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Abstract—Embedded wireless networks have largely focused
on open-loop sensing and monitoring. To address actuation
in closed-loop wireless control systems there is a strong need
to re-think the communication architectures and protocols for
reliability, coordination and control. As the links, nodes and
topology of wireless systems are inherently unreliable, such time-
critical and safety-critical applications require programming
abstractions and runtime systems where the tasks are assigned
to the sensors, actuators and controllers as a single component
rather than statically mapping a set of tasks to a specific physical
node at design time. To this end, we introduce the Embedded
Virtual Machine (EVM), a powerful and flexible programming
abstraction where virtual components and their properties are
maintained across node boundaries. In the context of process
and discrete control, an EVM is the distributed runtime system
that dynamically selects primary-backup sets of controllers to
guarantee QoS given spatial and temporal constraints of the
underlying wireless network. The EVM architecture defines
explicit mechanisms for control, data and fault communication
within the virtual component. EVM-based algorithms introduce
new capabilities such as predictable outcomes and provably
minimal graceful degradation during sensor/actuator failure,
adaptation to mode changes and runtime optimization of re-
source consumption. Through case studies in process control we
demonstrate the preliminary capabilities of EVM-based wireless
networks.1

I.. INTRODUCTION

Automation control systems form the basis for significant
pieces of our nation’s critical infrastructure. Time-critical
and safety-critical automation systems are at the heart of
essential infrastructures such as oil refineries, automated
factories, logistics and power generation systems. Discrete
and process control represent an important domain for real-
time embedded systems with over a trillion dollars in installed
systems and $90 billion in projected revenues for 2008 [1].

In order to meet the reliability requirements, automation
systems are traditionally severely constrained along three
dimensions, namely, operating resources, scalability of inter-
connected systems and flexibility to mode changes. Oil re-
fineries, for example, are built to operate without interruption
for over 25 years and can never be shutdown for preventive
maintenance or upgrades. They are built with rigid ranges of
operating throughput and require a significant re-haul to adapt
to changing market conditions. This rigidity has resulted in
proprietary systems with limited scope for re-appropriation of
resources during faults and retooling to match design changes

1This research work was supported in part by the NSF CPS-0931239,
CSR-0834517 and MRI-0923518 grants.

on-demand. For example, automotive assembly lines lose an
average of $22,000 per minute of downtime [2] during system
faults. This has created a culture where the operating engineer
is forced to patch a faulty unit in an ad hoc manner which
often necessitates masking certain sensor inputs to let the
operation proceed. This process of unsystematic alteration to
the system exacerbates the problem and makes the assembly
line difficult and expensive to operate, maintain and modify.

Embedded Wireless Sensor-Actuator-Controller (WSAC)
networks are emerging as a practical means to monitor and
operate automation systems with lower setup/maintenance
costs. While the physical benefits of wireless, in terms of
cable replacement, are apparent, plant owners have increasing
interest in the logical benefits.

With multi-hop WSAC networks, it is possible to build
modular systems which can be swapped out for off-line
maintenance during faults. Modular systems can be dynam-
ically assigned to be primary or backup on the basis of
available resources or availability of the desired calibration.
Modularity allows for incremental expansion of the plant
and is a major consideration in emerging economies. WSAC
networks allow for runtime configuration where resources can
be re-appropriated on-demand, for example when throughput
targets change due to lower price electricity during off-peak
hours or due to seasonal changes in end-to-end demand.

A.. Embedded Virtual Machines

The current generation of embedded wireless systems has
largely focused on open-loop sensing and monitoring appli-
cations. To address actuation in closed-loop wireless control
systems there is a strong need to re-think the communication
architectures and protocols for reliability, coordination and
control. As the links, nodes and topology of wireless systems
are inherently unreliable, such time-critical and safety-critical
applications require programming abstractions where the
tasks are assigned to the sensors, actuators and controllers
as a single component rather than statically mapping a set
of tasks to a specific physical node at design time (see
Fig. 1(a)). Such wireless controller grids are composed of
many wireless nodes, each of which share a common sense
of the control application but without regard to physical
node boundaries. Our approach, as shown in Fig. 1, is to
decouple the functionality (i.e. tasks) from the inherently
unreliable physical substrate (i.e. nodes) and allow tasks to
migrate/adapt to changes in the underlying topology.
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Figure 1. (a) A wireless sensor, actuator and controller network. (b) Algorithm assignment to a set of controllers, each mapped to the
respective nodes. (c) Three Virtual Components, each composed of several network elements. (d) Decoupled virtual tasks and physical
nodes with runtime task mapping.

To this end, we introduce the Embedded Virtual Machine
(EVM), a powerful and flexible programming abstraction
where a Virtual Component (VC) and its properties are main-
tained across node boundaries, as shown in Fig. 1(c). EVMs
differ from classical virtual machines. In the enterprise or on
PCs, one (powerful) physical machine may be partitioned to
host multiple virtual machines for higher resource utilization.
On the other hand, in the embedded domain, an EVM
is composed across multiple physical nodes with the goal
to maintain correct and high-fidelity operation even under
changes in the physical composition of the network. The goal
of the EVM is to maintain a set of functional invariants,
such as a control law and para-functional invariants such
as timeliness constraints, fault tolerance and safety standards
across a set of controllers given the spatio-temporal changes
in the physical network. By incorporating EVMs in existing
and future wireless automation systems, our aim is to realize:

1. Predictable outcomes in the presence of controller fail-
ure. During node or link faults, EVM algorithms determine
if and when tasks should be reassigned and provide the
mechanisms for timely state migration.

