
Lightweight Modeling of Complex State Dependencies
in Stream Processing Systems

Anne Bouillard1 Linh T.X. Phan2 Samarjit Chakraborty2
1ENS Cachan (Bretagne) / IRISA

2Department of Computer Science, National University of Singapore
E-mail: Anne.Bouillard@bretagne.ens-cachan.fr {phanthix, samarjit}@comp.nus.edu.sg

Abstract

Over the last few years, Real-Time Calculus has been
used extensively to model and analyze embedded systems
processing continuous data/event streams. Towards this,
bounds on the arrival process of streams and bounds on
the processing capacity of resources serve as inputs to
the model, which are used to calculate end-to-end delays
suffered by streams, maximum backlog, utilization of re-
sources, etc. This “functional” model, although amenable
to computationally inexpensive analysis methods, has lim-
ited modeling capability. In particular, “state-based” pro-
cessing, e.g. blocking write – where the processing depends
on the “state” or fill-level of the buffer – cannot be mod-
eled in a straightforward manner. This has led to a num-
ber of recent proposals on using automata-theoretic models
for stream processing systems (e.g. Event Count Automata
[RTSS 2005]). Although such models offer better modeling
flexibility, they suffer from the usual state-space explosion
problem. In this paper we show that a number of complex
state-dependencies can be modeled in a lightweight man-
ner, using a feedback control technique. This avoids explicit
state modeling, and hence the state-space explosion prob-
lem. Our proposed modeling and analysis therefore extend
the original Real-Time Calculus-based functional modeling
in a very useful way, and cover much larger problem domain
compared to what was previously possible without explicit
state-modeling. We illustrate its utility through two case
studies and also compare our analysis results with those
obtained from detailed system simulations (which are sig-
nificantly more time consuming).

1 Introduction

The escalating complexity of stream processing systems
has prompted the need for modeling and analysis techniques
that go beyond those traditionally studied in the literature.
Many of these systems process irregular data/event streams
and rely on highly dynamic resource management policies

2

B

input stream
PE1 PE2 PEnα α′ α″ αout

output stream

α′

β

2 β′

α″

Figure 1. An example system model.

that cannot be modeled using standard periodic/sporadic
event models and fixed-priority or deadline-based schedul-
ing policies.

In this context, the Network Calculus framework [4, 7]
– which was originally proposed for modeling communi-
cation networks – has been extensively adapted in recent
years for the modeling and analysis of embedded systems
processing continuous data and event streams (e.g., see
[5, 22, 24, 26]). The resulting framework (often referred as
Real-Time Calculus or RTC in the literature) is designed
to model and analyze heterogeneous real-time systems in a
compositional manner. The key feature of this framework
is its use ofcount-based abstractionto model the timing
properties of the input streams, as well as the availabilityof
the resources. In particular, the timing properties of a data
stream are specified as a constraint on the maximum and
minimum number of data items that may arrive over every
time interval oflength∆. A collection of such constraints
for different values of∆ are captured as functionsα l (∆) and
αu(∆) that denote the lower- and upper-bound on the data
arrival process. In other words,α l (∆) andαu(∆) specify the
minimum and maximum number of items that may arrive
within any time interval of length∆. Clearly, these func-
tions will admit a rich collection of arrival sequences. Stan-
dard event models such as periodic, sporadic and periodic
with jitter turn out to be special cases of such a specifica-
tion. Resource availability can also be specified in a similar
fashion. Here,β l (∆) andβ u(∆) shall specify the minimum
and maximum number of items that can be processed by
a resource within any time interval of length∆. Given the

1

functionsα, denoting (α l , αu), andβ denoting (β l , β u),
it is possible to compute using purely algebraic techniques,
the bounds on system properties such as the maximum de-
lay suffered by the stream and the maximum backlog of data
items in front of the resource. Further, it is also possible to
computeα ′ = (α l ′, αu′) which denotes bounds on the tim-
ing properties of theprocessedstream.α ′ may now serve as
the input to the next resource which further processes this
stream, and the output from which may be denoted asα ′′.
This is repeated for all resources until the timing properties
of the output streamαout are computed (see Figure 1).

Figure 1 shows an architecture consisting ofn resources
PE1, . . . ,PEn, which process an input stream sequentially.
EachPEi has an input buffer to store incoming data items
waiting to be processed. The service rendered by eachPEi

is constrained byβi . Similar toα ′, the service functionβi
′

that bounds the remaining resource which can be used to
process other data streams. Besides buffer requirements and
the delay incurred by the input stream at each resourcePEi ,
various other performance characteristics such as the uti-
lization of each resource, output jitter, the maximum end-
to-end delay and the total buffer requirement in the system
can also be obtained from the boundsα andαout.

1.1 Our contributions

Owing to the functional nature of RTC, analysis in this
framework involves algebraic manipulations which allows
for highly efficient computation of system properties in a
fully compositional manner. However, modeling of com-
plex state dependencies is awkward; common scenarios
such as the one where the service offered by a resource de-
pends on the fill-level of a buffer cannot be modeled easily.
In constrast, fine-grained modeling of state information, e.g.
using timed automata [1, 9] or event count automata [6] of-
ten leads to state space explosion when applied to realistic
problems.

In this paper, we present a technique to model a variety
of complex state dependencies in the existing RTC frame-
work with a feedback control mechanism without resorting
to explicit state-space modeling. Firstly, this techniquesig-
nificantly enhances the modeling power of the framework
but without having the problems associated with state-space
modeling. Secondly, our model of a system is a composition
of multiple abstract components with each component cap-
turing all the relevant state-dependencies as well as process-
ing semantics. The properties of these components can be
computed functionally using our results and thereby attaina
high efficiency. Thirdly, our technique enables state-based
scheduling policies to be modeled and efficiently analyzed
in a modular manner.

