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Abstract—We present a co-designed scheduling framework
and platform architecture that together support compositional
scheduling of real-time systems. The architecture is built on the
Xen virtualization platform, and relies on compositional schedul-
ing theory that uses periodic resource models as component
interfaces. We implement resource models as periodic servers and
consider enhancements to periodic server design that significantly
improve response times of tasks and resource utilization in the
system while preserving theoretical schedulability results. We
present an extensive evaluation of our implementation using
workloads from an avionics case study as well as synthetic ones.

I. INTRODUCTION

Modular development of real-time systems using time-aware
components is an important means of reducing complexity
of modern real-time systems. Components encapsulate real-
time workloads, such as tasks, and are supported by a local
scheduler that handles those workloads. Components share
computational resources with other components. A higher-
level scheduler is then used to allocate resources to local
schedulers, guided by the components’ resource needs, which
they expose in their interfaces.

Several compositional scheduling frameworks (CSF) have
been proposed to support such a component-based approach.
Scheduling needs to be compositional to achieve a desir-
able separation of concerns: on the one hand, the high-level
scheduler should not have access to the component internals
and should operate only on component interfaces; on the other
hand, schedulability analysis of a component’s workload and
generation of the component interface need to be performed
independently from any other components in the system.
Further, schedulability analysis at the higher level should be
performed only on the basis of component interfaces.

In this paper, we present the Compositional Scheduling
Architecture (CSA), which is an implementation of a CSF
that relies on periodic resource models as component inter-
faces. Theoretical background for such an architecture, which
provides interface computation for real-time workloads and
schedulability analysis, has been laid out in [1], [2]. CSA is
built on the virtualization framework provided by Xen, with
the VMM being the root component and the guest operating
systems (domains) being its subcomponents. Each domain
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interface is implemented as a periodic server [3], which
behaves like a periodic task. The virtual machine monitor
(VMM) allocates resources to the domains by scheduling the
corresponding servers in the same manner as scheduling a set
of tasks. The above combination of compositional scheduling
and virtualization enables legacy real-time systems to be
consolidated into a single host machine without the need to
modify or reconfigure their guest operating systems (OS),
thus providing both benefits of real-time scheduling theory
and mainstream virtualization. In addition, virtualization can
readily support different local schedulers of sub-components
within a compositional scheduling framework (by running a
different guest OS), which cannot be achieved in a reservation-
based native system without major modifications to the OS.

We also discuss challenges encountered during our
implementation of the CSA and our approach to overcome
those challenges. In particular, we discovered that CSF theory
needed to be modified because of the fixed scheduling
quantum imposed by Xen. This precludes direct use of the
interface computation algorithm described in [4], since the
resource bandwidth computed for the interface has to be an
integer multiple of the quantum. Moreover, we discovered
that a naive implementation of the periodic server is not work
conserving and may lead to significant underutilization of the
available computational resources.

Contributions. This paper makes the following contributions
to the state-of-the-art real-time systems research:

• We illustrate the feasibility of compositional scheduling
using Xen virtualization platform. Our implementation,
called CSA, enables timing isolation among virtual ma-
chines and supports timing guarantees for real-time tasks
running on each virtual machine. CSA includes a wide
range of real-time scheduling algorithms at the VMM
level, and it is easily extensible with new algorithms.

• We introduce several enhancements to the periodic server
design in CSA to optimize the performance of both
hard and soft real-time applications. Our enhancements
preserve conservative CSF schedulability analysis, while
yielding substantial improvements in observed response
times and resource utilization, which are desirable for not
only soft real-time but also many classes of hard real-time
applications.

• We provide an extension of the CSF theory for quantum-



based platforms and fixed-priority scheduling.
• We offer an extensive evaluation of the performance of

CSA with respect to a variety of workloads, some of
which originate from the avionics system reported in [5],
and others that are synthetic.

To the best of our knowledge, CSA is the first open source
implementation of a real-time virtualization platform with
support for compositional scheduling. It is implemented on
Xen, but is portable to other virtualization platforms.

II. BACKGROUND

A. Compositional Scheduling Framework (CSF)

In a CSF, the system consists of a set of components,
where each component is composed of either a set of
subcomponents or a set of tasks. Each component is defined
by C = (W,Γ, A), where: W is a workload, i.e., a set of
tasks (components); Γ is a resource interface; and A is a
scheduling policy used to schedule W, which in our setting is
Rate Monotonic (RM). All tasks are periodic, where each task
Ti is defined by a period (and deadline) pi and a worst-case
execution time ei, with pi ≥ ei > 0 and pi, ei ∈ N. Interface
Γ is a periodic resource model (described below).