2. Provably minimal QoS degradation without violating
safety. In the case of (unplanned) topology changes of
the wireless control network, potential safety violations are
routine occurrences and hence the EVM must reorganize
resources and task assignments to suit the current resource
availability (i.e. link bandwidth, available processing capac-
ity, memory usage, sensor inputs, etc.).

3. Composable and reconfigurable runtime system through
synthesis. In the EVM approach, a collection of sensors,
actuators and controllers make a Virtual Component (VC)
as shown in Fig. 1(c). A VC is a composition of inter-
connected communicating physical components defined by
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Figure 2. Task migration for real-time operation (instructions, stack,
data & timing/fault tolerance meta-data) on one physical node to
another.

object transfer relationships. At runtime, nodes determine
the task-set and operating points of different controllers in
the VC, as shown in Fig. 1(b). This machine-to-machine
coordination requires task-set generation, task migration and
remote algorithm activation which are executed via synthesis
at runtime, as shown in Fig. 2.

4. Runtime Resource Re-appropriation and Optimization
for dynamic changes in service. For planned system changes
such as a factory shift, increase in output or retooling for a
different chassis, nodes are required to be re-scheduled in a
timely and work conserving manner.

B.. Challenges with Wireless Control

While there has been considerable research in the general
area of wireless sensor networks, a majority of the work has
been on open-loop and non-real time monitoring application.
As we extend the existing programming paradigm to closed-
loop control applications with tight timeliness and safety
requirements, we identify four primary challenges with the
design, analysis and deployment of extending such networks:

1. Programming motes in the event-triggered paradigm is
tedious for control networks.

2. Programming of sensor networks is at the physical node-
level.

3. Design of systems with flexible topologies is hard with
physical node-level programming as the set of tasks (or
responsibility) is associated with the physical node.

4. Fault diagnostics, repair and recovery are manual and
template-driven for a majority of networked control systems.

C.. Overview of the EVM Approach
While wireless system engineers optimize the physical,

link and network layers to provide an expected packet error
rate, this does not translate accurately to the stability of
the control problem at the application layer. For example,
planned and unplanned changes in the network topology
with node/link failures are currently not easily captured or
specifiable in the metrics and requirements for the control
engineer. For a given plant connected to its set of controllers
via wireless links, see Fig. 1(a-b), it is necessary that the
controller process the sensor inputs and perform actuation
within a bounded sampling interval. While one approach
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(c) Generated code

Figure 3. Generation of EVM functional description from Simulink model

is to design specialized wireless control algorithms that are
robust to specified range packet errors [3], [4], it is non-
trivial to design the same for frequent topological changes.
Furthermore, it is difficult to extend the current network
infrastructure to add/remove nodes and to redistribute control
algorithms to suit environmental changes such as battery
drain for battery-operated nodes, increased production during
off-peak electricity pricing, seasonal production throughput
targets and operation mode changes.

The EVM approach is to allow the control engineer
to utilize the same wired-network control algorithms on
the wireless network without knowledge of the underly-
ing network protocols, node-specific operating systems or
hardware platforms. The virtual machine executing on each
node (within the virtual component) instruments the VC to
adapt and reconfigure to changes while ensuring the control
algorithm is within its stability constraints. This approach is
complementary to the body of network control algorithms [3],
[4] as it provides a logical abstraction of the underlying
physical node topology.

The paper is organized as follows: Section II presents the
automated design flow from a control problem specification
to binding controller tasks to nodes within a VC. Section
III describes the architecture of the EVM and mechanisms
for parametric and programmatic control. Given these mech-
anisms, Section IV presents the key task assignment and
scheduling algorithm to optimize operation during network
changes. Finally, we describe the implementation on real
hardware in Section VI and a case study in Section VII.

II.. EVM DESIGN FLOW
Our focus is on the design and implementation of wireless

controllers and in providing such controllers with runtime
mechanisms for robust operation in the face of spatio-
temporal topological changes. We now describe the design
flow from control problem formulation, automatic translation
of control models to platform-independent EVM interpreter-
based code and finally to platform-dependent binaries (see
Fig. 3(a)). These binaries are assigned to nodes within a
VC using assignment and scheduling algorithms presented
in Section IV.

At design time, control systems are usually designed using
software tools, such as Matlab/Simulink, that incorporate
both modeling and simulating capabilities. Therefore, in order
to automatize the whole design flow, the EVM is able to
automatically generate functional models from the Simulink

control system description to define the processes by which
input sampled data is manipulated into output data for feed-
back and actuation. These functional models are represented
by generated code and meta data that are platform and node
independent system descriptions, thus allowing the system
designer to exclusively focus on the control problem design.