Through case studies, we illustrate how our method can
be seamlessly integrated into the current RTC framework,
and at the same time we show the effects of capturing state-

dependencies on the accuracy of the analysis. We also pro-
vide experimental validation of our analysis method against
simulation. The analysis results obtained from both meth-
ods match well with each other, however our analysis is sig-
nificantly faster than simulation.

1.2 Related work

The first line of related work is concerned with develop-
ing task and event models that generalize classical periodic
or sporadic event models, which assume fixed execution
times for tasks. Towards this, timed automata and related
automata-theoretic formalisms have been recently used in
various setups to model and analyze task scheduling prob-
lems (e.g., see [1,8,9]). To overcome the lack of state-based
modeling in the RTC framework, we had proposedevent
count automata(ECAs) [6] that retain the count-based ab-
straction used in RTC. Although automata-based models are
much more expressive and capable of representing a wide
variety of state-dependencies, they suffer from the state ex-
plosion problem and can become inefficient when analyzing
large system architectures.

The next line of work focuses on extending RTC to
model complex event patterns and task activation schemes.
For example, [10] presented a method to model conditional
blocking-read on an input buffer. In particular, it modeled
tasks that are triggered by events on multiple input streams
using AND/OR-activation, where an OR-task is triggered
whenever an event is available on either of the input streams
and an AND-task is only activated when there is at least
one event from each stream. [13] proposed a way to com-
pute delay and output arrival functions of data streams that
are split and joined during the system execution following
the OR-activation and in-order activation semantics, while
taking into account correlations in data streams and data
distribution based on different types of delay. Correlation
between jitter and response time of individual events were
also considered in [12]. Analysis methods of more complex
scheduling policies such as non-preemptive and scenario-
aware scheduling of tasks were studied in [10] and [11] re-
spectively. Timing properties of hierarchical event streams
that are generated by the communication stack are modeled
in [19]. Although extensive in variety, these proposed tech-
niques do not handle state-modeling and control-feedback
dependencies.

The back-pressure effect with finite buffer capacities has
been studied in the context of data flow graphs [15]. For
instance, in [27], an algorithm for computing the buffer ca-
pacities that satisfy throughput constraints was presented.
Analysis of self-time scheduling for multirate data flow
with finite buffer capacities was considered in [16]. Also,
back-pressure was used in [23] as a mechanism to allow a
semantics preserving implementation of synchronous mod-
els on Loosely Time Triggered Architectures. The methods

2

used in this context however are not applicable into our set-
ting.

There have also been hybrid frameworks that combine
various analysis methodologies. For example, [21] unified
the SDF [15] and SymTA/S [2] into a single framework that
is able to model data-dependencies using SDF and to ab-
stract event streams using SymTA/S. SymTA/S and RTC
have been merged in [14] to capture more complex inter-
actions with high accuracy. RTC and ECA can also be in-
tegrated using the interfacing technique provided in [18] to
achieve higher accuracy than using RTC alone while be-
ing more efficient than using ECA alone. The method we
propose here can be plugged into the integrated RTC-ECA
framework to further increase the efficiency of the analysis,
since we can now use RTC to analyze a number of state-
dependent components in the system instead of using ECAs,
which will in turn reduce the total analysis time.

1.3 Organization of the paper

In the next section we describe the basic concepts of
the RTC framework. In Section 3 we present our analy-
sis method. We begin with an example that will be used to
illustrate our method, followed by an overview of our anal-
ysis technique in Section 3.2. Sections 3.3 and 3.4 estab-
lish the theoretical results that enable the analysis of a state-
dependent component, which will be applied to model state-
based scheduling in Section 3.5. In Section 4 we present
experimental results using two case studies derived from
an MPEG-2 decoder to illustrate the benefits of our anal-
ysis methods. Finally, we conclude with a discussion on the
prospects for extending our study initiated in this paper.

2 The Real-Time Calculus Background
RTC is based on the (min,+) algebra [4, 7] and models

data streams and services in a network with non-decreasing
non-negative functions taking their values in the (min,+)
semiring. More formally,(Rmin+,min,+), with Rmin+ =
R+ ∪{∞}, is a commutative semi-ring, its zero element is
∞ and its unitary element is 0.

Consider the setF = { f : R+ → Rmin+ | ∀s < t, 0 ≤
f (s)≤ f (t)}. One can define as follows two operators onF :
the minimum, denoted by⊕ and the (min,+) convolution,
denoted by⊗:

for all f ,g in F , ∀t ∈ R+,

• f ⊕g(t) = min(f (t),g(t)) and

• f ⊗g(t) = inf0≤s≤t(f (s)+g(t −s)).

The triple(F ,⊕,⊗) is also a commutative semiring and
the convolution can be seen as an analogue to the classi-
cal (+,×) convolution of filtering theory, transposed in the
(min,+) algebra. Its zero element is the functionε : t 7→ ∞
and its unitary element ise : 0 7→ 0;t 7→ ∞.

Two other important operators for RTC are the sub-
additive colsure and the (min,+) deconvolution, denoted by
⊘: let f ,g∈ F ,

• f ∗ =
⊕∞

n=0 f n, wheref 0 = e and f n+1 = f n⊗ f .

• f ⊘g(t) = supu≥0(f (t +u)−g(t)).

The following lemma holds for the sub-additive closure op-
erator.

