
A Stochastic Framework for Multiprocessor
Soft Real-Time Scheduling∗

Alex F. Mills
Department of Statistics and Operations Research

University of North Carolina at Chapel Hill

James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract
Prior work has shown that the global earliest-deadline-first
(GEDF) scheduling algorithm ensures bounded deadline tar-
diness on multiprocessors with no utilization loss; therefore,
GEDF may be a good candidate scheduling algorithm for
soft real-time workloads. However, such workloads are often
implemented assuming an average-case provisioning, and in
prior tardiness-bound derivations for GEDF, worst-case exe-
cution costs are assumed. As worst-case costs can be orders
of magnitude higher than average-case costs, using a worst-
case provisioning may result in significant wasted processing
capacity. In this paper, prior tardiness-bound derivations for
GEDF are generalized so that execution times are probabilis-
tic, and a bound on expected (mean) tardiness is derived. It is
shown that, as long as the total expected utilization is strictly
less than the number of available processors, the expected
tardiness of every task is bounded under GEDF. The result
also implies that any quantile of the tardiness distribution is
also bounded.

1 Introduction
The advent of multicore platforms has led to renewed interest
in multiprocessor scheduling techniques for real-time work-
loads. In this paper, we consider an important category of
such workloads, namely, those with soft timing constraints.
The specific such constraint that we consider is that deadline
tardiness be bounded. We consider this constraint in the con-
text of implicit-deadline sporadic task systems.

In work on such systems, Leontyev and Anderson showed
that a variety of global scheduling algorithms are capable of
ensuring bounded tardiness without utilization loss [4]. This
result extended an earlier proof by Devi and Anderson that
showed the same of the global earliest-deadline-first (GEDF)
scheduling algorithm [1]. Partly because of this result, GEDF
is currently being seriously considered for support in real-
time Linux [9] (as defined by the REALTIME PREEMPT
patch).

While these tardiness-bound results bode favorably for the

∗Work supported by AT&T, IBM, and Sun Corps.; NSF grants CNS
0834270 and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR
grant FA9550-09-1-0549.

viability of certain global algorithms like GEDF for soft real-
time scheduling, they were established assuming a worst-case
system provisioning: when specifying a task’s utilization,
which defines its needed processor share, a worst-case execu-
tion time is assumed. This is a serious impediment. Indeed,
on a multicore platform, worst-case execution costs could
conceivably be orders of magnitude greater than average-case
costs, making an average- or near-average-case provision-
ing all but inevitable in many settings. When using Linux,
which lacks the determinism of a real-time operating system,
a worst-case provisioning is even more questionable. Ad-
ditionally, timing-analysis tools have not matured enough to
effectively determine reasonably tight upper bounds on task
execution times on multiprocessors; on the other hand, mean
execution times can be easily estimated in an unbiased way
from observed data.

In light of these observations, we argue that, if bounded
tardiness is acceptable, then the use of a less conservative
task execution model should be as well. The natural model
for execution times that vary from job to job is a probabil-
ity distribution. Motivated by this, we present in this paper
a derivation of expected tardiness under GEDF when exe-
cution times are stochastic. This derivation generalizes that
used in the earlier worst-case bound established by Devi and
Anderson [1] and places GEDF on a more solid footing as a
candidate soft real-time scheduling algorithm.

Related Work in Queueing. It is natural to think about
possible parallels between soft real-time scheduling and
queueing. Problems with ‘due-date’ or ‘lead-time’ require-
ments have been examined in the queueing literature from a
control standpoint, both in admissions and in service disci-
plines (see, e.g., [2, 8]). In existing work, a single server
is assumed, or an asymptotic regime is used where multiple
servers reduce to a single server. In this asymptotic regime, an
optimal approach for controlling service is the parameterized
generalized longest queue (GLQ) rule [8]. In a GLQ(θ) disci-
pline, if Ni(t) is the number of customers in the queue of the
ith customer type at time t, then service is provided to the cus-
tomer type with the largest value of θiNi(t). The GLQ disci-
pline approximates GEDF under the following conditions:

• θi is the mean interarrival time of customer type i;

Dagstuhl Seminar Proceedings 10071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2010/2537

1

• customer types are indexed in ascending manner by rel-
ative deadline; and

• ties are broken by serving the customer type with the
smallest index.

The major difference between a queueing system with several
customer types and a sporadic task system is that sporadic
tasks are sequential: jobs of a single task must execute in
order, and they may not overlap. Such precedence constraints
do not generally arise in queueing problems.

Nonetheless, the asymptotic optimality of GLQ suggests
that GEDF should be a useful algorithm for scheduling spo-
radic task systems where execution times are stochastic.
However, to our knowledge, this issue has not be considered
in prior work.

Main Contribution. We derive an expected (mean) tar-
diness bound under GEDF when task execution costs are
defined probabilistically, instead of deterministically; as a
byproduct of this analysis, we also obtain bounds on the quan-
tiles (or percentiles) of the tardiness distribution. A major
contribution is that our bounds are applicable if the expected
total utilization is less than the system’s capacity. In prior
work on worst-case tardiness bounds, a similar requirement
is needed from a worst-case perspective. However, we allow
the system to be over-utilized in the worst case. We assume
that execution costs follow a probability distribution, and de-
rive bounds on properties (mean and quantiles) of the tardi-
ness distribution. These bounds depend on the execution-time
distributions only through mean, variance, and worst-case ex-
ecution time.

Organization. The rest of this paper is organized as fol-
lows. In Sec. 2, we formalize the system to be studied. In
Sec. 3, we show that all jobs complete under GEDF within
a bounded number of time units of the time where they com-
plete in a processor-sharing (PS) schedule. In Sec. 4, we show
that expected tardiness under a PS schedule is bounded. In
Sec. 5, we combine these results to obtain a bound on ex-
pected tardiness under GEDF. Finally, we give an example
and some remarks about how our result might be extended.

2 System Specification and Properties
In this section, we formalize the task system to be studied.
Throughout this paper, we will denote random variables by
capital letters, and deterministic quantities by lowercase let-
ters. All time values are continuous.