From the functional description in the platform-
independent and domain-specific language, the EVM
design flow automatically extracts additional para-functional
properties, like timing, inter-task dependencies, etc from the
Simulink model. All these properties, along with functional
description are used to define a platform optimized binary
for each virtual task (VT). VTs have the option of static or
dynamic binding depending on the capabilities and timing
requirements for the given control problem specification.

A.. Control Problem Synthesis
A functional description of a VT is automatically extracted

from the Simulink design, using the fact that each block
can be represented as a composition of other Simulink
blocks. Thus, each model can be presented as a hierarchical
composition of basic Simulink blocks. This organization of
Simulink models allows for natural extraction of a func-
tional description using predefined words from the EVM
programming language dictionary (described in the next
sub-section). Similarly, when a new block in Simulink is
defined as a composition of previously defined blocks, for
the EVM functional description, a new word is described
using previously defined words, until a level is reached where
all words belong to the EVM dictionary. Therefore, a VT
description is obtained using a parser that processes the
Simulink model file by searching for a new block definitions
along with the interconnections between blocks. An example
of creation of a VT’s functional description from a Simulink
design model in Fig. 3(b) is presented in Fig. 3(c). As the
platform-independent language is stack-based, the notation is
in reverse.

B.. Platform Independent Domain Specific Language

In order to generate functional description of the de-
signed system, the EVM programming language is based on
FORTH, a structured, stack-based, extensible programming
language[5]. On the other hand, since the goal of EVM design
is to allow flexibility and designing utilities independent of
chosen programming language, the intermediate program-
ming language is not constrained to FORTH.
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Figure 4. Control-EVM platform-independent and domain-specific
language for expressing functional and timing description of
Simulink models

The use of the EVM intermediate programming language
enables domain-specific constructs, where basic program-
ming libraries are related to the type of application that is
being developed. For example, for use in embedded wireless
networks for industrial control, we developed two predefined
libraries, Common-EVM, based on the standard FORTH
library [5], and Control-EVM that contains functionality
widely used for developing control applications as shown
in Fig. 4. In addition, the extensibility of EVM allows us
to define the Automotive-EVM, Aviation-EVM or Medical-
EVM libraries that will contain functionalities specific to
each of these application fields. Using these libraries, the
code generator creates a system description from a predefined
component, thus creating a task description file for each of
the Virtual Tasks (VTs).

Timing parameters (period and worst-case execution time)
are also extracted from the model. Since we consider only
discrete controllers as potential VTs, Simulink design rules
force the designer to define a sampling rate for each discrete
block, allowing us to a extract period that is the least common
divider for all task timings. These values are also extracted
from the model file and added to the VT’s description file,
along with the functional description.

III.. EVM ARCHITECTURE AND IMPLEMENTATION

We now describe the node-specific architecture which
implements the mechanisms for the virtual machine on each
node. The Common-EVM and Control-EVM description for
each set of controllers are scoped within Virtual Tasks that
are mapped at runtime by the the task Assignment Algorithm
described in Section IV. This description is interpreted by
the interpreter running on each node. The EVM runtime
system is built on top of the nano-RK real-time operating
system [6] as a supertask, allowing node-specific tasks to
execute natively and virtual tasks (VTs), i.e. those that are
dynamically coupled with a node, to run within the EVM.
The EVM services are shown in Fig. 5 and the EVM block-
level reference architecture is presented in Fig. 6. This allows
the EVM to maintain node-specific functionalities and be
extensible to runtime task evocation of existing or new VCs.

The interface between nano-RK and all VTs is realized
using the Virtual Component Manager (VCM) supertask. The
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Figure 5. nano-RK RTOS architecture with EVM extensions

VCM maintains local resource reservations (CPU, network
slots, memory, etc.) within nano-RK, the local state of the
VTs and global mapping of VTs within the VC. The VCM
is responsible for memory and network management for
all VTs-to-physical nodes and presents a mapping between
local and remote ports which is transparent to all local VTs.
The VCM includes a FORTH-like interpreter for generic
and domain-specific runtime operations and a Fault/Failure
Manager (FFM) for runtime fault-tolerant operation. The
VCM is implemented in a modular form so the FORTH
interpreter, FFM and other specialized modules may be
swapped with extensions and improvements over time and
for domain-specific applications.

A.. nano-RK Real-Time OS
To address the need for timing precision, priority schedul-

ing and fine-grained resource management the nano-RK
resource kernel [6] has been previously developed with time-
liness as a first-class concern. nano-RK is a fully preemptive
RTOS with multi-hop networking support. All networking is
conducted over the RT-Link [7], a real-time link protocol that
is native to nano-RK.

nano-RK has been design as fully static OS, configured at
the design time. Therefore to allow parametric and program-
matic run-time changes in the code nano-RK was redesigned
and extended with several new features (see Fig. 5):
• Runtime Parametric Control: Support for dynamic change
of sampling rates, runtime task and peripheral activation/de-
activation and runtime modification to the task utilization has
been added. These facilities are exposed and executed via the
Common-EVM programmer interface.
• Runtime Programmatic Control: As a part of EVM design
dynamic task migration has been implemented. This requires
runtime schedulability analysis, capability checks to migrate
a subset of the task data, instructions, required libraries and
task control block.
• Dynamic Memory Management: Both Best-fit and First-
fit memory allocation methods are supported. The Garbage
Collector is scheduled only when its execution does not
influence execution of other tasks.