Lemma 1. ([7, theorem 2.1.6]) Let f,g,h ∈ F , and con-
sider the inequation f≤ f ⊗g⊕h. Then we have

f ≤ h⊗g∗.

2.1 Arrival and service curves

Given a data stream traversing a system that contains a
single processing element (PE), letA be its cumulative ar-
rival function (i.e.A(t) is the number of data items that have
arrived until timet). Here a data item can be a network
packet or a video/audio macroblock. We say thatα is an
(upper)arrival curve for A (or thatA is upper-constrained
by α) if ∀s,t ∈ R+, A(t + s)−A(s) ≤ α(t). This means
that the number of items arriving between times andt + s
is never larger thanα(t). An important particular case of
arrival curve is the affine functions:α(t) = σ +ρt. Thenσ
represents the maximal number of items that can arrive si-
multaneously (the maximal burst) andρ the maximal long-
term rate of arrivals.

ConsiderD the cumulative departure function of the
stream, defined similarly by the numberD(t) of items that
have left the system until timet. The system provides a
(minimum) service curveβ , D(t) ≥ A⊗ β . Particular
cases of service curves are thepeak ratefunctions with
rater (the system can processr items per unit of time and
β (t) = rt) and thepure delayservice curves with delayd:
β (t) = 0 if t < d andβ (t) = +∞ otherwise. The combina-
tion of those two service curves gives arate-latencyfunc-
tion β : t 7→ R(t −T)+ wherea+ denotes max(a,0).

A strict service curveβ is a service curve such that for
all t ∈ R+, let u be the last instant beforet when there is no
packet in the system, thenD(t) ≥ A(u)+ β (t−u).

2.2 Performance characteristics and bounds

The worst-case backlog and the delay can be easily char-
acterized in the RTC framework as below.

Definition 1. Let A be the arrival function of a data stream
through a system and D be its corresponding departure
function. Then thebacklogof the stream at time t is

b(t) = A(t)−D(t)

and the delay (assuming FIFO order for processing items

3

of the stream) at time t is

d(t) = inf{s≥ 0 | A(t) ≤ D(t +s)}.

Given an arrival curve and a service curve, it is possible
to compute with the RTC operations the maximal backlog
and delay.

Theorem 1 ([4, 7]). Let A be the arrival function with an
arrival curveα for a stream entering a system with service
curveβ . Let D be the departure function. Then,

1. b(t) ≤ Bmax = sup{α(t)−β (t) | t ≥ 0},
2. d(t) ≤ Dmax = inf{d ≥ 0 | ∀t ≥ 0, α(t) ≤ β (t +d)}.

The maximal backlog is the maximal vertical distance
betweenα andβ while the maximal delay is given by the
maximal horizontal distance between those two functions.
Figure 2 illustrates this fact.

Dmax

Bmax

α

β

Figure 2. Guarantee bounds on backlog and
delay.

Further, bounds on the output stream and the remaining
resource of the system can be determined using Theorem 2.

Theorem 2 ([4]). Assume a stream constrained by an ar-
rival curveα entering a system with service curveβ .

1. The output stream is upper-constrained by an arrival
curve

α ′ = α ⊘β .

2. If β is a strict service curve, the remaining resource af-
ter processing the stream is bounded by a service curve

β ′ = (β −α)+.

In this paper, we assume that service curves are strict to
ensure for the positiveness of remaining service; however,
our method is not restricted to this assumption.

From the results concerning systems with a single PE,
one can obtain more general results for systems with mul-
tiple PEs, using the composition of the RTC operators. For
example, if there are two PEs in sequence, for respective
service curvesβ1 andβ2, the overall service curve isβ1⊗β2

(see [4, 7] for details). Such results have been based on the
properties of the (min,plus) algebra.

3 Modeling complex state-dependencies
Modern stream-processing systems are usually hetero-

geneous networks of resources processing multiple data
streams using complex scheduling policies. Often, the pro-
cessing of a stream depends not only on the available ser-
vice but also the internal state of the system. One typical
example is when the amount of on-chip memory is limited
and hence the internal buffers that hold the processed items
can only accommodate up to a certain capacity. To avoid
loss of data, the processor may implement blocking-write
for its output buffers, i.e it stalls whenever the buffers are
full. Otherwise, to save resource, it may proceed to process
the next data streams based on some sharing policy, in case
the output buffer that stores the currently processed stream
is filled up.

Modeling and analysis of systems described above re-
quire us to take into consideration the state-dependencies
that are imposed among the different elements of a system.
The original RTC framework presented in Section 2 (i) does
not express state-information and furthermore (ii) assumes
that all buffers have infinite capacities. As a result, it is
not able to represent and correctly analyze such systems.
Automata-based approaches developed recently for stream
processing systems [6, 17] can encapsulate state informa-
tion; however, their analyses become inefficient for large
systems due to the state-space explosion. In this section, we
present a functional analysis technique, developed on top of
the original RTC framework, which is capable of capturing
the complex state-dependencies while achieving high effi-
ciency. We shall illustrate our method with an example of
stream-processing systems that is described below. More
general systems can be easily modeled and analyzed using
the same approach.

3.1 An illustrative example
Figure 3 sketches the system architecture of a picture-in-

picture (PiP) application where two video streams are de-
coded. The first stream represents a set of regular video
clips with high motion contents and the latter represents a
set of still images. After fully decoded by the PEs, they will
be displayed at the output device.