Task System. A task system τ is a collection of sporadic
tasks {τi, i = 1 . . . , n}. Each task τi is a possibly infinite se-
quence of jobs {τi,j , j = 1, 2, . . .}. A job is a segment of
code that requires execution on a processor. Jobs must exe-
cute sequentially; that is, the next job of a task cannot begin
execution until the previous job of that task has completed.
We assume that m processors are available to schedule τ .

A task τi is specified by its period pi, and its execution
time distribution function Gi(x), which gives the probability

that a job of τi requires no more than x time units to execute.
We require such a distribution to have finite mean and vari-
ance. Any of the standard probability distributions used for
modeling, such as uniform, exponential, Weibull, etc., have
this property; however, for the analysis to be correct, we also
need an upper bound on the expected value of the maximum
execution time seen so far at any point in time—a worst-case
execution time ei will suffice. This sufficient condition is the
same as assuming that there ∃ei <∞ such that Gi(ei) = 1.

This specification of tasks is very general. For example,
the deterministic case of sporadic task systems often consid-
ered in the real-time systems literature, where every task re-
quires ei time units to complete, is a special case of our sys-
tem, where Gi(x) is 1 if x ≥ ei, and 0 if x < ei.

Schedule-Independent Properties of a Job. The follow-
ing characteristics of a job τi,j do not depend on how jobs are
scheduled. The release time ri,j is the earliest time that job
τi,j may execute. We assume the sporadic model, for which
ri,1 ≥ 0 and ri,j ≥ ri,j−1 + pi for all i and for all j > 1. The
deadline di,j is the time by which τi,j must complete execu-
tion. We assume implicit deadlines, i.e., di,j = ri,j + pi. The
execution time Xi,j is the actual time that τi,j executes on a
processor, so P (Xi,j ≤ x) = Gi(x).

Job τi,j is active at time t if ri,j ≤ t and it has not finished
executing. A task is active at time t if any of its jobs are active
at time t. Job τi,j is eligible at time t if τi,j is active and its
predecessor τi,j−1 is not active or does not exist.

Each of the above properties depends only on the task
specification. We assume that the execution time of τi,j is
independently and identically distributed according to the dis-
tribution Gi(·). This means that the execution of each job of
τi follows the same distribution, and it does not depend on
the execution time of some other job. Note that distributions
are not identical across tasks, only jobs of the same task.

Definition (Concrete instance). A concrete instance of a task
system is an instance where the actual release times and ac-
tual execution times are known for each job.

Properties of the Execution Time Distribution. The ex-
pected execution time of a job of task τi is given by

ēi = E (Xi,1) = E (Xi,2) = · · · =
∫ ∞

0

xdGi(x).

The expected utilization of a task τi is ūi = ēi/pi. The ex-
pected total utilization of τ is therefore ūsum =

∑
i ūi (for

background on properties of expectation, see for example, [7,
ch. 7]). The execution time variance σ2

i of a task τi is given
by E

(
X2
i,1

)
− ē2

i .

Schedule-Dependent Properties of a Job. The following
characteristics of a job τi,j depend on how jobs are scheduled
under scheduler S. The completion timeCS

i,j is the actual time
the job completes executing. The tardiness T S

i,j is the amount

2

of time that the job is late:

T S
i,j = max{CS

i,j − di,j , 0}. (1)

We will omit the superscript S when it is clear which
scheduler is assumed.

Definition (Stability). τ is stable if ūsum < m, where m is
the number of processors, and ūi < 1 for all τi ∈ τ .

All task systems considered in this paper will be assumed
to be stable.

Definition (Schedulability). τ is schedulable by a scheduling
algorithm S if it can be scheduled by S in such a way that the
expected tardiness of every job is bounded.

The following processor-sharing scheduler will be a tool
in our analysis.

Definition. PS is a processor-sharing (PS) schedule on m
processors where for all τi ∈ τ , at every instant that τi is ac-
tive, we allocate to τi a fraction ûi of the processing capacity
of one processor, where

n∑
i=1

ûi ≤ m (2)

ūi < ûi ≤ 1, ∀i. (3)

At instants when τi is not active, it receives no allocation.
When τi is active, the fraction of processing capacity allo-

cated to τi is thus strictly greater than the fraction needed for
it to complete on time in the average case—note that under
this model, some jobs may not complete by their deadlines
in PS. This is a major difference in comparison to how PS
schedules are usually defined.

We can imagine that PS is a system of n processors, each
of which has a fraction ûi of the processing capacity of one
processor in the real system, and each of which is dedicated
to executing jobs of a specific task. It is important to note that
there is not a unique choice of values of {ûi, i = 1, 2, . . . , n},
and the choice of those values will affect the expected tardi-
ness bound we derive; however, since the stability assump-
tion guarantees that we will always have excess process-
ing capacity, we are guaranteed to be able to find values of
{ûi, i = 1, 2, . . . , n} satisfying (2) and (3).

Example. Consider the example of a task system with
three tasks and two processors, with the following specifica-
tions: (p1, ē1) = (1, 0.8), (p2, ē2) = (2.1, 0.7), (p3, ē3) =
(1.6, 0.4). Then a feasible choice for {ûi, i = 1, 2, 3} is
{0.95, 0.4, 0.65}, and the corresponding PS schedule for one
instance of this task system is given in Fig. 1 (actual execution
times were randomly generated).

Definition. Global earliest-deadline first (GEDF) is a sched-
ule on m processors such that: at each time instant where

1û

2û

3û

1,1 2,1 3,1 4,1

1,2 2,2

1,3 2,3 3,3

1 2 3 4

Figure 1: Example PS schedule. The area that is heavily
shaded is aPS(1). Release times are indicated by ↑ and dead-
lines are indicated by ↓.

there are more than m active tasks, the m active tasks whose
eligible jobs have the earliest deadlines are each allocated one
processor; and at each time instant where there are k ≤ m
active tasks, each active task is allocated one processor, and
m − k processors are idled. In the case of deadline ties, a
consistent tie-breaker is used. We assume that ties are broken
in favor of the task with the smallest index.

If the set of release times is fixed, GEDF induces the fol-
lowing ordering on jobs.

