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Abstract b
(x/_> (X,”
Over the last few years, Real-Time Calculus has been B B,
used extensively to model and analyze embedded systems %/—/
processing continuous data/event streams. Towards thisjnputstream output stream
. — PE, PE, === —s| PE,
bounds on the arrival process of streams and bounds on o o o’ Ol gt

the processing capacity of resources serve as inputs to
the model, which are used to calculate end-to-end delays

suffered by streams, maximum backlog, utilization of re- ] o .
sources, etc. This “functional” model, although amenable that cannot be modeled using standard periodic/sporadic

to computationally inexpensive analysis methods, has lim-8vent models and fixed-priority or deadline-based schedul-
ited modeling capability. In particular, “state-based” @+ ing policies.
cessing, e.g. blocking write — where the processing depends In this context, the Network Calculus framework [4, 7]
on the “state” or fill-level of the buffer — cannot be mod- — which was originally proposed for modeling communi-
eled in a straightforward manner. This has led to a num- cation networks — has been extensively adapted in recent
ber of recent proposals on using automata-theoretic modelsyears for the modeling and analysis of embedded systems
for stream processing systems (e.g. Event Count Automat#@rocessing continuous data and event streams (e.g., see
[RTSS 2005]). Although such models offer better modeling[5, 22, 24, 26]). The resulting framework (often referred as
flexibility, they suffer from the usual state-space explosi Real-Time Calculus or RTC in the literature) is designed
problem. In this paper we show that a number of complex to model and analyze heterogeneous real-time systems in a
state-dependencies can be modeled in a lightweight man-<ompositional manner. The key feature of this framework
ner, using a feedback control technique. This avoids eiplic is its use ofcount-based abstractioto model the timing
state modeling, and hence the state-space explosion probproperties of the input streams, as well as the availalufity
lem. Our proposed modeling and analysis therefore extendthe resources. In particular, the timing properties of @dat
the original Real-Time Calculus-based functional modglin stream are specified as a constraint on the maximum and
in a very useful way, and cover much larger problem domain minimum number of data items that may arrive over every
compared to what was previously possible without explicit time interval oflengthA. A collection of such constraints
state-modeling. We illustrate its utility through two case for differentvalues o are captured as functions$(A) and
studies and also compare our analysis results with thosea"(A) that denote the lower- and upper-bound on the data
obtained from detailed system simulations (which are sig- arrival process. In other words! (A) anda!(A) specify the
nificantly more time consuming). minimum and maximum number of items that may arrive
within any time interval of lengti. Clearly, these func-
tions will admit a rich collection of arrival sequences.rsta
dard event models such as periodic, sporadic and periodic
The escalating complexity of stream processing systemswith jitter turn out to be special cases of such a specifica-
has prompted the need for modeling and analysis techniquesion. Resource availability can also be specified in a simila
that go beyond those traditionally studied in the literatur ~ fashion. HereB' (A) andBY(A) shall specify the minimum
Many of these systems process irregular data/event streamand maximum number of items that can be processed by
and rely on highly dynamic resource management policiesa resource within any time interval of length Given the

Figure 1. An example system model.

1 Introduction



functionsa, denoting &', aY), andB denoting @', BY), dependencies on the accuracy of the analysis. We also pro-

it is possible to compute using purely algebraic techniques vide experimental validation of our analysis method agains

the bounds on system properties such as the maximum desimulation. The analysis results obtained from both meth-

lay suffered by the stream and the maximum backlog of dataods match well with each other, however our analysis is sig-

items in front of the resource. Further, it is also possible t nificantly faster than simulation.

computea’ = (a", a') which denotes bounds on the tim-

ing properties of thprocessedtream.a’ may now serveas 1.2 Related work

the input to the next resource which further processes this

stream, and the output from which may be denoted’as

This is repeated for all resources until the timing prosrti

of the output stream,; are computed (see Figure 1).
Figure 1 shows an architecture consistingqi@ésources

PE;,...,PE,, which process an input stream sequentially.

EachPE has an input buffer to store incoming data items

waiting to be processed. The service rendered by Path modeling in the RTC framework, we had proposadnt

. . - ) . L
is constrained by;. S|r_n|_lar toa’, the service functiof count automatdECAS) [6] that retain the count-based ab-
that bounds the remaining resource which can be used to : .
. : straction used in RTC. Although automata-based models are

process other data streams. Besides buffer requiremets an . : i
much more expressive and capable of representing a wide

the_delay incurred by the input stream_at_ each resdeige .variety of state-dependencies, they suffer from the state e
various other performance characteristics such as the uti-

lization of each resource, output jitter, the maximum end- plosion problem and can become inefficient when analyzing

to-end delay and the total buffer requirement in the systemIarge system z_irch|tectures. .
. The next line of work focuses on extending RTC to
can also be obtained from the bourmdandagy;.