VLD

 IQ

VLD

 IQ

IDCT

 MC

IDCT

 MC

input

stream 1

input

stream 2

b2

B1b1

B2

Output

Device

PE

PE

PE
1

2

3

s‘

s‘

1

2

Figure 3. A PiP application.
The system consists of three PEs on which the tasks of an

4

MPEG-2 decoder application are partitioned and mapped.
As shown in the figure, the Variable Length Decoding
(VLD) and Inverse Quantization (IQ) tasks run on each of
PE1 andPE2 while the Inverse Discrete Cosine Transform
(IDCT) and Motion Compensation (MC) tasks run onPE3.
PE1 processes the first input video stream andPE2 pro-
cesses the second input video stream. The partially decoded
streams fromPE1 andPE2 (denoted bys′1 ands′2) are stored
in the buffersb1 andb2 respectively, where they will further
be processed byPE3. The two fully decoded streams from
PE3 are then written to the playout buffersB1 andB2 before
being read by the output device.

PE3 schedules the two streamss′1 ands′2 using a fixed-
priority scheduling policy, withs′1 having higher priority
than s′2. Further,PE3 implements blocking-write on the
playout bufferB1; whenB1 is full, the processor will pro-
cesss′2 if there are some items inb2. This is done regardless
of whether there are items inb1.

Given the above system architecture, we are interested
in answering questions concerning the behavior of the sys-
tem such as (1) what is the maximum backlog of a buffer?
(2) what is the maximum delay experienced by a stream?
(3) is the system schedulable while guaranteeing none the
buffers overflows? A correct evaluation of such properties
are essential for designers to optimize the design of the sys-
tem. As mentioned earlier, we cannot use the standard RTC
framework to analyze the system sincePE3 implements
state-based scheduling scheme.

3.2 A functional analysis approach

In constructing the model for the system, we describe
each input stream to the system as an arrival curve and each
processing resource of the system as a service curve. The
processing of a stream by a resource is represented by an
abstract component whose inputs are the arrival curve of
the input stream and the service curve of the resource. The
outputs of an abstract component are an arrival curve that
bounds the output stream and a service curve that bounds
the resource left after processing the input stream. By con-
necting the abstract components following the flow of the
stream (from left to right) and the order at which the dif-
ferent streams are processed by a shared resource (from top
to bottom), we obtain the complete abstract model of the
system. Figure 4 depicts the abstract model of the system
architecture in Figure 3.

In this figure,α1 andα2 denote the arrival curves of the
two input video streams;β1,β2 andβ3 denote the service
curves ofPE1, PE2 andPE3 respectively. Similarly,β4 and
β5 are the service curves that bound the consumptions of the
two fully processed streams. The processing of the streams
by PE1 andPE2 are represented by the abstract components
C1 andC2, whose output arrival curves are denoted byα ′

1
andα ′

2. The processing ofPE3 on the output streamss′1 and

PE

PE

PE1

2

3

C1

C2

C3

C′3

C4

C5

α
1

α
2

α′
1

α′
2

α″
1

α″
2

β
1

β
2 β

5

β
4

OD1

OD2

β
3

3
β′

Figure 4. The abstract model of the system in
Figure 3.

s′2 comprises two abstract componentsC3 andC′
3. SincePE3

processess′1 befores′2, the remaining service ofC3 is con-
nected as input toC′

3. Finally, the consumption of the items
from B1 andB2 are modeled byC4 andC5. The connection
of the arrival curves to the abstract components follows the
sequence at which the corresponding streams are processed.

Our analysis proceeds component-wise where we eval-
uate each abstract component and thereafter combine the
evaluated results. To analyze a component, we first deter-
mine the input arrival curve andeffectiveservice curve of
the component if they are not yet known. An effective ser-
vice curve is a service curve that bounds the actual resource
used to process a stream taking into account the state depen-
dencies in the system. Based on the obtained input arrival
curve and effective service curve, we can compute the dif-
ferent performance characteristics and bounds of the com-
ponent using Theorem 1 and 2.

In Figure 4, sinceC1 andC2 have no state dependency
with the succeeding components, their effective curves are
equal toβ1 andβ2, respectively. By the same reason, the
output arrival curveα ′

1 from C1 can be computed fromα1

andβ1 using Theorem 2. Similarly, the arrival curveα ′
2 can

be derived fromα2 andβ2.
On the other hand, since the processing atPE3 is contin-

gent on the state of the playout bufferB1, the actual resource
that is used to processs′1 depends not only on the total avail-
able resource ofPE3 but also the readout rate of the output
device and the capacity ofB1. Hence the effective service
curveβ eff

3 of C3 is dependent onβ3, β4 and the capacity of
B1. This effective service curve will in turn affect the re-
maining service curveβ ′

3. The computation ofβ eff
3 andβ ′

3
will be described in the coming sections. With the obtained
β eff

3 andβ ′
3, we can apply Theorem 2 to compute the output

arrival curvesα ′′
1 andα ′′

2 that are inputs toC4 andC5. The
effective service curves ofC4 andC5 are exactlyβ4 andβ5

since there is no state-dependency in these two components.
In the next three sections, we present our technique for

computing the effective service curve of a component taking
into account the state-dependency of the subsequent compo-

5

nents in the system. Section 3.3 looks into the case where
the processing of the stream in the component is depen-
dent on only one buffer of the next component. Section 3.4
moves one step further to solve for the general case when
the processing within the component is dependent on the
buffer state of many components in tandem. The computa-
tion of the effective service curves of components that are
scheduled using fixed-priority policy while being subjected
to the state of the buffers in the system is described in Sec-
tion 3.5. Before going into the details, we first prove the
following lemma, which will be used in our formulation.