Periodic resource model. A periodic resource model (PRM)
is defined by Γ = (Π,Θ), where Π is the resource period
and Θ is the execution budget guaranteed by Γ in every
period. The bandwidth of Γ is defined by Θ/Π. A PRM is
(bandwidth) optimal for W iff it has the smallest bandwidth
among all PRMs that can feasibly schedule W . A workload
W is harmonic iff the periods of its tasks (subcomponents’
interfaces) are pairwise divisible.

The minimum resource guaranteed by a PRM Γ is captured
by a supply bound function (SBF) [1], written as sbfΓ(t),
which gives the minimum number of execution units provided
by Γ over any time interval of length t, for all t ≥ 0. The SBF
of Γ = (Π,Θ) for a workload W is thus given by [1], [5]:

sbfΓ(t) =

{
yΘ + max

(
0, t− x− yΠ

)
, if t ≥ Π−Θ

0, otherwise
(1)

where
• x = (Π−Θ) and y = b t

Πc, if W is harmonic; and
• x = 2(Π−Θ) and y = b t−(Π−Θ)

Π c, otherwise.

Schedulability condition. Given C = (W,Γ, RM) with
W = {T1, T2, · · · , Tn}, Ti = (pi, ei), and p1 ≤ p2 ≤
· · · ≤ pn. Here, Ti is a periodic task or a PRM interface of a
subcomponent of C. Resource demands of C are characterized
by the request bound functions (RBFs) of W , given by
rbfW,i(t) =

∑
k≤i

(⌈
t
pk

⌉
ek

)
for all 1 ≤ i ≤ n [6]. Lemma 1

states its schedulability condition based on rbfW,i and sbfΓ [1].
Lemma 1: Given a component C =

(
W,Γ, RM

)
with

W = {T1, T2, · · · , Tn} and Ti = (pi, ei) for all 1 ≤ i ≤ n.
Then, C is schedulable (Γ can feasibly schedule W ) iff

∀ 1 ≤ i ≤ n, ∃t ∈ [0, pi] s.t. sbfΓ(t) ≥ rbfW,i(t). (2)

From Lemma 1, a necessary schedulability condition for
C is UΓ ≥ UW , where UΓ = Θ/Π and UW =

∑n
i=1 ei/pi.

The difference, UΓ − UW , is called the interface overhead of
C. Thus, Γ is optimal for W iff it has the smallest interface
overhead compared to all interfaces that can feasibly schedule
W . It can be implied from Lemma 1 and Eq. (1) that the
interface computed assuming a harmonic workload has a
smaller (possibly zero) interface overhead than that of an
interface computed assuming a general workload.

PRMs as periodic servers. Each PRM interface Γ = (Π,Θ)
is implemented as a periodic server [3] with period Π and
execution budget Θ, i.e., the server is ready for execution
periodically every Π time units and its execution time is at
most Θ time units. Thus, interfaces of components can be
scheduled in the same manner as periodic tasks are. Further, a
component is schedulable iff its interface (i.e., periodic server)
is feasibly scheduled by its parent component.

B. Overview of Xen

Xen [7], the most widely used open source virtual machine
monitor (VMM), allows a set of guest operating systems (OS),
called domains, to run concurrently. To guarantee that every
guest OS receives an appropriate amount of CPU time, Xen
provides a scheduling framework within which developers can
implement different scheduling policies. In this framework,
every core in a guest OS is instantiated as a Virtual CPU
(VCPU), and a guest OS can have as many VCPUs as there are
underlying physical cores. Xen schedules VCPUs in the same
manner as a traditional OS schedules processes, except that its
pluggable scheduling framework allows different scheduling
policies to be used. A special VCPU, called IDLE VCPU, is
also created for each physical core to represent an idle task
in a traditional OS. When the IDLE VCPU is scheduled, the
specific physical core becomes idle. Xen by default uses the
“credit” scheduler, which schedules VCPUs in a proportional
fair share manner. This scheduler has been shown to be
unsuitable for real-time applications [8].