model complex event patterns and task activation schemes.
For example, [10] presented a method to model conditional
blocking-read on an input buffer. In particular, it modeled
Owing to the functional nature of RTC, analysis in this tasks that are triggered by events on multiple input streams
framework involves algebraic manipulations which allows using AND/OR-activation, where an OR-task is triggered
for highly efficient computation of system properties in a whenever an eventis available on either of the input streams
fully compositional manner. However, modeling of com- and an AND-task is only activated when there is at least
plex state dependencies is awkward; common scenarios one event from each stream. [13] proposed a way to com-
such as the one where the service offered by a resource depute delay and output arrival functions of data streams that
pends on the fill-level of a buffer cannot be modeled easily. are split and joined during the system execution following
In constrast, fine-grained modeling of state informatiog, e  the OR-activation and in-order activation semantics, &hil
using timed automata [1, 9] or event count automata [6] of- taking into account correlations in data streams and data
ten leads to state space explosion when applied to realistidistribution based on different types of delay. Correlatio
problems. between jitter and response time of individual events were
In this paper, we present a technique to model a varietyalso considered in [12]. Analysis methods of more complex
of complex state dependencies in the existing RTC frame-scheduling policies such as non-preemptive and scenario-
work with a feedback control mechanism without resorting aware scheduling of tasks were studied in [10] and [11] re-
to explicit state-space modeling. Firstly, this technigige spectively. Timing properties of hierarchical event stnea
nificantly enhances the modeling power of the framework that are generated by the communication stack are modeled
but without having the problems associated with stateespac in [19]. Although extensive in variety, these proposed tech
modeling. Secondly, our model of a system is a composition niques do not handle state-modeling and control-feedback
of multiple abstract components with each component cap-dependencies.
turing all the relevant state-dependencies as well as psoce The back-pressure effect with finite buffer capacities has
ing semantics. The properties of these components can béeen studied in the context of data flow graphs [15]. For
computed functionally using our results and thereby atain instance, in [27], an algorithm for computing the buffer ca-
high efficiency. Thirdly, our technique enables state-dase pacities that satisfy throughput constraints was presente
scheduling policies to be modeled and efficiently analyzed Analysis of self-time scheduling for multirate data flow
in a modular manner. with finite buffer capacities was considered in [16]. Also,
Through case studies, we illustrate how our method canback-pressure was used in [23] as a mechanism to allow a
be seamlessly integrated into the current RTC framework,semantics preserving implementation of synchronous mod-
and at the same time we show the effects of capturing stateels on Loosely Time Triggered Architectures. The methods

The first line of related work is concerned with develop-
ing task and event models that generalize classical periodi
or sporadic event models, which assume fixed execution
times for tasks. Towards this, timed automata and related
automata-theoretic formalisms have been recently used in
various setups to model and analyze task scheduling prob-
lems (e.g., see [1,8,9]). To overcome the lack of stateshase

1.1 Our contributions



used in this context however are not applicable into our set- Two other important operators for RTC are the sub-

ting. additive colsure and the (min,+) deconvolution, denoted by
There have also been hybrid frameworks that combine @: let f,g € F,

various analysis methodologies. For example, [21] unified . o n 0 Rl en

the SDF [15] and SymTA/S [2] into a single framework that ~ ® f~ = @no f", wheref® =eand " = f'e f.

is able to model data-de_pendenmes using SDF and to ab- f O g(t) = SUuRol f(t+u) —g(t)).

stract event streams using SymTA/S. SymTA/S and RTC

have been merged in [14] to capture more complex inter- The following lemma holds for the sub-additive closure op-

actions with high accuracy. RTC and ECA can also be in- erator.

tegrated using the interfacing technique provided in [08] t

achieve higher accuracy than using RTC alone while be-

ing more efficient than using ECA alone. The method we

propose here can be plugged into the integrated RTC-ECA

framework to further increase the efficiency of the analysis

since we can now use RTC to analyze a number of state-

dependent components in the system instead of using ECAs,Z'l Arrival and service curves

Lemma 1. ( [7, theorem 2.1.6]) Let fg,h € F, and con-
sider the inequation K f ® g& h. Then we have

f <h®g"

which will in turn reduce the total analysis time. Given a data stream traversing a system that contains a
single processing element (PE), Febe its cumulative ar-
1.3 Organization of the paper rival function (i.e.A(t) is the number of data items that have

arrived until timet). Here a data item can be a network
packet or a video/audio macroblock. We say thas an
(upper)arrival curve for A (or thatA is upper-constrained

In the next section we describe the basic concepts of
the RTC framework. In Section 3 we present our analy-

sis method. We begin with an example that will be used to by a) if Ws,t € R., At +5) —A(S) < a(t). This means

illustrate our method, followed by an overview of our anal- : L .