B.. Virtual Component Interpreter

The Virtual Component Interpreter provides the EVM
programmer with an interface to define and execute all VTs.
Every VT is defined as a word within the VCM library.
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When a new VT description is received over the network,
the VCM calls the interpreter which defines a new word
using the description file of the task and the existing VC
libraries. When a VT is activated, each execution of VT
is implemented as a scheduled activation of the interpreter
with the VT’s word as an input. To allow preemptivity of
the tasks, each call of the interpreter uses a VT-specific
stack and dedicated memory segments. In addition, since
each VT is capable of dynamically allocating memory during
its execution in cases when there is no space in already
dedicated memory, the EVM’s memory manager allocates
a new block of fixed size (currently 128B). Therefore, the
interpreter is designed to use logical addresses in form
(block index, local address inside block). In order to be
able to use the node’s physical memory, the VCM supports
address translation and garbage collection for the interpreter.

Each node has a local copy of standard Common-EVM
dictionary and Control-EVM dictionaries. If a new word
needs to be included in the existing library, upon reception
of a message that contains the word, the VCM initiates
execution of the interpreter. The interpreter first checks
the global word identifier and revision number in order to
discard obsolete versions. If a newer version is at hand, the
interpreter (re)defines the word in the dictionary. Since all
VTs executions are performed using the interpreter, there
is no need for any additional kind of provider-subscriber
relation as described in [8]. In addition, potential failure
modes that may result from inconsistent versions on each
node are avoided using this simple approach. Each local word
update, also updates the revision number of the VT word,
therefore keeping the VT fully updated without requiring
consensus across the VC.

C.. Virtual Tasks

Each VT is described using the Virtual Task’s Description
Table (VTDT), comprised of a global and local description
of a VT (for details see [9]). Copies of the Descriptor Table
are stored on all members of the VC. While this requirement
for consistency currently results in an issue of scalability, a
majority of the higher-speed control in a SCADA system
require networks with less than 20 nodes and is hence
within the practical limits of the current approach. Each task
specifies its Deployment constraints as to whether it is Fixed
or Flexible in terms of binding to specific physical nodes.
Each VT’s global description has information about memory
requirements, stack size and number of fixed size memory
blocks (e.g.128B) that are used. In addition to the above meta

data, network requirements in terms of number of active RT-
Link transmit and receive slots, are specified at design time.
The above descriptors are specified within the VCM’s Task
Control Block (TCB) for each VT.

D.. Virtual Component Manager

The fundamental difference between native nano-RK and
the VCM is that the scope of nano-RK’s activities is local,
node-specific and defined completely at design time, while
the scope of the VCM is the VC that may span multiple
physical nodes. The current set of functionalities supported
is:
1. Virtual Task handling:
1.1 VC state is maintained, keeping every node with a
consistent mapping of VTs. The VCM in each controller
node within the VC periodically broadcasts its information
about VT mapping in order to keep consistency between
all members of the VC. Currently a centralized consensus
protocol is used and a distributed consensus protocol is
needed to scale operations.
1.2 Task migration that can be triggered as a result of a
fault/failure procedure or by request of either the VT or
VCM. As a part of a task migration, the task’s VTDT is sent
along with all memory blocks used by the task. If the VT
is already defined on a node (checked by exchange of hash
values), only task parameters are exchanged. In addition,
due to physical limitations (network, differences between
controller/actuator nodes, etc) before migrating a VT to a
particular node, network and CPU schedulability analysis
are performed for nodes that are potential candidates. If
analysis show that no node can execute the task correctly,
an error message is returned.
1.3 VT activation: After a VT is defined, the VCM performs
local CPU and network schedulability analysis prior to task
activation. This is done in order to ensure that task will not
adversely affect correct execution of previously defined VTs.
1.4 Control of tasks executed on other nodes: For all VTs in
Backup mode, the VCM shadows the execution of the VT
in Primary mode. If a departure from the desired operation
is observed (i.e. low battery level, decreased received packet
signal strength), Backup nodes may be assigned to Primary
mode based on policy.

2. Network Management:
2.1 Transparent radio interface: Using the message header
which contains information about message type, the VCM
determines which task should be informed about message
arrival. Messages containing tasks and their parameter
definitions are first processed by the VCM, before the
VCM activates the Interpreter (for remote ports). Local task
messages are transferred to their respective local ports.
2.2 Logical-to-physical address mapping: All communication
between VTs is via the VCM. Since a VT does not have
information on which nodes other tasks are deployed, the
VCM performs logical-to-physical address mapping.



IV.. VIRTUAL TASK ASSIGNMENT

We now discuss the EVM algorithm for determining the
best set of physical controller nodes to execute virtual tasks,
given a snapshot of current network conditions. The goal of
the assignment procedure is to determine: (1) Assignment
of the control algorithms to the set of nodes V , where each
VT is assigned to one node as a Primary and to R nodes
as a Backup. (2) Communication schedule that determines
active links at each time slot. Communication between nodes
is scheduled using TDMA based protocol with frame size
FS . (3) Computational schedule that determines in which
time slot each control algorithm is executed. We first sketch
the general formulation followed by a more intuitive relaxed
formulation.