In our earlier work [8], we have developed RT-Xen, a
real-time virtual machine manager that supports hierarchical
real-time scheduling in Xen. The compositional scheduling
architecture (CSA) presented in this paper builds on and
complements RT-Xen with a compositional scheduling capa-
bility. It differs from RT-Xen in four important aspects: (1)
while RT-Xen instantiates hierarchical real-time scheduling in
Xen, it was not designed to support the CSF model where
the resource demand of a component is encapsulated by its
interface; (2) RT-Xen focuses on the implementation and
evaluation of different existing server algorithms, including
Polling Server, Deferrable Server, Sporadic Server, as well
as the classical Periodic Server that is used as a baseline in
this work - in contrast, this work proposes two new work-
conserving Periodic Server algorithms to improve soft real-
time performance; (3) this work presents a new method to
select the optimal interface parameters for a given scheduling
quantum for RM scheduling, an issue not addressed by RT-



Xen or the earlier work; (4) this work introduces an integrated
scheduler architecture that allows different periodic servers
to be instantiated through component reuse and enables the
schedulers to be swapped online.

C. Challenges

Despite the availability of considerable theoretical results
on CSF for real-time systems, those results have yet to be
implemented in a virtualization platform such as Xen. The gap
between theory and systems results in two significant prob-
lems. First, real-time system integrators cannot take advantage
of the body of CSF theory in practice due to a lack of system
support. We have addressed that issue by developing a novel
Compositional Scheduling Architecture (CSA) within the Xen
virtual machine monitor (VMM). This unified scheduling
architecture supports different scheduling policies at the VMM
level, while preserving the modularity and extensibility of the
scheduler implementation.

Moreover, without implementation and experimentation on
a real system, it is not possible to explore crucial system
design tradeoffs and practical issues involved in realizing a
particular CSF in a given virtualization platform, such as the
following important practical issues we face in realizing the
PRM-based CSF in Xen.

Non-work-conserving scheduling. The periodic server policy
was proposed as an effective mechanism for implementing
scheduler interfaces in CSF. However, the classical periodic
server algorithm [3], referred to as a Purely Time-driven
Periodic Server (PTPS) in this paper, adopts a non-work-
conserving policy. Specifically, when a higher-priority
component has no work to do, it simply idles away its budget
while lower-priority components are not allowed to run.
RT-Xen [8] emulates this feature by scheduling the IDLE
VCPU to run while a high-priority domain idles away its
budget. This scenario arises when a high-priority domain
underutilizes its budget, e.g., due to an interface overhead or
an over-estimation of tasks’ execution times when configuring
the domains’ budgets. While the non-work-conserving
approach does not affect the worst-case guarantees provided
by PTPS, it wastes CPU cycles while increasing the response
times of low-priority domains. This is particularly undesirable
for soft real-time systems, as well as many hard real-time
systems where short response times are also beneficial.

Scheduling quantum. While previous interface calculation
techniques assume continuous values for interface budgets, a
real system such as Xen must deal with quantized scheduling.
For example, experimental results with RT-Xen showed that
1ms is a suitable scheduling quantum within Xen [8] in order
to balance scheduling overhead and temporal granularity
of scheduling. To deal with quantized scheduling, new
techniques are needed to compute the bandwidth optimal
interface for a guest OS and the maximum value of the
optimal period when using the RM scheduling algorithm.

Scheduler 

VMM 

Root Component 

Components 

Scheduler 

Resource Interface 

Scheduler 

Resource Interface 

Task Task Task Task Task Task 

Fig. 1: Compositional Scheduling Architecture

III. SOLUTION APPROACH

Real-time guarantees in Xen can be achieved via composi-
tional schedulability analysis in our Compositional Scheduling
Architecture (CSA). As is shown in Figure 1, the Xen VMM
corresponds to a root component, and each Xen domain
corresponds to a subcomponent of the root component in
the CSA. The Xen VMM’s scheduler (extended from the
original RT-Xen interfaces) schedules domains based on their
PRM interfaces, which are implemented as periodic servers
(described in Section III-A). Each server’s period and budget
are computed using our quantum-based extension of composi-
tional scheduling theory (described in Section III-B) to ensure
schedulability of tasks in the underlying domain. The system
is hence schedulable iff all servers are feasibly scheduled by
the VMM’s scheduler.