. . : . . that the number of items arriving between timendt + s
ysis technique in Section 3.2. Sections 3.3 and 3.4 estab-iS never larger tham(t). An important particular case of
lish the theoretical results that enable the analysis aite-st arrival curvgis the affiné functiopnsr(t) _p0+ t Theno
dependent component, which will be applied to model state- N Pt

based scheduling in Section 3.5. In Section 4 we presentrepresents the maximal number of items that can arrive si-

experimental results using two case studies derived fromtn;lrJrI]:alrr;(fé)l(J)?lgr(;C;?aX|maI burst) apdhe maximal long-
an MPEG-2 decoder to illustrate the benefits of our anal- '

ysis methods. Finally, we conclude with a discussion on the ConsiderD the cumulative departure function of the

rospects for extending our study initiated in this paper stream, defined similarly by the numbat) of items that
prosp g y paper. have left the system until time The system provides a

. (minimum) service curveB , D(t) > A® B. Particular

2 The Real-Time Calculus Background cases of service curves are theak ratefunctions with
RTC is based on the (min,+) algebra [4, 7] and models rater (the system can processtems per unit of time and

data streams and services in a network with non-decreasing(t) = t) and thepure delayservice curves with delag:
non-negative functions taking their values in the (min,+) B(t) =0ift <dandp(t) = +« otherwise. The combina-

semiring. More formally(Rumin_, min, +), with Ryin. = tion of those two service curves givesate-latencyfunc-

R, U{w}, is a commutative semi-ring, its zero element is tion B :t+— R(t—T), wherea, denotes maja,0).

o and its unitary element is 0. A strict service curve3 is a service curve such that for
Consider the seff = {f : R, — Rpins | VS<t, 0< all't € Ry, letu be the last instant befotavhen there is no

f(s) < f(t)}. One can define as follows two operatorsn  Packet in the system, thén(t) > A(u) + B(t — u).
the minimum, denoted by and the (min,+) convolution,

denoted byz: 2.2 Performance characteristics and bounds
forall f,gin 7, vt € R, The worst-case backlog and the delay can be easily char-
o fag(t)=min(f(t),g(t)) and acterized in the RTC framework as below.
o f®Q(t)=infocs<t(f(s)+0(t—9)). Definition 1. Let A be the arrival function of a data stream

i , , . through a system and D be its corresponding departure
The tnple_(]-‘,@,@) is also a commutative semiring and function. Then théacklogof the stream at time t is
the convolution can be seen as an analogue to the classi-

cal (+,x) convolution of filtering theory, transposed in the b(t) = A(t) — D(t)
(min,+) algebra. Its zero element is the functiont — o
and its unitary element is: 0 — O;t +— co. and the delay (assuming FIFO order for processing items



of the stream) at time t is 3 Modeling complex state-dependencies

d(t) =inf{s>0|A(t) <D(t+59)}. Modern stream-processing systems are usually hetero-
geneous networks of resources processing multiple data
streams using complex scheduling policies. Often, the pro-
cessing of a stream depends not only on the available ser-
vice but also the internal state of the system. One typical

Theorem 1([4,7]). Let A be the arrival function with an  example is when the amount of on-chip memory is limited

arrival curvea for a stream entering a system with service and hence the internal buffers that hold the processed items

Given an arrival curve and a service curve, it is possible
to compute with the RTC operations the maximal backlog
and delay.

curvef. Let D be the departure function. Then, can only accommodate up to a certain capacity. To avoid
1. b(t) < Bmax=sup{a(t) — B(t) |t >0}, loss of data, the processor may implement blocking-write
2. d(t) < Dmax=inf{d > 0|Vt >0, a(t) < B(t+d)}. for its output buffers, i.e it stalls whenever the buffers ar

full. Otherwise, to save resource, it may proceed to process
the next data streams based on some sharing policy, in case
the output buffer that stores the currently processedrstrea
is filled up.

Modeling and analysis of systems described above re-
/ quire us to take into consideration the state-dependencies

The maximal backlog is the maximal vertical distance
betweena andf3 while the maximal delay is given by the
maximal horizontal distance between those two functions.
Figure 2 illustrates this fact.

that are imposed among the different elements of a system.
The original RTC framework presented in Section 2 (i) does
not express state-information and furthermore (ii) assume
Brmax that all buffers have infinite capacities. As a result, it is
not able to represent and correctly analyze such systems.
max Automata-based approaches developed recently for stream
processing systems [6, 17] can encapsulate state informa-
tion; however, their analyses become inefficient for large
B systems due to the state-space explosion. In this sect®n, w
present a functional analysis technique, developed onftop o
the original RTC framework, which is capable of capturing
the complex state-dependencies while achieving high effi-
Figure 2. Guarantee bounds on backlog and ciency. We shall illustrate our method with an example of
delay. stream-processing systems that is described below. More
general systems can be easily modeled and analyzed using

Further, bounds on the output stream and the remaining
resource of the system can be determined using Theorem 2th€ same approach.