Definition (Job Ordering). Given a fixed set of release times,
τi,j ≺ τk,l if and only if di,j < dk,l, or di,j = dk,l and i < k.

Definition. The instantaneous schedule IS is a schedule
where at the time a job is released, it instantaneously receives
its full allocation.

PS-induced and GEDF-induced Tardiness. The major re-
sult of this paper is that stability implies schedulability under
GEDF. In the deterministic model of [1], because there is no
uncertainty, a stable system can be scheduled using processor
sharing with no tardiness. Therefore, tardiness under GEDF
resulted only from the use of the non-optimal GEDF as com-
pared to PS.

Our result generalizes [1] for the case where there may
be tardiness under PS. In our model, such tardiness under
PS arises due to the uncertainty of execution times. We use
IS as a second ideal scheduler because there is no tardiness
under it. We will show that the total tardiness of a job under
GEDF has two contributions: PS-induced tardiness, which
comes from the variability of execution costs, and scheduler-
induced tardiness, due to using a specific non-ideal scheduler
(we conduct the analysis for GEDF-induced tardiness).

3 Bounding GEDF-induced Tardiness
In this section, we consider an arbitrary concrete instance of a
stable task system, and we show deterministically a relation-
ship between job completion times is GEDF and completion
times in PS.

3

Allocation, Excess Work, and Lag. Define aSi (t) to be the
total allocation to all jobs of τi during [0, t) in schedule S.
Then aGEDF

i (t) is the amount of time that jobs of τi execute in
GEDF in [0, t), because all jobs execute at rate 1.0 in GEDF;
aPSi (t) is ûi times the amount of time that jobs of τi execute
in GEDF in [0, t), since jobs execute at rate ûi in PS; aISi (t) is
the sum of the execution times of all jobs of τi released prior
to t.

For example, in Fig. 1, the heavily shaded area is aPS(1).
Since IS instantly executes each job upon its release, aIS(1)
is the sum of the execution times of τ1,1, τ2,1, and τ3,1, since
they have all been released before time 1. It is always true
that aIS(t) ≥ aPS(t).

We relate the allocation to a task τi under PS to its allo-
cation under GEDF using the notion of lag, which is defined
as

Li(t) = aPSi (t)− aGEDF
i (t). (4)

In addition, we define the total lag to be L(t) =
∑
i Li(t).

Similarly, we define the instantaneous lag as

ILi(t) = aISi (t)− aGEDF
i (t), (5)

and total instantaneous lag as IL(t) =
∑
i ILi(t). IL is

the same as the amount of remaining work in GEDF, but for
our analysis it is more convenient to think about it as being
analogous to lag. It is always true that IL(t) ≥ 0, since IS
gives all needed allocation to a job at the same instant that
GEDF can merely start working on it.

Definition (Busy and Non-Busy Intervals in GEDF). An in-
terval I is busy for τi if some job of τi executes in GEDF at
each instant of I. An interval I is a busy interval in GEDF if
all m processors are utilized at each instant of I. An interval
I is a non-busy interval in GEDF if there is at least one idle
processor at each instant in I. Note that an interval may be
neither busy nor non-busy.

Claim 1. If interval I is busy for τi, thenLi is non-increasing
over I.

Proof. If [t1, t2) is a busy interval for τi, then

Li(t2) = aPSi (t2)− aGEDF
i (t2)

≤ aPSi (t1) + ûi(t2 − t1)− (aGEDF
i (t1) + (t2 − t1))

= Li(t1) + (ûi − 1)(t2 − t1)

≤ Li(t1), by (3).

Claim 2. L is non-increasing over a busy interval.

Proof. If [t1, t2) is a busy interval, then

L(t2) = aPS(t2)− aGEDF(t2)

≤ aPS(t1)+
∑
i

ûi(t2 − t1)−(aGEDF(t1)+m(t2 − t1))

≤ L(t1) + (
∑
i

ûi −m)(t2 − t1)

≤ L(t1), by (2).

We derive the result of this section through three steps.
First, we show that if some job’s completion time does not
meet a particular bound (specified later) in GEDF, then there
is a lower bound on total instantaneous lag at a certain point
in time. This is given in Corollary 4, which appears later. We
then show in Lemma 5 that total lag is bounded from above
at certain points in time. Finally, in Claim 6, we establish
a relationship between total lag and total instantaneous lag.
By combining these three results, we upper-bound each job’s
completion time.

These proofs follow the same structure as the tardiness-
bound proof of Devi and Anderson [1]; however, because we
allow execution times to vary, deadlines and PS-completion
times are no longer identical. This introduces some additional
complexity in the proofs (for instance, the schedule IS and
instantaneous lag are not used in [1]).

Let τ be a concrete instance of a stable task system and
suppose that τ has been scheduled under PS, with fixed
{ûi, i = 1, . . . , n}, and the following information is known
for all τi,j ∈ τ :

• release times ri,j ,

• actual execution costs ei,j , and

• PS-completion times fi,j .

We use lowercase letters because this is a posteriori
analysis—all quantities are known. Define

f̂i,j = max{fi,j , di,j} (6)

and

gi,j = min{t ≥ di,j : t ≥ fk,l, ∀τk,l � τi,j}. (7)

Note that
gi,j ≥ f̂i,j ≥ fi,j . (8)

Thus, f̂i,j is the earliest point in time at or after τi,j’s dead-
line by which τi,j has completed in PS, and gi,j is the earliest
point in time at or after τi,j’s deadline where all work of pri-
ority higher than or equal to τi,j has completed in PS.

We observe that job τi,j’s tardiness in PS equals f̂i,j−di,j
and is no more than gi,j − di,j .

Define êi,j = maxj′≤j{ei,j′}.
We first show that if the completion time of job τi,j in

GEDF is later than a certain bound, then there is a lower
bound on instantaneous lag at f̂i,j .

Let ck,l denote the completion time of job τk,l in GEDF.