A. Periodic Server Design

In this section, we present two enhanced variations of
the purely time-driven periodic server to optimize run-
time performance and resource-use efficiency, namely the
work-conserving periodic server and the capacity-reclaiming
periodic server. These variations differ in how a server
budget changes when the server has remaining budget but
is idle (i.e., has no unfinished jobs), or when it is non-idle
but has no budget left. Recall that in the classical purely
time-driven periodic server, a server’s budget is replenished to
full capacity every period. The server is eligible for execution
only when it has non-empty budget, and its budget is always
consumed at the rate of one execution unit per time unit,
even if the server is idle. In the work-conserving periodic
server variant, whenever the currently scheduled server
is idle, the VMM’s scheduler lets another lower-priority
non-idle server run; thus, the system is never left idle if there
are unfinished jobs in a lower-priority domain. Finally, the
capacity-reclaiming periodic server variant further utilizes the
unused resource budget of an idle server to execute jobs of
any other non-idle servers, effectively adding extra budget to
the non-idle servers. In what follows, “the scheduler” refers to
the VMM’s scheduler, unless explicitly mentioned otherwise.

Purely Time-driven Periodic Server (PTPS). As is
mentioned above, the budget of a PTPS is replenished at
every period and its budget is always consumed whenever it
is executed. As Xen is an event-triggered virtual platform,



we introduce a mechanism to allow this time-driven budget
replenishment and scheduling approach in CSA. Note that
the PTPS approach is not work-conserving since the system
resource is always left unused if the currently scheduled
server (Xen domain) is idle.

Work-Conserving Periodic Server (WCPS). The budget of
a WCPS is replenished in the same fashion as that of a PTPS.
However, if the currently scheduled server (CH ) is idle, the
scheduler picks a lower-priority non-idle server to execute,
according to the following work conserving rules:

(1) Choose a lower-priority server, CL, with the highest
priority among all non-idle lower-priority servers.

(2) Start executing CL and consuming the budgets of both
CL and CH , each at the rate of one unit per time unit.

(3) Continue running CL until one of the following occurs:
(a) CL has no more jobs to execute; (b) CL has no more
budget; (c) Some jobs in CH become ready and CH has
remaining budget; or (d) CH has no more budget. In the case
of (a) or (b), the scheduler goes back to Step 1 where it selects
another lower-priority non-idle server. In the case of (c),
CL immediately stops its execution and budget consumption,
whereas CH resumes its execution. In the case of (d), CL

immediately stops its execution and budget consumption; a
new server will be chosen for execution by the scheduler.

CH Budget

Execution of tasks in CH

Task release

Task completion

time

t
!

Execution of tasks in CL

CL Budget

Fig. 2: Execution of Servers in the WCPS Approach.

Figure 2 illustrates a general scenario under the work
conserving rule. In this scenario, CH becomes idle at time t
and thus, a lower-priority server CL is selected for execution.
At time t+∆, some jobs in CH become ready (i.e., case (c) in
Step 3); therefore, CH preempts CL and resumes its execution.
By allowing CL to run (if CH is idle) and maintaining the
same execution for CH , the WCPS achieves shorter overall
response times of tasks compared to PTPS while preserving
conservative CSF schedulability.

Lemma 2: A CSF system is schedulable under the WCPS
approach if it is schedulable under the PTPS approach.

Proof: The lemma is derived from two key observations:
(1) at the VMM level, the scheduler can still schedule the
domains because their corresponding servers (domains’ inter-
faces) are unchanged; and (2) each server can schedule its
own workload because the total resource given to each server
is unchanged and only the idle time of CH is utilized by CL.
The complete proof can be found in [9].

Capacity Reclaiming Periodic Server (CRPS). Like the
WCPS, the CRPS is also work conserving and the budget of
a server is replenished to full capacity every period. However,
the CRPS improves tasks’ response times by allowing the idle
time of the currently running server to be utilized by any other
server (including higher-priority ones). Specifically, we define
the residual capacity of a server to be the time interval during
which the server consumes its budget but is idle (e.g., CH

has a residual capacity of [t, t+ ∆] in Figure 2). At run time,
the server budget is modified using the following capacity-
reclaiming rule: during a residual capacity interval of a server
CH , the resource budget of CH is re-assigned to any other
non-idle server CL and only this budget is consumed (e.g.,
the budget of CL remains intact).