Theorem 2( [4]). Assume a stream constrained by anar- 3 1 Ap illustrative example

rival curve a entering a system with service cure ) ) ) )
Figure 3 sketches the system architecture of a picture-in-

picture (PiP) application where two video streams are de-
coded. The first stream represents a set of regular video
a=aop : R ;

: clips with high motion contents and the latter represents a

2. If Bisastrict service curve, the remaining resource af- set of still images. After fully decoded by the PEs, they will
ter processing the stream is bounded by a service curvepe gisplayed at the output device.

B'=B-a),. PE,

In this paper, we assume that service curves are strict to by

. By
ensure for the positiveness of remaining service; however,st'z:;:1_{|]]])_.@ S LT @ I =
our method is not restricted to this assumption. Output

From the results concerning systems with a single PE,

. b, B>
one can obtain more general results for systems with mul- mput | o) | 52
9 Y stream2 ", Q ““ _':[[[D_’

tiple PEs, using the composition of the RTC operators. For

1. The output stream is upper-constrained by an arrival
curve

PE,

Device

example, if there are two PEs in sequence, for respective PE,

service curveg; andf3,, the overall service curve § ® 3,

(see [4, 7] for details). Such results have been based on the Figure 3. A PiP application.

properties of the (min,plus) algebra. The system consists of three PEs on which the tasks of an



MPEG-2 decoder application are partitioned and mapped. __Iﬂil _ PE; /_921_\
As shown in the figure, the Variable Length Decoding ~ D \

\

o p |
(VLD) and Inverse Quantization (IQ) tasks run on each of /_L; o '_IE|3 o Py I
PE; andPE;, while the Inverse Discrete Cosine Transform | 1S ] & Cy T
(IDCT) and Motion Compensation (MC) tasks run BEs.  — >::::-/
PE; processes the first input video stream &M, pro- 4 B, ) B! B ‘I

. . . , 3 ” l 5

cesses the second input video stream. The partially decoded ,_l_\ o ; (0% = I
streams fronPE; andPE; (denoted by, ands,) are stored %2 1S2] €3] Cs I
in the bufferd; andb, respectively, where they will further N S / \—65—-/
be processed biyE3. The two fully decoded streams from PE, 2
PE; are then written to the playout buffeBs andB, before . _
being read by the output device. Figure 4. The abstract model of the system in

PE; schedules the two streargsands, using a fixed- Figure 3.
priority scheduling policy, withs; having higher priority
thans,. Further,PE; implements blocking-write on the S, comprises two abstract compone@isandCs. SincePEs
playout bufferB;; whenB; is full, the processor will pro-  processes) befores,, the remaining service @; is con-
cesss, if there are some items iop. This is done regardless  nected as input t6;. Finally, the consumption of the items
of whether there are items . from B; andB; are modeled b, andCs. The connection
Given the above system architecture, we are interestedof the arrival curves to the abstract components follows the
in answering questions concerning the behavior of the sys-sequence at which the corresponding streams are processed.
tem such as (1) what is the maximum backlog of a buffer?  Our analysis proceeds component-wise where we eval-
(2) what is the maximum delay experienced by a stream?uate each abstract component and thereafter combine the
(3) is the system schedulable while guaranteeing none theevaluated results. To analyze a component, we first deter-
buffers overflows? A correct evaluation of such properties mine the input arrival curve anefffectiveservice curve of
are essential for designers to optimize the design of the systhe component if they are not yet known. An effective ser-
tem. As mentioned earlier, we cannot use the standard RTCvice curve is a service curve that bounds the actual resource
framework to analyze the system sinB&; implements  used to process a stream taking into account the state depen-

state-based scheduling scheme. dencies in the system. Based on the obtained input arrival
curve and effective service curve, we can compute the dif-
3.2 A functional analysis approach ferent performance characteristics and bounds of the com-

ponent using Theorem 1 and 2.
h In Figure 4, sinceC; andC, have no state dependency
¥vith the succeeding components, their effective curves are

processing of a stream by a resource is represented by afjqual toBl_ and By, relspectlvely. By the same reason, the
abstract component whose inputs are the arrival curve ofoutput ar val curver from.cl. can be computed fromy
the input stream and the service curve of the resource. The;ndﬁl using Theorem 2. Similarly, the arrival curug can
outputs of an abstract component are an arrival curve tha € derived from; andf3 2 i _ _
bounds the output stream and a service curve that bounds ©n the other hand, since the processingi is contin-
the resource left after processing the input stream. By con-9€nton the state of the playout buftgy, the actual resource
necting the abstract components following the flow of the thatis used to procesgdepends not only on the total avail-
stream (from left to right) and the order at which the dif- able resource dPEz but also the readout rate of the output