Lemma 2. Let f and g be two functions and c be a constant.
Then,

1. (f ⊗g)+c= (f +c)⊗g= f ⊗ (g+c)

2. (f ⊗g∗)∗ = e+ f +⊗g∗ and(f ⊗g∗)+ = f + ⊗g∗,

where f+ =
⊕

n>0 f n.

Proof. 1. Lethc ∈ F , such thathc(0) = c andhc(t) = ∞,
∀t > 0. Then, for every functionf ∈ F , f ⊗hc = f +
c. The formula follows from the associativity and the
commutativity of the⊗ operator.

2. (f ⊗g∗)∗ =
⊕

n≥0(f ⊗g∗)n = e⊕
⊕

n>0(f ⊗g∗)n. As
(g∗)n = g∗, then(f ⊗g∗)∗ = e⊕g∗

⊕

n>0 f n, hence the
result.

3.3 Simple blocking-write at a single buffer

In this section, we model a setup where the process-
ing of a stream is interrupted when an output buffer is full
(i.e. blocking-write). This is done by extending the existing
RTC framework using a feedback control mechanism. The
system, shown in Figure 5 consists in two PEs in tandem,
where the second one has a finite capacityB2. The PEs have
respective service curvesβ1 andβ2, and when the backlog
in PE2 exceedsB2, then the service atPE1 is interrupted.
The functionsA1, A2 andA3 are the respective arrival pro-
cesses at the entrance of the system, after serviced by the
first PE and at the output of the system.

B2

A1 A2 A3

β2β1

Figure 5. System with two PEs in tandem, the
second PE has a finite capacity buffer B2.

As the backlog on the second PE cannot exceedB2, one
must haveA2−A3 ≤ B2 and thenA2 ≤ A3 + B2. A simple
solution to ensure this is to put a feedback control before
PE1, admitting only the amount of data that ensures that the

A2

β1 β2

A3

A3 +B2

A1

Figure 6. Feedback control to ensure non-
overflow for the second buffer.

backlog constraint inPE2 is satisfied. In entrance ofPE1,
the arrival process then becomesA′

1 = min(A1,A3 +B2).
Figure 6 represents the system that can be translated into

the following equations:
{

A2 ≥ min(A1,A3 +B2)⊗β1

A3 ≥ A2⊗β2,

which leads to the following inequation:

A2 ≥ min(A1,A2⊗β2+B2)⊗β1

= min(A1⊗β1,A2⊗ (β2 +B2)⊗β1).

From Lemma 1, the solution if this inequality is:

A2 ≥ A1⊗β1⊗ [(β2 +B2)⊗β1]
∗
,

which proves the following lemma:

Lemma 3. The effective service curve for PE1 taking into
account the interruption of service when B2 is full is:

β eff
1 = β1⊗ [(β2+B2)⊗β1]

∗
.

Supposeα is the arrival curve of the input stream. The
maximal backlog and delay of the PE as well as the arrival
curve of the output stream can be easily deduced fromα
andβ eff

1 following Theorem 1 and 2.

3.4 Blocking-write at multiple buffers in sequence
Now suppose that there are several PEs in sequence, each

of which has a buffer with finite capacity. Then, the effec-
tive service curve of the first PE (the one which has an infi-
nite capacity) will depend on the capacities of all the buffers
and on the other service curves: the feedback controls in-
duce some cycles in the network, as shown in Figure 7.

β1

A3 +B2

A2A1

β2 β3

A3 A4

A4 +B3

βn

An+1An

An+1 +Bn

Figure 7. Line of PEs with backlog con-
straints.

Consider a system withn PEs processing sequen-
tially, where PE2, · · · ,PEn have respective buffer capaci-
tiesB2, . . . ,Bn. Theorem 3 gives the formula for computing

6

the effective service curve ofPE1 considering the blocking-
write at the subsequent PEs.

Theorem 3. The effective service curveβ eff
1 of PE1, taking

into account the feedback controls from the other PEs, is
given by

β eff
1 = β1⊗

n
min
i=0

i
⊗

j=1

[β j−1⊗ (B j + β j)]
+
.

Proof. The result is proved by induction. The initialization
step exactly corresponds to Lemma 3. Suppose that the re-
sult holds forn PEs, and let us show it forn+ 1 PEs. The
system obeys to the following equations:







Ai ≥ min(Ai−1,Ai+1 +Bi)⊗βi−1

∀i ∈ {2, . . .n+1},
An+2 ≥ An+1⊗βn+1.

In particular, the equations concerningPEn+1 are:
{

An+1 ≥ min(An,An+2 +Bn+1)⊗βn

An+2 ≥ An+1⊗βn+1,

which is equivalent toAn+1 ≥ An⊗βn⊗ [(βn+1 + Bn+1)⊗
βn]

∗. Now, one can replace the system withn+ 1 PEs in
tandem with an equivalent system withn PEs, then−1 first
PEs having the same service curve, and the last PE having
service curveβ ′

n = βn⊗ [(βn+1+Bn+1)⊗βn]
∗. The capaci-

ties of buffers 2 ton remain the same. Consequently, on can
apply the induction hypothesis to that system and obtain a
service curve for the first PE (denotingβi ⊗ (Bi+1 + βi+1)
by fi andβn−1⊗ (Bn+ β ′

n) by f ′n−1):

β eff
1 = β1⊗ [e⊕ f +

1 ⊕ f +
1 ⊗ f +

2 ⊕·· ·⊕ f +
1 ⊗·· ·⊗ f +

n−2⊗ f ′+n−1].