Lemma 3. Let ξ ≥ 0. Suppose that for all τk,l ≺ τi,j ,

ck,l ≤ f̂k,l + ξ + êk,l. (9)

If
IL(f̂i,j) ≤ mξ + êi,j , (10)

then
ci,j ≤ f̂i,j + ξ + êi,j . (11)

4

Proof. For this proof, we ignore all jobs τp,q � τi,j (i.e.,
assume they are not present in any schedule considered in the
proof) because they cannot preempt τi,j in GEDF and thus
they cannot delay its completion time. This assumption does
not cause any loss of generality—it simply reduces clutter in
the proof.

Consider the point in time bi,j = max{ci,j−1, vi,j}, where

vi,j = min{t ≥ f̂i,j : [t,∞) is a non-busy interval}.

At bi,j , τi,j must have begun executing in GEDF, because
it is eligible (since bi,j ≥ vi,j ≥ f̂i,j ≥ di,j ≥ ri,j), its
predecessor has completed (since bi,j ≥ ci,j−1), and there is
an idle processor (GEDF is work-conserving). Furthermore,
since bi,j ≥ di,j , no new jobs will be released that could
preempt τi,j . Therefore, τi,j completes by time bi,j + ei,j , or
in other words,

ci,j ≤ max{ci,j−1 + ei,j , vi,j + ei,j}

≤ max{f̂i,j−1 + ξ + êi,j−1 + ei,j , vi,j + ei,j}, by (9).
(12)

Now, because jobs of τi execute sequentially at a rate of
ûi in PS, and do not begin until their predecessors complete,
we have

fi,j ≥ fi,j−1 + ei,j/ûi

≥ fi,j−1 + ei,j , by (3), (13)

and because jobs do not begin executing in PS before their
release times, we have

fi,j ≥ ri,j + ei,j/ûi

≥ ri,j + ei,j , by (3)
≥ di,j−1 + ei,j , since tasks are sporadic. (14)

Combining (13) with (14), we get fi,j ≥
max{fi,j−1, di,j−1} + ei,j = f̂i,j−1 + ei,j . Then (12)
becomes

ci,j ≤ max{fi,j + ξ + êi,j−1, vi,j + ei,j}

≤ max{f̂i,j + ξ + êi,j−1, vi,j + ei,j}, (15)

using the definition of f̂i,j .
Since êi,j−1 ≤ êi,j and ei,j ≤ êi,j , if vi,j ≤ f̂i,j + ξ, then

(11) holds, so assume otherwise, i.e., vi,j > f̂i,j + ξ. In this
case, [f̂i,j , f̂i,j + ξ) is a busy interval. Since by definition, all
work is completed in IS by f̂i,j (since f̂i,j ≥ di,j and no jobs
are released after di,j) and IL(f̂i,j) ≤ mξ + êi,j by (10),
there must be at most mξ + êi,j work to complete in GEDF

after f̂i,j . Since [f̂i,j , f̂i,j +ξ) is a busy interval, in whichmξ
work is completed in GEDF, at time f̂i,j + ξ, there must be
at most êi,j work to complete in GEDF. Even if all this work
executes sequentially, it will be complete by f̂i,j + ξ + êi,j ,
and hence (11) holds.

Corollary 4. Given ξ ≥ 0, let τi,j be the minimal job under
≺ such that ci,j > f̂i,j+ξ+ êi,j . Then IL(f̂i,j) > mξ+ êi,j .

Proof. This is the contrapositive statement of Lemma 3, so it
follows immediately.

For the next lemma, we will need the concept of a maximal
non-busy subinterval.

Definition (Maximal Non-Busy Subinterval). An interval
[t1, t2) is a maximal non-busy subinterval in [0, t) if and only
if [t2, t) is a busy interval, [t1, t2) is a non-busy interval, and
∀t0 < t1, [t0, t2) is not a non-busy interval.

If [0, t) is busy, then the maximal non-busy subinterval in
[0, t) is empty. If [0, t) is non-busy then the maximal non-
busy subinterval in [0, t) is [0, t) itself.

We now show that there is an upper bound on total lag at
time gi,j .

Let lk = max{l : τk,l � τi,j}. Define

υ =
∑

τk∈Umax

ûk, (16)

where Umax is the set of m − 1 tasks with largest values of
{ûi}, and define

ηi,j =
∑

τk∈Emax

êk,lk , (17)

where Emax is the set of m − 1 tasks with largest values of
êk,lk .

Lemma 5. For some ξ ≥ 0, suppose that for all τk,l ≺ τi,j ,
ck,l ≤ gk,l + ξ + êk,l. Then L(gi,j) ≤ υξ + ηi,j .

Proof. We once again ignore any jobs τp,q � τi,j , to reduce
clutter in the proof (that is, we assume that no such job ap-
pears in any schedule under consideration).

Let [t1, t2) be the maximal non-busy subinterval in [0, gi,j)
in GEDF. If such an interval does not exist then [0, gi,j) is
busy, and by Claim 2, L(gi,j) ≤ 0.

For each τk ∈ τ for which some job is executing at t1 in
GEDF, denote that job by τk,lk .

We define the superscript “−” to be shorthand for the left
limit: t− = limε→0+ t− ε. Further, we define

αk,l =
∑
l′≤l

ek,l′

to be the total required allocation for jobs of τk up to and
including τk,l. Since all jobs of τi up to and including τk,l
have completed by fk,l in PS,

aPSk (fk,l) = αk,l, (18)

and hence by (8),

aPSk (gk,l) = αk,l. (19)

5

For any time t and any job τk,l, define δk,l(t) to be the
amount of work completed in GEDF on job τk,l prior to
time t.

If τk,l is executing at time t in GEDF, then

aGEDF
k = αk,l − ek,l + δk,l(t), (20)

since τk requires only ek,l − δk,l(t) more allocation before it
will have had its total required allocation.

Now partition the tasks of τ into four sets:

Set 1. Tasks that do not have a job executing at t−2 in GEDF.

Set 2. Tasks that have a job executing at t−2 in GEDF but for
which [t1, t2) is not busy.

Set 3. Tasks for which [t1, t2) is busy and t1 ≤ gk,lk .

Set 4. Tasks for which [t1, t2) is busy and t1 > gk,lk .

Note that Sets 3 and 4 can together include at most m− 1
tasks, because [t1, t2) is non-busy.