ferent streams are processed by a shared resource (from toff€vice gfnd the capacity &. Hence the effective service
to bottom), we obtain the complete abstract model of the curveB;" of Cs is dependent ofiz, B4 and the capacity of

system. Figure 4 depicts the abstract model of the systemP1. This effective service curve will in turn affect the re-
architecture in Figure 3. maining service curvg;. The computation of;" andp;

In this figure,al and as denote the arrival curves of the will be described in the Coming sections. With the obtained

two input video streamsfy, B, and s denote the service B5' andf;, we can apply Theorem 2 to compute the output
curves ofPE;, PE; andPE; respectively. SimilarlyB, and ~ arrival curvesay’ anday that are inputs t€, andCs. The

Bs are the service curves that bound the consumptions of theeffective service curves @, andCs are exactlyB, andBs

two fully processed streams. The processing of the streamsince there is no state-dependency in these two components.
by PE; andPE; are represented by the abstract components In the next three sections, we present our technique for
C; andC,, whose output arrival curves are denotedddy computing the effective service curve of acomponenttaking
anday. The processing d?PE; on the output streans§ and into account the state-dependency of the subsequent compo-

In constructing the model for the system, we describe



nents in the system. Section 3.3 looks into the case where Az +By
the processing of the stream in the component is depen- ¢ ‘
dent on only one buffer of the next component. Section 3.4 A; A — Ag
moves one step further to solve for the general case when — — © - -
the processing within the component is dependent on the B1 B>

buffer state of many components in tandem. The computa-

tion of the effective service curves of components that are  Figure 6. Feedback control to ensure non-
scheduled using fixed-priority policy while being subjette overflow for the second buffer.

to the state of the buffers in the system is described in Sec-

tion 3.5. Before going into the details, we first prove the
following lemma, which will be used in our formulation.

backlog constraint ifPE; is satisfied. In entrance &fE;,
the arrival process then beconfés= min(Ay, Az + By).
Lemma 2. Let f and g be two functions and c be aconstant. ~ Figure 6 represents the system that can be translated into

Then, the following equations:
1. (f®g) +c=(f+c)og=f®(g+c) Az > min(A;,A3+Bp) @B
A3 > A p,

2. (feg) =e+fteg-and(feg)" =freg,
where ff =@, "

Proof. 1. Leth € F, such thah(0) = c andhg(t) = o, Ao z Min(Ag, Az & B2_+ B2) @ By
vt > 0. Then, for every functiorf € F, f @ he = f + = Min(A1® 1, A2 @ (B2 +B2) @ B1).
c. The formula follows from the associativity and the From Lemma 1, the solution if this inequality is:
commutativity of thex operator.

2. (feg) =@no(feg) " =ec@,o(f@g")". As

which leads to the following inequation:

Ao > A1 @B [(B2+B2) @ B,

(g)" =g, then(f @ g*)* = e g" @, ", hence the which proves the following lemma:

result. Lemma 3. The effective service curve for PEaking into
O account the interruption of service when B full is:

3.3 Simple blocking-write at a single buffer Bfff =B1®[(B2+B) @ B1]".

~In this section, we model a setup where the process-  supposen is the arrival curve of the input stream. The
ing of a stream is interrupted when an output buffer is full maximal backlog and delay of the PE as well as the arrival

(i.e. blocking-write). This is done by extending the exigti  curve of the output stream can be easily deduced foom
RTC framework using a feedback control mechanism. The andﬁfﬁ following Theorem 1 and 2.

system, shown in Figure 5 consists in two PEs in tandem,

where the second one has a finite capa@jtyThe PEshave 3 »4 Blocking-write at multiple buffers in sequence
respective service curvgl andf,, and when the backlog

in PE; exceeddB,, then the service &E; is interrupted. ¢ which h buff ith fini itv. Th he eff
The functionsA;, A, andAg are the respective arrival pro- ot which has a bufter W't. Inite capacity. en, the e ec
ve service curve of the first PE (the one which has an infi-

cesses at the entrance of the system, after serviced by thé . . "
first PE and at the output of the system. nite capacity) will depend on the capacities of all the busffe

and on the other service curves: the feedback controls in-

Now suppose that there are several PEs in sequence, each

A ————— A, ——— Ag duce some cycles in the network, as shown in Figure 7.
e e E—
B]_ BZ Az +Bp IA4+83 3 Ani1+Bn
"B v f v
B B B Bn