Consider only the last factorf ′+n−1 and replaceβ ′
n by its

expression:

f ′+n−1 = [βn−1⊗ (Bn + βn⊗ [(βn+1+Bn+1)⊗βn]
∗)]+

= [βn−1⊗ (βn+Bn)⊗ [(βn+1+Bn+1)⊗βn]
∗)]+

= [fn−1⊗ f ∗n]+ = f +
n−1(e⊕ f +

n),

which leads the desired formula and finishes the proof.

Remark that this formula takes into account the fact that
if PEi on the line has no backlog constraint (the buffer has
an infinite capacity andBi = ∞), then the service curve does
not depend on the service curvesβ j , j ≥ i. Indeed, in that
case fi = ∞ and f +

i ⊗ ·· · ⊗ f +
j = ∞. Analysis bounds on

the system can be easily computed in the same fashion as
done in the simple case when blocking-write is imposed at
a single buffer.

Similar networks have been studied (see [7]), but the
goal in this reference is to compute the overall service curve.
Here, we are only interested in findig the real service curve
of the first server, in order to dimension the size of the
buffer, taking into account the block-writing phenomenon.

3.5 State-based scheduling policies

Recall that in the illustrative example in Figure 3 (Sec-
tion 3.1), the resource ofPE3 is shared between two streams
s′1 ands′2. The processing policy used byPE3 is dependent
on the state of the playout bufferB1 as well as the priorities
of the streams. Specifically,PE3 will first processs′1 and
only processs′2 whenb1 is empty orB1 is full.

The analysis for such a state-based scheduling policy is
divided into two phases. First, we determine the effective
service curve that is used to process each stream taking into
consideration the state dependency. With the obtained ef-
fective service curves, we compute the various performance
characteristics using the results presented in Section 2.

The effective service curveβ eff
3 that is used to processs′1

taking into account the state dependency is computed using
Lemma 3 and Theorem 3 described above. The effective
service curve that is used to processs′2 is also the one that
bounds the remaining resource after processings′1, which
can be computed using Corollary 1 below.

Corollary 1. Given a PE with service curveβ processing a
higher priority stream s with arrival curveα. Assumeβ eff is
the effective service curve used to process the stream taking
into account the state-dependency. The remaining resource
of the PE given to the lower priority streams is bounded by
the service curve

β ′ = β −
(

α ⊘β eff)
.

Proof. For any given∆ > 0, the maximum number of
items that are processed in any interval of length∆ is
(α⊘β eff)(∆) (Theorem 2.1). Since the PE starts processing
the lower priority streams as soon as there is no more items
from s to be processed or when the output buffer is full, the
amount of service given to the lower priority streams in any
interval of length∆ is at leastβ (∆)− (α ⊘ β eff)(∆). This
proves the corollary.

Using the computed effective service curve, the maxi-
mum backlog, maximum delay the output arrival curve can
be easily computed using Theorem 1 and 2.1.

4 Experimental Case Studies

We employed two case studies to evaluate our theoreti-
cal results and to illustrate the effect of state-dependency on
the behavior of a system. The first case study aims to show
the immediate ramification of processor stalling on the fill-
levels of the buffers in a system. The second case study
illustrates the intermediate effect of blocking of one stream
on another, at the same time demonstrates how our tech-
nique can be used to evaluate systems with multiple input
streams that are scheduled using fixed-priority scheduling
policy with state-dependency.

7

4.1 Case study 1: Blocking-write of a stream

Figure 8 shows the architecture of an MPEG-2 decoder
which consists of two PEs decoding an input video stream
in sequence. The MPEG-2 application is partitioned and
mapped onto these PEs where the VLD and IQ tasks run on
PE1 while the IDCT and MC tasks run onPE2. The coded
input stream arrives at the system at a constant rate and it
is initially processed byPE1. The partially decoded mac-
roblocks of the stream are subsequently stored in the buffer
b before being processed byPE2. The resulting fully de-
coded macroblocks are written to the playout bufferB and
finally transmitted to the output video device. We are partic-
ularly interested in the behavior of the components shown
in the rectangle box.

input video

stream
output

device

b B
VLD

 IQ

IDCT

 MC

PE1 PE2

Figure 8. An MPEG-2 decoder application.

Although the input bit stream enters the system at a con-
stant bit-rate, the execution times of the VLD + IQ tasks
may vary. The number of bits constituting each partially
decoded macroblock is also not constant. Consequently, the
stream that is written tob is highly bursty. We assume that
(a) the bursty behavior of this stream is specified by an ar-
rival curveα(∆); (b) the variability in the execution require-
ments of the IDCT + MC tasks running on thePE2 is cap-
tured by a service curveβ f (∆) wheref represents the clock
frequency ofPE2; (c) PE2 implements blocking-write forB
where it stalls whenB is full; (d) the output device reads the
macroblocks fromB at a constant rater.

In order to understand the effect of blocking-write on
the behavior of the system, we permuted different capac-
ities of B and frequenciesf of PE2 to observe the result-
ing changes on the maximum backlog ofb. The maximum
backlog ofb is computed following Lemma 3 and compared
with our simulated results. The theoretical technique is im-
plemented using the Java API provided by the Real-Time
Calculus Toolbox [25].

4.1.1 Obtaining arrival and service curves

To obtain the arrival curve that characterizes the partially
decoded stream, we collected execution traces of the differ-
ent tasks by simulating their executions on a customized
version of the SimpleScalar instruction set simulator [3].
From these traces, we measured the execution demands of
the VLD and IQ tasks for each macroblock and derived
a functionx(t), wherex(t) denotes the number of mac-
roblocks arriving atb during the time interval[0, t]. The

functionx(t) was used to compute the arrival curveα(∆) of
the partially processed stream.