To define the problem as an optimization problem, the
following assumptions have been made:
1. For each process j, all Primary and Backup nodes assigned
for its execution are scheduled in the same time slot(s).
2. Virtual tasks are mutually independent.
3. A process i will remain stable if its sampling rate is less
than Ti,∀i ⇒ FS ≤ min(T1, T2, ..., Tp).

The first assumption, simplifies the assignment problem
formulation and allows for an easier schedulability analysis
scheme. A significant class of process controllers execute
a large number of simple and independent control loops.
Hence, the second assumption is reasonable. As future work,
this assumption will be relaxed to consider dependencies
between tasks. Finally, the last assumption can be justified
as shown in [4].

For example, consider a Networked Control System (NCS)
used to control a plant modeled with continuous Linear-Time
Invariant (LTI) dynamics ẋ(t) = Ax(t) + Bu(t), y(t) =
Cx(t), controlled by a discrete, state feedback controller
u(kT ) = −Kx(kT ). If a network induced delay τk is less
than one sampling period a control feedback has a form
u(t+) = −Kx(kT ), t ∈ [kT + τk, (k + 1)T + τk+1).
Thus u(t) is a piecewise continuous function that changes
values only at time kT + τk. Since the EVM uses fully
synchronous networks, after a message is delivered to the
actuators they are scheduled to actuate at the same time. This
maintains the same delay for all inputs of a plant at each
period (τk = τ,∀k). Using the simulation approach as in [4],
a stability region with respect to T and τ can be determined.
The region is used to determine maximal allowed sampling
period for which, if a network delay is less than a period
( τT ≤ 1), the system maintains stable.

Since standard link protocols for wireless factory automa-
tion, such as WirelessHART[10], recommend that only one
physical node may transmit in each time slot, we were able
to obtain an efficient reformulation of the relaxed assignment
problem.

A.. General Formulation
To develop an assignment algorithm we considered a multi-

hop control network, consisting of p processes and m nodes

(sensors, actuators and controllers). Due to space limitations,
we provide a sketch of the assignment algorithm. For the
complete solution the reader is encouraged to consult [9].

In order to ensure correct behavior of the system, the
following set of constraints have to be met:
1. Primary node assignment: Every control algorithm
should be executed on exactly one, Primary node
2. Redundancy constraint: Every control algorithm should
be assigned to R additional, Backup, nodes (different from
the one executing the control algorithm).
3. Link reliability constraint: Only links with link quality
above a given threshold should be considered.
4. Routing constraints: Each Primary node uses 2 different
paths to deliver information to all actuators related to the
control of the process. All Backup nodes must be connected
with all sensors used for the control algorithm execution.
5. Monitoring constraint: All R backup nodes have to be
1-hop neighbors of the primary node.
6. Computation schedule constraint: Each control algo-
rithm has to be scheduled exactly once during a frame. Future
extensions will allow processes to have different sampling
intervals.
7. Communication schedulability constraint: All commu-
nication should be interference-free (two interfering nodes
cannot transmit in the same time slot).

8. Stability constraints: All control loops have to be
stable. Using the third assumption, all control loops will be
stable if the end-to-end delay from sensors to controller to
actuators along with the time for the controller’s computation
is less than FS

The problem considers the following set of objectives:
1. Minimize aggregate number of links used, fLN .
2. Maximize aggregate link quality, fLQ.
3. Maximize use of disjoint routing for the monitoring of
the primary controller: All of the R backup nodes should
receive sensor values using maximum disjoint paths. Also,
two paths from the Primary node to actuators should be
maximum disjoint.

The assignment problem was formulated as a binary in-
teger programming optimization problem and solved using
branch and bound[11]. In addition, as the problem formu-
lation has a large number of decision variables, it can be
computationally expensive to solve the problem even for a
small network. Thus we have translated the problem into the
satisfiability problem, by transforming each constraint into
conjunctive normal form (CNF) (more details in [9]) which
is then solved using a very efficient satisfiability solver zChaff
[12]. This allows us to solve the previous problem in real-
time even for larger networks.

B.. Problem Relaxation

When only one node in the VC can transmit in each time
slot, the number of slots needed to send a message from
node v1 to node v2 is equal to the distance (number of hops)
between the two nodes. In the relaxed formulation, the fact



that only one node can transmit per time slot eliminates the
need to include communication and computation schedule
decision variables (used in the general form) and there-
fore significantly reduces the complexity of the optimization
problem. In addition, the communication constraints and the
stability constraint are one and the same.

As a first step for the problem formulation, two maximum
node-disjoint paths (routes) r1i,ac

r2i,ac
are determined for each

node vi and each actuator ac. The existence of two node
disjoint paths from a node to all sensors and actuators can
be checked using Menger’s theorem[13]. For details see [9].
When a node has two node-disjoint paths, using a polynomial
time algorithm (MIN-SUM 2-paths) we can determine paths
r1i,ac

r2i,ac
with minimal total length [14]. Otherwise, the path

r1i,ac
is determined again in a polynomial time as a shortest

path to the actuator. Path r2i,ac
is calculated as the shortest

path to the actuator after removing nodes from path r1i,ac
,

while preserving connectivity. Using a similar approach,
for each (R + 1)-tuple vi, vi1 , ..., viR where vi1 , ..., viR are
neighbors of vi, a set of R + 1 paths is created between
each sensor s and the nodes vi, vi1 , ..., viR , with distances
(di,s, di1,s, ..., diR,s).