Figure 5. System with two PEs in tandem, the
second PE has a finite capacity buffer  By. Figure 7. Line of PEs with backlog con-

As the backlog on the second PE cannot exdgeane straints.

must have®, — Az < By and thenA; < Az + B,. A simple Consider a system witm PEs processing sequen-
solution to ensure this is to put a feedback control before tially, where PE,,--- ,PE, have respective buffer capaci-
PE;, admitting only the amount of data that ensures that thetiesBy, ...,B,. Theorem 3 gives the formula for computing



the effective service curve 6fE; considering the blocking- 3.5 State-based scheduling policies

write at the subsequent PEs. Recall that in the illustrative example in Figure 3 (Sec-

Theorem 3. The effective service curyﬁff of PE, taking tion 3.1), the resource &fE; is shared between two streams
into account the feedback controls from the other PEs, is S; ands,. The processing policy used IREs is dependent
given by on the state of the playout buffBf as well as the priorities
no i of the streams. SpecificallRE; will first processs; and
=i min®[ﬁj,1® (Bj+B)T. only process, whenb; is empty orBj is full.
=0 j=1 The analysis for such a state-based scheduling policy is
divided into two phases. First, we determine the effective

Proof. The result is proved by induction. The initialization _ ) oo
step exactly corresponds to Lemma 3. Suppose that the reService curve that is used to process each stream taking into

sult holds fom PEs. and let us show it for- 1 PEs. The consideration the state dependency. With the obtained ef-
system obeys to thé following equations: ' fective service curves, we compute the various performance

characteristics using the results presented in Section 2.

A = min(Ai-, A+ B) ®Bioa The effective service curygS" that is used to process
Vie{2,..n+1}, taking into account the state dependency is computed using
Aniz > Ania®Bnia Lemma 3 and Theorem 3 described above. The effective
In particular, the equations concermniRgn. 1 are: service curve that is used to processs also the one that
bounds the remaining resource after processingvhich
{ Ant1 = min(An,Ani2+Bnia) @ Bn can be computed using Corollary 1 below.
An+2 > An+l ® Bn+1a

L , Corollary 1. Given a PE with service curyg processing a
WhiCh is equivalent ty 1 > An® Ba @ [(Br1+Bny1) ® higher priority stream s with arrival curva. Assumgg® is
Pr]". Now, one can replace the system with-1 PES in 4 offective service curve used to process the streangtakin
tandem with an equivalent system withPEs, then—1first 15 50count the state-dependency. The remaining resource

PEs.having th/e same service curve, and *the last PE having)f the PE given to the lower priority streams is bounded by
service curves) = Bn® [(Bnt1+Bny1) ® Bn]*. The capaci-  he service curve
ties of buffers 2 ta remain the same. Consequently, on can

apply the induction hypothesis to that system and obtain a B =B-(a @Be“).
service curve for the first PE (denotiffy® (Bi+1+ Bi+1)
by fi andBn_1® (Bn+ Bh) by fi_;): Proof. For any givenA > 0, the maximum number of
. items that are processed in any interval of lengths
D =pioeafoffoff o affo--af 0] (a @ Be™)(A) (Theorem 2.1). Since the PE starts processing

the lower priority streams as soon as there is no more items

. n S
Consider only the last factd,", and replace; by its from sto be processed or when the output buffer is full, the

expression: . . L .
amount of service given to the lower priority streams in any
fify = [Br1®(Bn+Bn®[(Bari+Bni1) ®Bn]")|" interval of lengthA is at least3(A) — (a @ ™) (A). This
= [Br-1® (Bn+Bn) ® [(Bar1+ Bny1) @ Bl )] " proves the corollary. O
= [faef]" =1 (eaf)), Using the computed effective service curve, the maxi-
which leads the desired formula and finishes the proal. ~ Mum backlog, maximum delay the output arrival curve can

be easily computed using Theorem 1 and 2.1.
Remark that this formula takes into account the fact that

if PE on the line has no backlog constraint (the buffer has
an infinite capacity anB; = «), then the service curve does
not depend on the service curygs j > i. Indeed, in that We employed two case studies to evaluate our theoreti-
casefi=c andf" @ ® fj+ = oo, Analysis bounds on cal results and to illustrate the effect of state-depenglenc
the system can be easily computed in the same fashion aghe behavior of a system. The first case study aims to show
done in the simple case when blocking-write is imposed at the immediate ramification of processor stalling on the fill-
a single buffer. levels of the buffers in a system. The second case study
Similar networks have been studied (see [7]), but the illustrates the intermediate effect of blocking of one atne
goalin this reference is to compute the overall servicegurv on another, at the same time demonstrates how our tech-
Here, we are only interested in findig the real service curve nique can be used to evaluate systems with multiple input
of the first server, in order to dimension the size of the streams that are scheduled using fixed-priority scheduling
buffer, taking into account the block-writing phenomenon. policy with state-dependency.