We now give an upper bound on Lk(t2) for all τk ∈ τ , and
then sum to obtain an upper bound on L(t2). Since [t2, gi,j)
is a busy interval, the result will also be an upper bound on
L(gi,j) by Claim 2.

Set 1. τk does not have a job executing at t−2 in GEDF. Then
no work remains to be done on τk in GEDF at t−2 , since there
is an idle processor and GEDF is work-conserving. There-
fore, Lk(t2) ≤ 0.

Set 2. τk does have a job executing at t−2 in GEDF but
[t1, t2) is not busy for τk. Then ∃t0 ∈ [t1, t2), such that
in GEDF, τk does not execute at t−0 but does execute at t0.
Choose t0 to be the latest such time instant. Then t0 must be
the release time of some job of τk, since there is an idle pro-
cessor and GEDF is work-conserving. Thus, Lk(t0) ≤ 0 and
since [t0, t2) is busy for τk, Lk(t2) ≤ Lk(t0) ≤ 0, by Claim
2.

Set 3. [t1, t2) is busy for τk and t1 ≤ gk,lk . Then

Lk(t2) ≤ Lk(t1), by Claim 1

= aPSk (t1)− aGEDF
k (t1), by (4)

≤ aPSk (gk,lk)− aGEDF
k (t1), since t1 ≤ gk,lk

= αk,lk − aGEDF
k (t1), by (19)

= αk,lk − (αk,lk − ek,lk + δk,lk(t1)) , by (20)
≤ ek,lk
≤ êk,lk . (21)

Set 4. [t1, t2) is busy for τk and t1 > gk,lk . Note that by the
definition of [t1, t2), t1 < gi,j and therefore, τi cannot be in

Set 4. For any task τk in this set, we have

Lk(t2) ≤ Lk(t1), by Claim 1

= aPSk (t1)− aGEDF
k (t1), by (4)

≤ aPSk (gk,lk) + ûk(t1 − gk,lk)− aGEDF
k (t1),

since τk executes at rate ≤ ûk in [t1, gk,lk)

= αk,lk + ûk(t1 − gk,lk)

− (αk,lk − ek,lk + δk,lk(t1)) , by (19),(20)
≤ ûk(t1 − gk,lk) + ek,lk − δk,lk(t1). (22)

Since τk,lk is executing in GEDF at t1, t1+ek,lk−δk,lk(t1) ≤
ck,lk , and therefore

t1 − gk,lk ≤ ck,lk − gk,lk + δk,lk(t1)− ek,lk
≤ ck,lk − f̂k,lk + δk,lk(t1)− ek,lk , by (8)
≤ ξ + êk,lk + δk,lk(t1)− ek,lk ,

where the last inequality follows by the assumption of the
lemma (as noted above, τi is not in Set 4, so we can apply
that assumption here). Combining this result with (22) yields

Lk(t2) ≤ ûk(ξ + êk,lk) + (1− ûk)(ek,lk − δk,lk(t1))

≤ ûk(ξ + êk,lk) + (1− ûk)(êk,lk − δk,lk(t1))

= ûkξ + êk,lk + (ûk − 1)δk,lk(t1)

≤ ûkξ + êk,lk , by (3). (23)

Summing Over All Tasks. We showed that tasks in Sets
1 and 2 have non-positive lag, so to give an upper bound on
L(t2), we need to only sum ûkξ + êk,lk over the m− 1 most
expensive values of ûk and êk,lk respectively. Then as noted
earlier, L(gi,j) ≤ L(t2), and

L(t2) ≤ υξ + ηi,j .

We now establish a relationship between lag and instanta-
neous lag.

Claim 6. Let τi,j be the maximal job under ≺. Then
IL(f̂i,j) ≤ L(gi,j) +m(gi,j − f̂i,j).

Proof. At gi,j all work on jobs of priority higher than or equal
to τi,j has completed in PS. At f̂i,j all work on jobs of prior-
ity higher than or equal to τi,j has completed in IS. Therefore,

aPS(gi,j) = aIS(f̂i,j). (24)

Since jobs execute at a total rate of no more than m in GEDF,
we also have

aGEDF(gi,j) ≤ aGEDF(f̂i,j) +m(gi,j − f̂i,j). (25)

Thus, we have

IL(f̂i,j) = aIS(f̂i,j)− aGEDF(f̂i,j)

= aPS(gi,j)− aGEDF(f̂i,j), by (24)

≤ aPS(gi,j)−aGEDF(gi,j)+m(gi,j−f̂i,j), by (25)

= L(gi,j) +m(gi,j − f̂i,j), by (4).

6

Theorem 7. Let ξ∗i,j =
ηi,j+m(gi,j−f̂i,j)

m−υ . For all jobs τi,j in
any concrete instance of τ , ci,j ≤ f̂i,j + ξ∗i,j + êi,j .

Proof. Suppose not. Then there is a concrete instance of
τ where τi,j is the minimal job under ≺ such that ci,j >

f̂i,j + ξ∗i,j + êi,j , and ck,l ≤ f̂k,l + ξ∗i,j + êk,l for all
τk,l ≺ τi,j . Then fix as a constant ξ = ξ∗i,j . By Corollary
4, IL(f̂i,j) > mξ + êi,j . By Lemma 5, L(gi,j) ≤ υξ + ηi,j .
By combining these two statements and the result of Claim 6,
mξ+êi,j < υξ+ηi,j+m(gi,j−f̂i,j), and solving for ξ yields

ξ <
ηi,j+m(gi,j−f̂i,j)−êi,j

m−υ , which is a contradiction.

So we have shown that all jobs complete in GEDF within
a certain number of time units of their deadline or their com-
pletion time in PS, whichever is later.

4 Bounding PS-induced Tardiness
In this section, we derive a bound on the expected (mean)
value of PS-induced tardiness; in particular, we show that the
expected tardiness of any job under the PS schedule can be
bounded from above by a constant that depends only on the
task’s period, the execution-time distributions of the tasks,
and the values of {ûi}.