Similarly, based on the execution demands of the IDCT
and MC tasks, we computed the workload functionγ(k)
which gives the maximum number of cycles required by any
k consecutive macroblocks atPE2. By combiningγ and the
frequencyf of PE2, we derive the service curveβ f (∆). The
service curve that represents the consumption at the output
device is given byC(∆) = r∆.

4.1.2 Analysis results

Figure 9 reports the estimated values of the maximum back-
log of b against the different frequenciesf of PE2 for the
varying capacities of bufferB.

1.3 1.4 1.5 1.6 1.7 1.8 1.9
800

1400

2000

2600

Frequency of PE2 [GHz]

M
a

x
im

u
m

 b
a

ck
lo

g
 o

f
th

e
 b

u
ff

e
r

b

[n
u

m
b

e
r

o
f

m
a

cr
o

b
lo

ck
s]

Capacity of the playout buffer, B = 1500

B = 1900

B = 2900

Figure 9. Maximum backlog analysis of b.

As f increases, more macroblocks are processed thus
leading to declining backlog for all the different capacities
of B. However, beyond a certain threshold frequency, the
value of the maximum backlog ofb stabilizes for a fixed
capacity ofB. This happens at the point whereB is full and
no other macroblocks inb can be processed until there is
available space inB. Therefore, as we increase the capacity
of B, the maximum backlog ofb decreases, which is also
illustrated in the figure.

Thus, running a processor beyond a threshold frequency
reduces its utilization rate. With a fixed memory size, a
designer can therefore determine the processor frequency
and the corresponding capacities of the buffers in the system
which maximize the utilization rate of the processor.

To compare our method against simulation-based ap-
proaches, we implemented a SystemC simulator and used
it in conjunction with the SimpleScalar instruction set sim-
ulator in [3] to run a detailed SimpleScalar+SystemC sim-
ulation. Our simulated results match well with the ones
computed using our analytical method described above. In

8

particular, the analytical bounds are always less than 5%
more than those obtained from simulation. On the other
hand, performing the analysis using the RTC toolbox incor-
porated with our method is significantly faster than pursuing
the pure simulation approach (less than a minute vs. several
hours). Note also that results from simulation are unable to
provide a formal guarantee on the maximum backlog that
may incur in the system.

4.2 Case study 2: State-based scheduling of mul-
tiple input streams

In this case study, we analyze the example system de-
scribed in Section 3.1. We assume the two input video
streams arrive at a constant bitrate of 8 Mbps and their fully
decoded macroblocks are read by the output device at a rate
of 40,000 macroblocks per second. The frequencies ofPE1

andPE2 are set to bef1 = 1.3GHzand f2 = 1.25GHz, re-
spectively. Given these values fixed, we are interested in
the backlog ofb2 with respect to different values of the fre-
quency ofPE3 and capacity ofB1.

First, we obtain the arrival curvesα1 andα2 of the two
input streams and the service curvesβ1, β2 andβ3 of the
three PEs (see Section 4.1.1). Fromα1 andβ1, we com-
pute the arrival curveα ′

1 that characterizes the output stream
from PE1. Similarly, the arrival curveα ′

2 that represents the
output stream fromPE2 is derived fromα2 andβ2. Based
on α ′

1, β3 and the capacity ofB1, we follow Lemma 3 to

compute the effective service curveβ eff
3 that processes the

output stream fromPE1 considering blocking-write atB1.
The remaining service curveβ ′

3 that is used to process the

second stream is deducted fromβ eff
3 andα ′

1 using Corol-
lary 1. The maximum backlog ofb2 is then calculated from
α ′

2 andβ ′
3 using Theorem 1.

2.8

2.9

3.0

3.1

3.2

3.3

3.4
0

500
1000

1500
2000

2500
3000

3500
4000

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x 10
4

Capacity of the playout buffer B

 [number of macroblocks]

1

B
a

ck
lo

g
 o

f
th

e
 b

u
ff

e
r

b

[n
u

m
b

e
r

o
f

m
a

cr
o

b
lo

ck
s]

Frequency of PE [GHz]
3

2

Figure 10. Case study 2: Maximum backlog
of the lower priority stream.

Figure 10 plots the maximum backlog ofb2 in relation
to the capacity ofB1 and the frequency ofPE3. Observe
from the figure that the maximum backlog ofb2 is small-
est around the region with highest frequencies ofPE3 and
largest capacities ofB2. Reversely,b2 has smallest back-
logs in the area wherePE3 has lowest frequencies andB2

has smallest capacities. In fact, the result shown in the fig-
ure demonstrates that the maximum backlog ofb2 is always
proportional to the frequency ofPE3 and the capacity ofB1.
Thus the maximum backlog of the input buffer correspond-
ing to the lower priority stream exhibits the same pattern as
that the higher priority stream (as seen in case study 1). This
demonstrates the effect of feedback control at one stream on
the other streams that share the same resource.

Table 1. Total buffer space required for PE3.

Total backlog ofb1 andb2 (macroblocks)

PE3 Freq.B1 = 1000 B1 = 2000 B1 = 3000 No feedback

2.8 GHz 31170 29498 28043 14382

2.9 GHz 30490 28624 27169 12430

3.0 GHz 29619 28332 26347 10868

3.1 GHz 29359 27478 25825 9104

3.2 GHz 28603 26885 25439 7396

Table 1 reports the total maximum backlogs of the two
buffersb1 andb2 in reference to the capacity ofB1 and the
frequency ofPE3. The last column of the table gives the val-
ues for the case when there is no state dependency. It is ob-
served consistently for all frequencies that when the capac-
ity of B1 is finite and blocking-write is imposed on the sys-
tem, the total backlog atPE3 is much larger than the com-
puted backlog in the case of no state-dependency. Thus, as-
suming the buffers having infinite capacity may potentially
lead to inaccurate results, as shown in this case study. It is
therefore important for us to capture the state-dependency
in the model and analysis of such systems.