4 Experimental Case Studies



4.1 Case study 1: Blocking-write of a stream functionx(t) was used to compute the arrival cuwé\) of
the partially processed stream.

Similarly, based on the execution demands of the IDCT
and MC tasks, we computed the workload functigi)
which gives the maximum number of cycles required by any

Figure 8 shows the architecture of an MPEG-2 decoder
which consists of two PEs decoding an input video stream
in sequence. The MPEG-2 application is partitioned and

mapped onto these PEs where the VLD and IQ tasks run ' consecutive macroblocks BE,. By combiningy and the

PE; while the IDCT and MC tasks run dAE,. The coded .Irequencyf of PE,, we derive the service cuny@ (A). The

input stream arrives at the system at a constant rate and i : ;
is initially processed byE;. The partially decoded mac- Service curve that represents the consumption at the output
yp 1 P y device is given byC(A) = rA.

roblocks of the stream are subsequently stored in the buffer
b before being processed IBE,. The resulting fully de-
coded macroblocks are written to the playout buBeand
finally transmitted to the output video device. We are partic Figure 9 reports the estimated values of the maximum back-
ularly interested in the behavior of the components shownlog of b against the different frequencidsof PE, for the

4.1.2 Analysis results

in the rectangle box. varying capacities of buffes.
pTTTTTTTTTTmTmoommom ey 2600
s i b B |
input vi T . ' ! i =
In;lrje;/rlneo_> ] @ : i @ ]]]D_.I:lgs\xﬁset i . Capacity of the playout buffer, B = 1500
PE, ! PE; : 5 L
e I EZ“
) o @ g 2000
Figure 8. An MPEG-2 decoder application. t3
S5
Although the input bit stream enters the system at a con- é‘g
stant bit-rate, the execution times of the VLD + IQ tasks ﬁg
may vary. The number of bits constituting each partially E8 ;400!
decoded macroblock is also not constant. Consequently, theg 2
stream that is written tb is highly bursty. We assume that =
(a) the bursty behavior of this stream is specified by an ar-
rival curvea (A); (b) the variability in the execution require-

ments of the IDCT + MC tasks running on tRé&; is cap- 800
tured by a service curygs (A) wheref represents the clock
frequency ofPE;; (c) PE; implements blocking-write foB

where it stalls whel is full; (d) the output device reads the

macroblocks fronB at a constant rate As f increases, more macroblocks are processed thus

In order to understand the effect of blocking-write on |eading to declining backlog for all the different capagsiti
the behavior of the system, we permuted different capac-of B. However, beyond a certain threshold frequency, the
ities of B and frequencied of PE; to observe the result-  yalue of the maximum backlog df stabilizes for a fixed
ing changes on the maximum backlogofThe maximum  capacity ofB. This happens at the point wheBés full and
backlog ofb is computed following Lemma 3 and compared no other macroblocks ib can be processed until there is
with our simulated results. The theoretical technique isim available space iB. Therefore, as we increase the Capaci[y
plemented using the Java API provided by the Real-Time of B, the maximum backlog o decreases, which is also
Calculus Toolbox [25]. illustrated in the figure.

Thus, running a processor beyond a threshold frequency
reduces its utilization rate. With a fixed memory size, a
designer can therefore determine the processor frequency
To obtain the arrival curve that characterizes the paytiall and the corresponding capacities of the buffers in the syste
decoded stream, we collected execution traces of the differ which maximize the utilization rate of the processor.
ent tasks by simulating their executions on a customized To compare our method against simulation-based ap-
version of the SimpleScalar instruction set simulator [3]. proaches, we implemented a SystemC simulator and used
From these traces, we measured the execution demands df in conjunction with the SimpleScalar instruction set sim
the VLD and IQ tasks for each macroblock and derived ulator in [3] to run a detailed SimpleScalar+SystemC sim-
a functionx(t), wherex(t) denotes the number of mac- ulation. Our simulated results match well with the ones
roblocks arriving atb during the time intervalO,t]. The computed using our analytical method described above. In

1.3 1.4 1.5 1.6 1.7 1.8 1.9
Frequency of PE, [GHz]

Figure 9. Maximum backlog analysis of b.