Theorem 8. There exists a constant ψ such that for all (i, j)
where τi,j is a job of τ ,

E
(
TPS
i,j

)
≤ ûiψ. (26)

The value of ψ depends on the execution-time distributions of
the tasks in τ , and on the chosen values of {ûi}.

To prove this result, we model the tardiness of a job in PS
as a stochastic process, and then we use a result from queue-
ing theory to give the bound.

Stochastic Model and Limiting Result. We consider each
task individually, since jobs of different tasks do not affect
one another in PS.

Choose some task τi and examine its jobs τi,j , for j =
1, 2, We can write a recursion for Ti,j (omitting the su-
perscript PS) as follows: tardiness at the deadline of job τi,j
is no more than the existing tardiness at the deadline of job
τi,j−1, plus the amount of time job τi,j needs to execute in
PS, which is Xi,j/ûi (since it executes at rate ûi), minus the
amount of time between its release and its deadline (i.e., its
period):

Ti,j ≤ max{0, Ti,j−1 +Xi,j/ûi − pi}∀j ≥ 1 (27)
Ti,0 = 0.

The max is present simply to ensure that Ti,j is never nega-
tive.

This recursion can be visualized in Fig. 2: By examining
the time between the release and deadline of the second job

iû 1, ji ji ,

iji uX ˆ
,1, jiT

jiT ,ip

Figure 2: Illustration of the recursion for tardiness in PS.

in the figure, we see that pi = Ti,j−1 + Xi,j/ûi − Ti,,, or in
other words, Ti,j = Ti,j−1 +Xi,j/ûi − pi.

The recursion (27) is identical to the recursive equation of
the waiting time process in a single server G/G/1 queue. Such
processes, and the expression (27), were first studied in 1952
by Lindley [5].

Lemma 9. The stochastic process {Ti,j , j ≥ 1} has a limit;
in other words, it approaches a single random variable Ti,
which has a probability distribution function πi(·) as j in-
creases.

Proof. A theorem of [5] establishes that as j increases, the
distribution of Ti,j has a limit if and only if

E (Yi,j − Zi,j) < 0,

where Yi,j is the service time and Zi,j is the interarrival time
between customers. To match this result about queues with
(27), we set Yi,j = Xi,j/ûi and let Zi,j be a random variable
representing the inter-release time of jobs; since the sporadic
task model is assumed, Zi,j ≥ pi, ∀j, and therefore,

E (Yi,j − Zi,j) = E (Xi,j/ûi − Zi,j)
≤ ēi/ûi − pi,

which is negative by (3).

Furthermore, from [3, p. 474], we have the following re-
sult:

E (Ti) ≤
σ2
i

2(pi − ēi/ûi)
, (28)

where σ2
i is the variance of the execution time of τi.

The above results therefore guarantee that as j gets large,
Ti,j approaches Ti, a random variable with a finite mean.

An Equilibrium Result. It is not enough to have Ti,j
bounded in expectation for only large j; we instead wish to
have it bounded for all j.

It should be clear that Ti,j is a Markov process (its fu-
ture evolution depends on its history only through its present
state): if we examine (27), we see that Ti,j+1 depends only
on Ti,j , some constants, and Xi,j , which is independent
of everything else. Therefore, Ti,j+1 does not depend on
Ti,j−1, Ti,j−2, etc.

7

1û

2û

3û

1,1 2,1 3,1 4,1

1,2 2,2

1,3 2,3 3,3

1 2 3 4

Figure 3: P̃S schedule for the example of Figure 1. The
shaded areas represent delays drawn from the limiting dis-
tributions.

The kernel of a Markov process [6, p. 59] is a probability
transition function K(·) that satisfies

πi,j+1(x) =

∫
Ki(x, y)πi,j(y)dy. (29)

Here, πi,j(x) is the probability density function of Ti,j . As
j increases, Ti,j approaches its limit Ti (by Lemma 9). Ti has
probability density function πi(x), which does not depend on
j. Therefore, πi(x) satisfies

πi(x) =

∫
Ki(x, y)πi(y)dy (30)

So, if we could draw Ti,0 from the limiting distribution
πi(x) instead of fixing it to be zero in (27), then (29)-(30)
would guarantee that

πi,0(x) = πi,1(x) = πi,2(x) = · · · = πi(x). (31)

Then, the expected PS tardiness bound would apply for all j,
not just in the limit. We show that it is possible to do this
without interfering with any of the results of this paper.

Definition (P̃S). The schedule P̃S is identical to PS except
for the following modification. For each task τi, draw a value
Ti,0 from its limiting distribution πi(·). Begin execution of
τi,1 in P̃S at a time Ti,0 units after τi,1 is released.

Since the execution of the first job of each task is delayed
by a non-negative amount of time, the first job of each task be-
gins executing in P̃S at or after the time it begins executing in
PS, and thus completes in P̃S at or after the time it completes
in PS. Furthermore, if C P̃S

i,j−1 ≥ CPS
i,j−1, then C P̃S

i,j ≥ CPS
i,j ,

because in either schedule τi,j begins executing at ri,j or at
CS
i,j−1, whichever is later (e.g., Figs. 1 and 3). By this induc-

tion argument, no job completes in P̃S before it completes in
PS , and thus for all τi,j ∈ τ , C P̃S

i,j ≥ CPS
i,j , and therefore

TPS
i,j (t) ≤ T P̃S

i,j (t). (32)

Since T P̃S
i,j has distribution πi(·) for all j, it has E

(
T P̃S
i,j

)
=

E (Ti) ≤ σ2
i

2(pi−ēi/ûi)
, by (28), and so ∀j,

E
(
TPS
i,j

)
≤ σ2

i

2(pi − ēi/ûi)
, by (32). (33)

This bound for expected tardiness for any given task will ap-
ply to all of its jobs.