For simplicity, we assume in both case studies that
blocking-write is implemented only at a single buffer in the
system. The analysis for the case when blocking-write is
imposed on multiple buffers can be done similarly, except
that one may additionally need to use Theorem 3 to com-
pute the effective service curve offered by a processor to
a stream. The same technique presented here can also be
employed to analyze systems with more than two streams.

Additionally, we have also modeled the given case stud-
ies using the ECA and carried out the analysis using the
SAL (Symbolic Analysis Laboratory) model checker [20].
It is observed from our experiments that the analysis time
when using ECA is much slower than when using RTC. For
example, in case study 1, using ECA takes in average more

9

than 10 times as compared to using RTC. As the system be-
comes more complex, the speed up is near exponential on
the number of PEs in the system. This shows that analyz-
ing blocking-write using our method is considerably more
efficient than using an explicit state-based model.

5 Concluding Remarks

We have formulated a method that enhances the origi-
nal RTC framework by modeling and analyzing a variety of
state-dependencies using a feedback control technique. Our
analysis is purely functional and thereby avoids the state-
space explosion problem faced by explicit state-modeling in
automata-based approaches. Since a number of state-based
components that were originally modeled by ECA can now
be analyzed functionally, it will be meaningful to integrate
our proposed method into the hybrid framework of RTC and
ECA [18]. It will also be interesting to extend our technique
to capture more complex state-dependencies, for instance
synchronization between streams.

References

[1] Y. Abdeddaïm, E. Asarin, and O. Maler. Scheduling with
timed automata.Theoretical Computer Science, 354(2):272–
300, 2006.

[2] R. Henia A. Hamann M. Jersak R. Racu K. Richter R. Ernst.
System level performance analysis - the symta/s approach.
In Computers and Digital Techniques, 2005.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-
frastructure for computer system modeling.IEEE Computer,
35(2):59–67, 2002.

[4] J.-Y. Le Boudec and P. Thiran.Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet, volume
LNCS 2050. Springer, 2001.

[5] S. Chakraborty, S. Künzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. InDATE, 2003.

[6] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan. Event
count automata: A state-based model for stream processing
systems. InIEEE Real-Time Systems Symposium (RTSS),
2005.

[7] C.-S Chang. Performance Guarantees in Communication
Networks. Springer, 2000.

[8] E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task au-
tomata: Schedulability, decidability and undecidability. In-
formation and Computation, 205(8):1149–1172, 2007.

[9] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedu-
lability analysis of fixed-priority systems using timed au-
tomata. Theoretical Computer Science, 354(2):301–317,
2006.

[10] W. Haid and L. Thiele. Complex task activation schemes in
system level performance analysis. InCODES+ISSS, 2007.

[11] R. Henia and R. Ernst. Scenario aware analysis for complex
event models and distributed systems. InRTSS, 2007.

[12] R. Henia, R. Racu, and R. Ernst. Improved output jitter
calculation for compositional performance analysis of dis-
tributed systems. InIPDPS, 2007.

[13] K. Huang, L. Thiele, T. Stefanov, and E. Deprettere. Perfor-
mance analysis of multimedia applications using correlated
streams. InDATE, 2007.

[14] S. Künzli, A. Hamann, R. Ernst, and L. Thiele. Combined
approach to system level performance analysis of embedded
systems. InCODES+ISSS, 2007.

[15] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[16] O. Moreira and M. Bekooij. Self-timed scheduling analysis
for real-time applications.EURASIP Journal on Advances in
Signal Processing, 2007.

[17] C. Norström, A. Wall, and W. Yi. Timed automata as task
models for event-driven systems. In6th International Con-
ference on Real-Time Computing Systems and Applications
(RTCSA), 1999.

[18] L. T. X. Phan, S. Chakraborty, P. S. Thiagarajan, and
L. Thiele. Composing functional and state-based perfor-
mance models for analyzing heterogeneous real-time sys-
tems. InIEEE Real-Time Systems Symposium (RTSS), 2007.

[19] J. Rox and R. Ernst. Modeling event stream hierarchies with
hierarchical event models. InDATE, 2008.

[20] Symbolic Analysis Laboratory.
http://sal.csl.sri.com.

[21] S. Schliecker, S. Stein, and R. Ernst. Performance analysis
of complex systems by integration of dataflow graphs and
compositional performance analysis. InDATE, 2007.

[22] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A frame-
work for evaluating design tradeoffs in packet processing ar-
chitectures. In39th Design Automation Conference (DAC),
2002.

[23] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-
Vincentelli, P. Caspi, and M. Di Natale. Implementing
synchronous models on loosely time triggered architectures.
IEEE Transactions on Computers, 2008.

[24] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative
characterization of event streams in analysis of hard real-
time applications. Real-Time Systems, 29(2-3):205–225,
2005.

[25] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Tool-
box. http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[26] E. Wandeler and L. Thiele. Workload correlations in multi-
processor hard real-time systems.Journal of Computer and
System Sciences (JCSS), 73(2):207–224, 2007.

[27] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient
computation of buffer capacities for multi-rate real- timesys-
tems with back-pressure. InInternational Conference on
Hardware/Software Codesign and System Synthesis, 2006.

10