To formulate the assignment problem we used 2mp binary
assignment variables xsti,j(∈ {0, 1}), i ∈ {1, ...,m}, j ∈
{1, ..., p}, st ∈ {a, b}, where:
- xai,j = 1 if and only if node vi executes jth control
algorithm as the Primary node.
- xbi,j = 1 if and only if node vi is used as a Backup for the
jth control algorithm.

Now the problem can be reformulated as follows:
minimize w1 · fLN (x) + w2 · fLQ(x),

with the respect to
x = [xa1,1, x

b
1,1, ..., x

a
1,j , x

b
1,j , ..., x

a
m,p, x

b
m,p] ∈ {0, 1}

2mp,
where weights w1 and w2 are used to emphasize impacts
of a cost function. The problem is constrained with:

m∑
i=1

xai,j = 1, j = 1, ..., p

m∑
i=1

xbi,j = R, j = 1, ..., p

Monitoring Constraints:∑
k,N(i,k)=1

xbk,j ≥ R ·xai,j , ∀j, N(i, k) =
{

1, (i, k) ∈ ET
0, (i, k) /∈ ET

Stability Constraint:∑
i∈V

j∈{1,...,p}

{
∑
s∈Sj

(xai,j · di,s +
∑

k,(i,k)∈ET

1
deg(vk)

xbk,j · dk,s)+

∑
a∈Aj

xai,j · (d(r1i,a) + d(r2i,a)}+ dmax ≤ Fs

where dmax is maximal deadline (in number of slots) for all
control algorithms.

The last constraint requires that all communication is done
in one frame, and therefore, meets the timing requirements

necessary for the stability of the system. The stability con-
straint is the only one that depends on the numbers of VTs
and used data routing. Thus, each control loop, operating
across the same physical set of controllers, can be considered
separately which significantly simplifies system analysis. This
allows for compositional analysis that can be used for
scheduling extraction. Since the EVM is focused on networks
with less than 20 nodes, we are able to run optimization
algorithm on every node in a VC.

V.. VIRTUAL TASK EXECUTION
When each VT is assigned with Primary and Backup nodes

along with appropriate routing, the VC starts executing its
VTs. The existence of multiple maximum node-disjoint paths
allows more robust information flow with respect to a single
failure. We are focused on system faults due to failures and
not due to malicious behavior of nodes in the VC.

A.. Planned and Unplanned adjustments

Planned adjustments occur in situations when a node esti-
mates future changes in VC state, for example when a node
detects that its battery level is below some threshold. To chose
a node to migrate its task, the primary node has to execute
computation schedulability analysis and the communication
schedulability analysis and pick a node that maximizes com-
munication slack value (details in next section).

For unplanned changes caused by potential failures, we
have considered the following cases:
• The Primary node dies: This initiates execution of com-
putation and communication schedulability analysis in the
k = 1-hop neighborhood. Since data state of a Primary node
is maintained at Backup nodes, a new Primary node continues
VT execution.
• Backup node dies: The Primary node detects that a Backup
has died and selects a new Backup from one of its neighbors.
• Forwarding node dies or a link’s quality goes below some
threshold value: The detection of a forwarding node failure is
performed by its predecessor/successor on the routing path.
Again a communication schedulability analysis is performed
(for only the affected sensor and actuator) to determine a new
routing scheme.

B.. Schedulability Analysis

Communication Schedulability: When a VT is to be
migrated from a node vi to a node vj , we define a set SV T
of all sensor inputs that are necessary for VT execution and
a set AV T of all actuators that need to be informed about
VT outputs. Also, we define as vki,s for all s ∈ SV T , a node
that is k-hops away from node vi on a route from sensor s
to node vi and similarly vki,a for all a ∈ AV T a node that is
k-hops away from node vi on a route from the node to the
actuator a. In addition, we define N i

u as number of unused
time slots in time interval between the first slot in which all
nodes vki,s were suppose to receive values from sensors in
SV T and a first slot in the frame in which at least one node
vki,a is scheduled to receive information from the node vi.



The idea of the communication schedulability is to de-
termine whether we can reassign (with the respect to
the current communication schedule) available slots and
slots used to send data in k-hop neighborhood of a
node vi. The re-assignment should re-route all neces-
sary data from these nodes to node vj . A new feasi-
ble communication schedule can be generated if ∆ ≥
0, where ∆ is a communication slack value defined as:
∆ =

∑
s∈SV T

d(vi, vki,s) +
∑
a∈AV T

d(vi, vki,a) + N i
u −∑

s∈SV T
d(vj , vkj,s) −

∑
a∈AV T

d(vj , vkj,a), where d(vp, vq)
is a distance between nodes vp and vq .

If more than one task is migrated from a node, similar
analysis is performed where the previous equation is adjusted
to contain sums for all sensors and actuators for all tasks.
If more than one task should be migrated from node vi to
separate nodes, a schedulability analysis is performed on a
pairwise basis, separately between nodes vi and vj where j
goes from lower to higher node IDs.