Finding Values for {ûi} and ψ. We still need a value
of ψ that satisfies the bound (26) given in Theorem 8
(thereby proving the theorem); specifically, we need ψ ≥
E
(
TPS
i,j

)
1
ûi
, ∀i. By (33), it is sufficient to take any ψ such

that

ψ ≥ max
i

{
σ2
i

2(ûipi − ēi)

}
, (34)

but it is not possible to simply take the smallest value of ψ
satisfying the above inequalities, because the values of {ûi}
are not fixed—they can be set to any values that satisfy (2)-
(3), which are required for the system to be stable. We need
to simultaneously determine values for {ûi} and ψ. To do
this, we re-write the problem of choosing the smallest ψ as
the problem of choosing the largest ψ−1 such that

ψ−1 ≤ min
i

{
2(ûipi − ēi)

σ2
i

}
. (35)

It is possible to express these requirements in a linear fash-
ion: set ζ ≡ ψ−1 and {ûi, i = 1, . . . , n} as decision vari-
ables; then, an optimal solution to the following linear pro-
gram will give us a valid combination of allocations and an
upper bound for the expected tardiness in PS.

max ζ (LP)

s.t. piûi −
σ2
i

2
ζ ≥ ēi ∀i (C1)

n∑
i=1

ûi ≤ m (C2)

ūi ≤ ûi ≤ 1 ∀i (C3)

Constraint set (C1) enforces (35), constraint (C2) enforces
(2), and constraint set (C3) enforces (3), with one exception—
in linear programming we cannot use strict inequalities, so
we may have a feasible solution where ûi = ūi for some i,
which is not allowed because it violates (3), which is used in
the proof of Lemma 9. However, by examining the first set
of constraints, it is easy to see that ûi = ūi will only occur
in the optimal solution for tasks where σ2

i = 0, since we are
maximizing ζ. σ2

i = 0 is the deterministic case, where we do
not need to rely on Lemma 9, because the tardiness of τi in
PS is always zero in that case.

Proof of Theorem 8. Fix {u∗i }, ζ∗ to be the optimal solution
to (LP), and ψ = 1

ζ∗ . Then, as we established above, ψ satis-
fies (26), and the theorem is proved.

5 Final Result
In Sec. 3, we showed that each job always completes in GEDF
within a certain amount of time from f̂i,j . In Sec. 4, we
showed that there is a bound on expected tardiness in PS.

8

We now combine these two results to show that tardiness in
GEDF is bounded in expectation.

This analysis is a priori, so we must now treat some quan-
tities as random variables, which will be denoted by capi-
tal letters: let X̂i,j be the stochastic equivalent of êi,j , i.e.,
X̂i,j = maxj′<j Xi,j′ ; let Ei,j be the stochastic equivalent
of ηi,j , i.e., Ei,j is the sum of the m − 1 largest values of
X̂k,lk .

Corollary 10. Let τ be a stable sporadic task system. Then
the expected (mean) tardiness of every job τi,j in GEDF is no
more than

βi,j = ûiψ +
E (Ei,j) +m2ψ

m− υ
+ E

(
X̂i,j

)
, (36)

where ψ = 1/ζ∗ with ζ∗ being the optimal solution to (LP).
Furthermore, the q-quantile of the tardiness of every job τi,j
is no more than

1

1− q
βi,j . (37)

Proof. From Theorem 7, we have that

ci,j ≤ f̂i,j +
ηi,j +m(gi,j − f̂i,j)

m− υ
+ êi,j .

Since f̂i,j ≥ di,j by (6),

TGEDF
i,j = max{ci,j − di,j , 0}

≤ f̂i,j − di,j +
ηi,j +m(gi,j − f̂i,j)

m− υ
+ êi,j . (38)

The quantity f̂i,j − di,j , the time from job τi,j’s deadline
until it is completed in PS, is not known a priori. But since
(38) holds no matter what the value of f̂i,j − di,j is, f̂i,j −
di,j is nothing more than the random variable TPS

i,j . Similarly,
we will treat Hi,j = gi,j − di,j as a random variable, since
the time from di,j until all higher or equal priority work is
completed in PS is not known a priori. We do the same with
êi,j and ηi,j . By using the facts that gi,j − f̂i,j = gi,j −
di,j − (f̂i,j − di,j) and TPS

i,j is non-negative, and taking the
expectation of both sides of (38), we obtain

E
(
TGEDF
i,j

)
≤ E

(
TPS
i,j

)
+

E (Ei,j) +mE (Hi,j)

m− υ
+ E

(
X̂i,j

)
.

(39)
For each τk ∈ τ, define lk = max{l : τk,l � τi,j}; then,

since dk,lk ≤ di,j , ∀τk,lk � τi,j , Hi,j ≤ maxk{TPS
k,lk
}, so

E (Hi,j) ≤ E

(
max
k
{TPS

k,lk
}
)

≤ E

(∑
k

TPS
k,lk

)
≤
∑
k

E
(
TPS
k,lk

)
≤ mψ, by Theorem 8. (40)

By Theorem 8, E
(
TPS
i,j

)
≤ ûkψ; combined with (40) and

(39), this yields (36).
To prove the quantile result, let k be the q-quantile of

TGEDF
i,j ; that is, P

(
TGEDF
i,j ≤ k

)
= q. Since TGEDF

i,j is a non-
negative random variable, Markov’s inequality [7, p. 400]
states that for any a,

P
(
TGEDF
i,j > a

)
≤

E
(
TGEDF
i,j

)
a

.

Letting a = k, we have

(1− q)k ≤ E
(
TGEDF
i,j

)
≤ βi,j ,

and the result follows immediately.

Corollary 11. If worst-case execution times {ei, τi ∈ τ} ex-
ist, then βi,j is upper-bounded by a constant for all i, j.

Proof. Since each task has a worst-case execution time ei,
then E

(
X̂i,j

)
≤ ei for all τi,j ∈ τ , and

E (Ei,j) ≤
∑

τk∈E′max

ei

for all τi,j , where E ′max is the set of m− 1 tasks with largest
values of ei.

The quantities that appear in the final bound in (36) only
involve ψ, {ûi}, and E

(
X̂i,j

)
. The values of ψ and {ûi}

are obtained from the LP, whose specification involves only
means and variances of the execution-time distributions. For
the bound on E

(
X̂i,j

)
, worst-case execution times are suffi-

cient, but it might be possible to compute a tighter bound; for
example, if the worst-case execution time has an extremely
low probability of occurrence, then E

(
X̂i,j

)
may be much

smaller than ei for small j. We leave as an open problem
whether an upper bound on expected tardiness can be ex-
pressed entirely in terms of means and variances, without
worst-case execution times or information about the distri-
butions.