4.1.1 Obtaining arrival and service curves



particular, the analytical bounds are always less than 5% Figure 10 plots the maximum backlog bf in relation

more than those obtained from simulation. On the otherto the capacity oB; and the frequency oPEs. Observe

hand, performing the analysis using the RTC toolbox incor- from the figure that the maximum backlog lof is small-

porated with our method is significantly faster than purguin est around the region with highest frequencie®&§ and

the pure simulation approach (less than a minute vs. severalargest capacities d8,. Reverselyb, has smallest back-

hours). Note also that results from simulation are unable tologs in the area wherBEz has lowest frequencies a3

provide a formal guarantee on the maximum backlog that has smallest capacities. In fact, the result shown in the fig-

may incur in the system. ure demonstrates that the maximum backlob.as always
proportional to the frequency &Ez and the capacity ds;.

4.2 Case study 2: State-based scheduling of mul- Thus the maximum backlog of the input buffer correspond-

tiple input streams ing to the lower priority stream exhibits the same pattern as

that the higher priority stream (as seen in case study 1% Thi

In this case study, we analyze the example system dedemonstrates the effect of feedback control at one stream on
scribed in Section 3.1. We assume the two input video the other streams that share the same resource.

streams arrive at a constant bitrate of 8 Mbps and their fully

decoded macroblocks are read by the output device at a rate

of 40,000 macroblocks per second. The frequencidaf Table 1. Total buffer space required for ~ PEs.
andPE; are set to bd; = 1.3GHzand f, = 1.25GHz re-
spectively. Given these values fixed, we are interested in Total backlog ob; andb, (macroblocks)
the backlog ob, with respect to different values of the fre- |PEz Freq;B; = 1000 B; = 2000 B; = 3000 No feedback

quency ofPEs and capacity 0B;. 28GHz| 31170 29498  28043| 14382
First, we obtain the arrival curves, anda, of the two 5 9GHz| 30490 58624 57169 12430

input streams and the service cunf®s 3, and 3 of the
three PEs (see Section 4.1.1). Fromand 1, we com- 3.0GHz| 29619 28332 26347) 10868

pute the arrival curve; that characterizes the output stream 3.1GHz| 29359 27478 25825 9104
from PE;. Similarly, the arrival curve, that representsthe | 3.2 GHz| 28603 26885 25439 7396
output stream fronPE; is derived froma, and3,. Based
on aj, B3 and the capacity oB;, we follow Lemma 3 to
compute the effective service cur13§ff that processes the
output stream fronPE; considering blocking-write aB;.
The remaining service cury, that is used to process the

Table 1 reports the total maximum backlogs of the two
buffersb; andb, in reference to the capacity 8 and the
frequency oPEs. The last column of the table gives the val-
ues for the case when there is no state dependency. It is ob-

. 7 .

second stream is deducted frg8§" andaj using Corol-  served consistently for all frequencies that when the capac
Ia/ry 1. Tt‘e maximum backlog d; is then calculated from jty of B, is finite and blocking-write is imposed on the sys-
a3 andp; using Theorem 1. tem, the total backlog @Ez is much larger than the com-

puted backlog in the case of no state-dependency. Thus, as-
suming the buffers having infinite capacity may potentially
x10' ' lead to inaccurate results, as shown in this case study. It is

therefore important for us to capture the state-dependency
\\\\\\\\\\\\\\\\ " tzsrms?r(:]illiizs a\r/]vzlyzisssal;:: CI: SE)/EIE”(‘;SG studies that
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\\ blocking-write is implemented only at a single buffer in the

tem. The analysis for the case when blocking-write is
\\\\\\\ sys
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imposed on multiple buffers can be done similarly, except
that one may additionally need to use Theorem 3 to com-
pute the effective service curve offered by a processor to
a stream. The same technique presented here can also be
employed to analyze systems with more than two streams.
Additionally, we have also modeled the given case stud-
ies using the ECA and carried out the analysis using the
SAL (Symbolic Analysis Laboratory) model checker [20].
It is observed from our experiments that the analysis time
Figure 10. Case study 2: Maximum backlog when using ECA is much slower than when using RTC. For
of the lower priority stream. example, in case study 1, using ECA takes in average more

Backlog of the buffer b,
[number of macroblocks]




than 10 times as compared to using RTC. As the system be{11] R. Henia and R. Ernst. Scenario aware analysis for cexnpl
comes more complex, the speed up is near exponential on
the number of PEs in the system. This shows that analyz-[12]
ing blocking-write using our method is considerably more
efficient than using an explicit state-based model.

5 Concluding Remarks

[13]

We have formulated a method that enhances the origi-[14
nal RTC framework by modeling and analyzing a variety of
state-dependencies using a feedback control technigue. Ou
analysis is purely functional and thereby avoids the state-[15]
space explosion problem faced by explicit state-modefing i

automata-based approaches. Since a number of state-bas
components that were originally modeled by ECA can now

be analyzed functionally, it will be meaningful to integrat
our proposed method into the hybrid framework of RTC and
ECA [18]. It will also be interesting to extend our technique
to capture more complex state-dependencies, for instance
synchronization between streams.
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