In order to decrease response time, each node uses its
idle computation time to calculate in advance the optimal
reaction to potential failures. This approach enables triggering
the recalculation of the global assignment procedure if it is
determined that in some case there is no adjustment that can
meet all constraints. Since the global assignment procedure
is computationally much more expensive, this allows enough
time for its computation. In addition, if the assignment
procedure can not come up with the feasible assignment, an
alarm is raised to add more nodes in the network.

Computation Schedulability: For computation schedulability
analysis we used standard real-time response analysis [15]
and the mode-change protocol presented in [16] and [17],
adapted for the EVM. Consider a node vi that executes a task
set T = {Ti1 , ..., Tim , V Ti1 , ..., V Tin}, where tasks Tij are
local, node specific tasks, while tasks V Tij are VTs assigned
to the node (in descending order of priority). We define a set
HP V T (T ) as a set of all VTs with higher priority than
local task T and, similarly, a set HP T (V T ) as a set of all
node-specific tasks, with higher priority than task V T .

To allow an assignment of a new VT, a schedulability
analysis is performed where both active and inactive tasks
are considered as active. Although this approach is con-
servative, it eliminates the need for repeated schedulability
analysis prior to tasks activation. Each node-specific task
is denoted as Tj = (pj , ej) and each VT as V Tj =
(pV Tj

, eV Tj
, φV Tj

, dV Tj
) (period, execution time, offset and

deadline respectively). Schedulability of a new task set is
performed by checking the schedulability of all tasks with a
lower priority than the new VT.

As mentioned in the previous section, we currently con-
sider the case where all VT have same period of execution.
Since a controller’s processing is triggered by a reception
of sensed signals and must be executed before its scheduled
communication to actuators, its deadline must be much lower
than its period. Thus, from VT’s activation till its deadline, all

other VTs can be active at most once, so for a task V Ti, i ≥ k
we can write

wV Ti
(t) = eV Ti

+
∑

j∈HP T (V Ti)

⌈
t

tTj

⌉
· eTj

+
i−1∑
j=1

eV Tj

The equation is too conservative since it assumes that all
VTs can be activated at the same time. However, VTs are
activated when a last radio message containing necessary data
is received. In addition, since all VT’s periods (TV T ) are
multiples of TDMA slot duration, when a communication
schedule is known, all possible offset combinations of a task
activation can be easily calculated.

Therefore, for a task V Ti, released at time ti, for all
possible combinations of release times tj of VTs with higher
priority the time-demand function for t ≥ ti is defined as:

w
(t0,t1,...,ti−1)
V Ti

(t) = eV Ti
+

∑
k∈HP T (V Ti)

⌈
t

tTk

⌉
· eTk

+

i−1∑
j=1,

ti+di≥tj≥t

min(eV Tj
, t−tj)+

i−1∑
j=1,

ti∈[tj ,tj+dj ]

min(eV Tj
, tj+dj−ti)

A task V Ti is schedulable, if for all combinations of activa-
tion times, the schedulability condition is satisfied.

Although the previous equation seems complicated, for
most control systems, all loops usually have the same sam-
pling periods or all sampling periods are integer multiples of
one of the periods. Therefore, in these cases, a number of
possible combinations of (t0, t1, ..., ti−1) is very small.

A similar approach is used for schedulability analysis of a
node-specific task Ti.

VI.. IMPLEMENTATION

To evaluate the EVMs performance in a real setting
with multiple coordinated controller operations, we used a
factory simulation module (FischerTechnik model factory).
The factory consists of 22 sensors and actuators that are
to be controlled in a coordinated and timely manner. A
block of wood is passed through a conveyor, pushed by a
rammer on to a turn table and operated upon by up to three
milling/cutting/pneumatic machines. The factory module was
initially controlled by wired programmable logic controllers
(PLCs). We converted it to use wireless control with FireFly
nodes controlling all sensors and actuators via a set of elec-
tical relays. FireFly [18] is a low-cost, low-power, platform
based on the Atmel ATmega1281 8-bit micro-controller with
8KB of RAM and 128KB of ROM along with a Chipcon
CC2420 IEEE 802.15.4 standard-compliant radio transceiver.
FireFly nodes support tight global hardware-based time syn-
chronization for real-time TDMA-based communication with
the RT-Link protocol [7]. The EVM also works on TI
MSP-430F5xxx and MSP430FG4xxx architectures for more
efficient execution of the FORTH-like stack-based language
on a Von Neumann architecture. We have demonstrated:
1. On-line capacity expansion when a node joins the VC



2. Redistribution of VTs when adding/removing nodes
3. Planned VT migration triggered by the user
4. Unplanned VT migration due to node/link failure
5. Multiple coordinated work-flows

In a second experiment setup we considered multiple
concurrent workflows, where each workflow uses a subset of
the actuators. Each new block type triggers the assignment
of the associated VT and migrates from one controller to
the next as the block physically moves through the factory.
Therefore, with every new type of block a reconfiguration
of the VC is performed. We have tested the setup with
a batch of 9 input blocks consisting of 3 different types.
This is an example of the logical benefits of the EVM as it
enables a more agile form of manufacturing. Details on both
experiments with videos can be seen in [19].