The quantile result is important because it allows a system
designer to determine a bound that will hold any desired per-
centage of time (e.g., the 0.9-quantile is a threshold that will
be met in at least 90% of cases). From a practical standpoint,
this allows the more conservative user to introduce additional
pessimism by specifying a higher quantile.

6 Example
Consider the task system in Table 1 on a four-core processor.
This example demonstrates our main contribution: each task
has a worst-case execution time greater than its period, so it
would be considered unschedulable by [1, 4]. However, since
the total expected utilization is 3.2, which is less than 4.0, and
each task’s expected utilization is less than one, τ is stable by

9

Task pi ēi ei σ2
i ūi ûi

τ1 4 3 25 1 0.75 0.86
τ2 4 3 20 1 0.75 0.86
τ3 5 3 30 4 0.60 0.96
τ4 5 3 20 1 0.60 0.69
τ5 8 2 15 1 0.25 0.31
τ6 20 3 35 2 0.15 0.20
τ7 20 2 25 1 0.10 0.12

Table 1: Example Task System τ .

max ζ
s.t. 4û1− 0.5ζ ≥ 3

4û2− 0.5ζ ≥ 3
5û3− 2ζ ≥ 3
5û4− 0.5ζ ≥ 3
8û5− 0.5ζ ≥ 2

20û6− ζ ≥ 3
20û7− 0.5ζ ≥ 2

0.75≤ û1≤ 1
0.75≤ û2≤ 1
0.60≤ û3≤ 1
0.60≤ û4≤ 1
0.25≤ û5≤ 1
0.15≤ û6≤ 1
0.10≤ û7≤ 1∑7

i=1 ûi ≤ 4

Figure 4: Linear Program for example.

our definition. Using the means and variances given in Table
1, we can apply the result of Corollary 10.

To find ψ, we set up the linear program (LP), which is
written out in Fig. 4. A standard LP solver will give us the
solution in Table 1. The value of ζ∗ is 0.90, so ψ equals 1.11.
An upper bound on ηi,j is the sum of the three most expensive
worst-case execution times, which is 90. υ is the sum of the
three most expensive values of ûi, which are 0.96, 0.86, and
0.86, so υ equals 2.68.

We conclude that the expected (mean) tardiness of any job
τi,j , taken over all possible instances of this task system when
scheduled on four processors, has the following upper bound:
E
(
TGEDF
i,j

)
≤ 1.11ûi + 71.55 + ei. Once we have this upper

bound for the mean of TGEDF
i,j , we can generate upper bounds

for the q-quantile by dividing by 1 − q. For example, if we
want an upper bound on the 90th percentile for tardiness in
GEDF, we would divide E

(
TGEDF
i,j

)
by 0.1.

This example demonstrates the practical value of our
result—using the method of [1], this system is unschedula-
ble, and could not be made schedulable by removing tasks or
adding processors, since each task has a worst-case execution
time that exceeds its period. Furthermore, even if jobs were
allowed to execute in parallel, the worst-case utilization of
this system is over 26, so we would need at least 27 proces-
sors.

7 Concluding Remarks
We presented a probabilistic tardiness-bound derivation for
GEDF that is a generalization of the result of [1]. If we use
a deterministic model where worst-case execution times are
required for every job, then ēi = ei,∀i, σ2

i = 0,∀i, and
then choosing ψ = 0, ûi = ei/pi,∀i satisfies (34); in other
words, there is no PS-induced tardiness. Since the system is

deterministic, tardiness and expected tardiness are equivalent,
resulting in the tardiness bound for any job of τk of η

m−υ +
ek, which almost matches the tardiness bound given in [1],
which is η−emin

m−υ + ek, where emin is the smallest worst-case
execution time over all tasks.

In future work, we would like to expand this result to al-
low for different tasks to have different (specified) tardiness
bounds. This would be useful from a system design perspec-
tive; given a list of desired expected tardiness bounds for each
task, we would like, for example, to be able to determine the
minimum number of processors needed to schedule the task
system.

In addition, both theoretical and empirical work are
needed to determine the impact of the assumption of inde-
pendence of execution times, which was made for purposes
of tractability. For example, a first step may be to introduce
some autocorrelation among execution times of sequential
jobs of the same task.

Another area of future work is to determine how other de-
terministic results about soft real-time scheduling, such as
established tardiness bounds for other global scheduling al-
gorithms [4], can be generalized for the case of stochastic
execution times. We conjecture that the proof in this paper
could be extended to any scheduling algorithm with window-
constrained priorities, as defined in [4].

References
[1] U. C. Devi and J. H. Anderson. Tardiness bounds under global

EDF scheduling on a multiprocessor. In Proceedings of the 26th
IEEE Real-Time Systems Symposium, 2005.

[2] B. Doytchinov, J. Lehoczky, and S. Shreve. Real-time queues in
heavy traffic with earliest-deadline-first queue discipline. The
Annals of Applied Probability, 11(2), 2001.

[3] D. P. Heyman and M. J. Sobel. Stochastic Models in Operations
Research, volume 1. McGraw-Hill, 1982.

[4] H. Leontyev and J. H. Anderson. Generalized tardiness bounds
for global multiprocessor scheduling. In Proceedings of the 28th
IEEE Real-Time Systems Symposium, 2007.

[5] D. V. Lindley. The theory of queues with a single server. Math-
ematical Proceedings of the Cambridge Philosophical Society,
48(2), 1952.

[6] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic
Stability. Cambridge University Press, 2009.

[7] S. Ross. A first course in probability. Prentice Hall, 6 edition,
2002.

[8] J. A. Van Mieghem. Due-date scheduling: Asymptotic optimal-
ity of generalized longest queue and generalized largest delay
rules. Operations Research, 2003.

[9] P. Zijlstra. Deadline scheduling in Linux and why it hasn’t hap-
pened yet. In Eleventh Real Time Linux Workshop, 2009.

10

