable” only for two different
combinations of frequency settings, viz. (ECU2:400 MHz,
ECU4: 500 MHz) and (ECU2:400 MHz, ECU4: 400 MHz),
from our underlying design space. On the other hand, the
analysis proposed in [24] marks a much larger portion of
the design space as “not schedulable”. In particular, only
(ECU2:700 MHz, ECU4: 600 MHz) and (ECU2:700 MHz,
ECU4: 700 MHz), are estimated to be feasible clock fre-
quencies. In our technical report [16], some reasons behind

9

our tighter delay estimates for this application are discussed
in details.

7 Concluding Remarks

In this paper, we have presented a schedulability analy-
sis technique for MSG-based modeling of distributed real-
time systems. This makes schedulability analysis tech-
niques accessible to formal system specifications such as
MSCs which have long been studied in the context of the
Unified Modeling Language (UML). We show the utility
of our modeling and response-time analysis with real-life
applications from the automotive electronics domain. Our
experiments show that our method can consider the event
dependencies as prescribed by an MSC partial order as well
as sequencing and branching between MSCs in a MSG to
produce tight response time estimates of MSG-based sys-
tem models.

While we focus on synchronously concatenated MSCs
within a MSG, our proposed analysis framework can be
extended to asynchronous concatenation between MSCs,
where events across MSCs are synchronized at process-
level instead of MSC-level for synchronous concatenation.
For synchronous concatenation, we needed to keep the lat-
est / earliest time for start and finish of each MSC. On the
other hand, we will need to track the latest / earliest time
instances for each process across MSCs if MSCs are con-
catenated asynchronously.

Another popular mechanism of presenting a collection
of MSCs is called high-level MSCs (HMSCs) [15], where
MSCs are grouped together in a hierarchical manner. To
apply our schedulability analysis to a HMSC-based system
model, we could simply flatten the HMSC to an MSG and
employ the techniques described in this paper. However,
such an analysis would not properly exploit the hierarchical
structure of the HMSC. We are currently trying to build such
a hierarchical analysis for HMSCs.

Acknowledgments This work was partially supported by
NUS research grants R252-000-286-112 and R252-000-
321-112.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizability and
verification of MSC graphs. In ICALP, 2001.

[2] R. Alur and M. Yannakakis. Model checking message se-
quence charts. In CONCUR, 1999.

[3] S. Baruah. Dynamic- and static-priority scheduling of recur-
ring real-time tasks. Real-Time Systems, 24(1), 2003.

[4] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
multiframe tasks. Real-Time Systems, 17(1), 1999.

[5] S. Baruah, R. Howell, and L. Rosier. Algorithms and com-
plexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor. Real-Time Systems, 2,
1990.

[6] A. Burns. Advances in Real-Time Systems, chapter Preemp-
tive priority based scheduling: An appropriate engineering
approach, pages 225 – 248. Prentice-Hall, 1994.

[7] G. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, Boston, 1997.

[8] A. Chakrabarti et al. Verifying quantitative properties using
bound functions. In CHARME, 2005.

[9] K. Chatterjee et al. Compositional quantitative reasoning. In
QEST. IEEE Computer Society, 2006.

[10] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop.
Scheduling of conditional process graphs for the synthesis
of embedded systems. In DATE, 1998.

[11] The flexray communications system specifications, ver 2.1.
www.flexray.com, 2005.

[12] R. Gerber, W. Pugh, and M. Saksena. Parametric dispatching
of hard real-time tasks. IEEE transactions on computers,
44(3), 1995.

[13] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing
analysis for fixed-priority scheduling of hard real-time sys-
tems. IEEE Transactions on Software Engineering, 20(1),
1994.

[14] D. Harel and P. Thiagarajan. UML for Real: Design of
Embedded Real-time Systems, chapter Message Sequence
Charts. Kluwer, 2003.

[15] ITU-T. 120: Message sequence chart (msc). ITU-T, Geneva,
1996.

[16] L. Ju, A. Roychoudhury, and S. Chakraborty. Schedulability
analysis of MSC-based system models. Technical Report
TR20/07, NUS, 2007. http://www.comp.nus.edu.
sg/∼abhik/pdf/MSGsched-TR.pdf.

[17] J. P. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In RTSS, 1990.

[18] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis
of applications with stochastic task execution times. ACM
Transactions in Embedded Computing Systems (TECS), 3(4),
2004.

[19] A. Mok and D. Chen. A multiframe model for real-time
tasks. IEEE Transactions on Software Engineering, 23(10),
1997.

[20] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for sys-
tems with data and control dependencies. In ECRTS, 2000.

[21] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing
Analysis of the FlexRay Communication Protocol. ECRTS,
2006.

[22] O. Redell and M. Sanfridson. Exact best-case response time
analysis of fixed priority scheduled tasks. In ECRTS, 2002.

[23] M. Reniers. Message Sequence Chart: Syntax and Seman-
tics. PhD thesis, Technical University of Eindhoven, Nether-
lands, 1999.

[24] M. Saksena and P. Karvelas. Designing for schedulability:
Integrating schedulability analysis with object-oriented de-
sign. In ECRTS, 2000.

[25] F. Slomka, J. Zant, and L. Lambert. Schedulability anal-
ysis of heterogeneous systems using performance message
sequence chart. In CODES, 1998.

[26] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and Mi-
croprogramming, 40(2), 1994.

[27] T. Yen and W. Wolf. Performance Estimation for Real-Time
Distributed Embedded Systems. IEEE Transactions on Par-
allel and Distributed Systems, 9(11), 1998.

10