VII.. CASE STUDY
We have simulated the performance of the EVM for the

case when a wireless network is used to control the Shell
Problem, a well-known problem from the process control the-
ory [20], [21]. Fig. 7(a) presents a Simulink framework used
for the simulation, where the Controller (shown in Fig. 3(b))
and the Plant are similar to models from [20]. The major
difference is that Plant’s dynamics have been sped up in
order to be able to test system’s performance. The functional
description of the VT, shown in Fig. 3(c), is extracted using
the technique described earlier. Since all continuous outputs
of the Plant have to be sampled to be eligible for processing
using a discrete controller, the sampling rate defined in the
SampleAndHold blocks in Simulink is used to extract the
period of each VT. In this case, this extraction is simplified
by the fact that all conversions to the discrete domain are
performed at the same sampling rate.

Fig. 7(b) presents the initial topology of the VC along with
the Primary and the Backup nodes. To be able to address
the effects of message drops, we have assigned each link
in the network with a Packet Delivery Ratio (PDR) that is
less than 1. For communication between nodes, a TDMA
protocol with 32 slots per frame is used, where 24 were
used for transfer data related to the control problem, while 8
remaining slots per frame were used to exchange messages
about VC’s status. The system response to a series of different
step inputs (a new one arrives every 60s) for the initial
topology is presented in Fig. 7(d). If the initial topology
changes after some of the links fail (as shown in Fig. 7(c)
but without changing the position of the Primary and the
Backup node), the system without the EVM, where only re-
routing algorithms are used, will have a response presented
in Fig. 7(e). This results in a system response that rapidly
deteriorates. The system becomes unstable due to the increase
in end-to-end communication time from all sensors to the
Primary node to all actuators.

Fig. 7(f) shows how the EVM’s adaptation to unplanned
changes in link quality allow us to keep the system’s response
similar to that in the initial topology. For the case presented
in Fig. 7(c), we simulated the system at time t = 60s. The

network topology changes to that presented in Fig. 7(f). Due
to the task re-assignment, one execution step of the control
algorithm is omitted, but as it can be seen, without significant
influence to the overall system dynamics.

VIII.. RELATED WORK

There have been several variants of virtual machines, such
as Maté [22], Syclla [23] and SwissQM[24], and flexible
operating systems, such as SOS[8], Contiki[25], Mantis[26],
Pixie[27] and LiteOS[28], for wireless sensor networks. The
primary differences that set the EVM apart from prior work
is that it is centered on real-time operation of controllers and
actuators. Within the design of EVM’s operating system, link
protocol, programming abstractions and operation, timeliness
is a first-class citizen and all operations are synchronized. The
EVM does not have a single node-perspective of mapping
operations to one virtualized processor on a particular node
but rather maintains coordinated operation across a set of
controllers within a VC.

Maté implements a simple, communication-centric VM
built on top of the TinyOS [29]. It is designed as a high
level interface where code is written using limited instruction
set, defined at design-time, and executed with a FORTH-like
interpreter. EVM utilizes a similar FORTH-like interpreter
but is extensible at runtime and allows for fully preemptive
tasks. Syclla is a more conventional system VM that allows
code mobility by providing a virtualized processor abstraction
on each node. SOS uses dynamically-loaded modules while
kernel implements messaging, dynamic memory, and module
loading and unloading. EVM allows for dynamic task evo-
cation but in addition has mechanisms for direct interaction
with other nodes, which SOS lacks.

In last few years, several different systems for macro-
programming in WSN have been developed[30], [31], [32].
Welsh et al. [30] have defined a set of abstractions represent-
ing local communication between nodes in order to expose
control over resource consumption along with providing
feedback on its performance. EVM is not a generic macro-
programming system as it focuses on closed-loop control and
actuation problems with native support for task migration and
on-line task assignment.

IX.. DISCUSSION
We have investigated several fundamental challenges with

the use of wireless networks for time-critical closed-loop
control problems. Our approach was to build the networking
infrastructure to maintain state across physical node bound-
aries so tasks are decoupled from the underlying unreliable
physical substrate. We present an IP formulation of the
runtime task assignment problem and show that it is possible
to compute task assignment efficiently and in a composable
manner across concurrent control problems. We implemented
an initial version of the EVM infrastructure on commod-
ity embedded nodes and demonstrated the capability in an
all-wireless factory across 22 sensors/actuators. This paper
presents an initial stab at a problem that unravels a series of
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(b) Initial net topology
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(c) Topo after link failures
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(d) System response for initial configu-
ration, showing outputs Y1 and Y2.
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(e) System response for when EVM is
not used (when only re-routing is used)
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(f) System response when EVM adapts
to changes in network conditions

Figure 7. Simulation of EVM behavior when used for ’Shell problem’ control; Nodes: green nodes - actuators, red nodes - sensors, blue
circle - highlights Primary node, blue circle - highlights Backup node

problems at the heart of network Cyber-Physical Systems.
The complexity of reaching consensus limits our current
implementation a centralized architecture. Future work will
focus on distributed and scalable wireless control networks.
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