Similarly, we can show that the CRPS also preserves
conservative CSF schedulability. Since each CRPS server gets
not only its own resource budget but also the extra budgets
of idle servers, it can potentially finish its jobs earlier than a
corresponding WCPS or PTPS can. This results in an overall
improvement in tasks’ response times compared to the WCPS
and PTPS approaches, as is also validated in our evaluation
(see Section IV). Note that due to the capacity reclaiming
capability, the CRPS is the most difficult to implement among
the three server variants.

B. Interface Computation for Quantum-based Platforms

In the existing CSF theory [4], the optimal PRM interface
of a component is computed by iterating the resource period
from 1 to a manually chosen value, while assuming rational
values for the resource budget. For this approach to be
implementable, given a particular time granularity of a Xen
platform, the resource budget needs to be scaled to a multiple
of the time unit. As is illustrated in our technical report [9],
this scaling may lead to a sub-optimal resulting interface.
Further, a naive choice of the period’s bound can also result in
sub-optimality. To address these shortcomings, in this section
we introduce an algorithm for computing the optimal PRM
interface for quantum-based platforms under RM scheduling.

Upper bound on the optimal interface period. Theorem 1
gives an upper bound on the resource period of the optimal
interface of a given workload W = {(pi, ei) | 1 ≤ i ≤ n}
under RM. Intuitively, a PRM interface Γ is schedulable only
if its upper supply bound function (USBF) (i.e., the minimum
sloped upper linear curve of the interface’s SBF) meets each
rbfW,i at a step-point of rbfW,i and is below rbfW,i at all other
points in [0, pi]. We call these meeting points critical points,
with CrTW,i denoting the set of time-coordinates of the critical
points of rbfW,i. Thus, the optimal resource bandwidth is lower
bounded by the minimum slope of all linear curves f ti that are
equal to rbfW,i at time t ∈ CrTW,i and smaller than rbfW,i

at all other times. As a result, the optimal resource period is
upper bounded by the minimum of all Pi (1 ≤ i ≤ n), where
Pi is the maximum of the periods P t

i of the PRMs with USBFs
f ti for all t ∈ CrTW,i. Theorem 1 computes this upper bound
based on an initial feasible PRM Γc for W . A detailed proof



of the theorem is available in [9].
Theorem 1: Suppose Γc = (Πc,Θc) is the minimum band-

width PRM among all PRMs that can feasibly schedule a
workload W and whose period is at most Πc. Then, the
optimal PRM Γopt = (Πopt,Θopt) for W satisfies Πc ≤
Πopt ≤ MaxResPeriod(κ,W ) where κ = Θc

Πc
and

MaxResPeriod(κ,W )
def
= min

1≤i≤n

(
max

t∈CrTW,i

κ · t− rbfW,i(t)

κ(1− κ)

)
.

Algorithm 1 Optimal integer-valued interface computation.
Input: A workload W
Output: The optimal integer-valued PRM Γopt for W

1: Θ′ = MinExec(pn,W )
2: κ = Θ′

pn
3: Γopt = (pn,Θ

′)
4: Πmax = MaxResPeriod(κ,W )
5: for Π = 1 to Πmax do
6: Θ = MinExec(Π,W )
7: if Θ

Π
< κ then

8: κ = Θ
Π

9: Γopt = (Π,Θ)
10: Πmax = min(Πmax,MaxResPeriod(κ,W ))
11: end if
12: end for
13: return Γopt

Optimal integer-valued PRM period computation. Al-
gorithm 1 computes the optimal integer-valued PRM of a
given workload W by incorporating the above upper bound
of the resource period MaxResPeriod(κ,W ). In Lines 1-2,
MinExec(pn,W ) gives the minimum budget for the period
pn such that the resulting PRM can feasibly schedule W
(i.e., satisfies Lemma 1), and κ denotes the corresponding
bandwidth. The initial bound on the resource period is given
by Πmax in Line 4. The function MaxResPeriod(κ,W) in Lines
4 and 10 computes the upper bound on the optimal PRM
as defined in Theorem 1. Finally, the minimum bandwidth
acquired during the algorithm execution is stored in κ, and it
is used to re-evaluate Πmax (Lines 7–11).

C. System Architecture

This section presents details about CSA and the
implementation of the PTPS, WCPS, and CRPS in Xen.

Compositional Scheduling Architecture. In CSA, at the
most general level, an existing Xen scheduling framework
provides interfaces to a specific scheduler. Each scheduler has
its own data structure but must implement several common
functions including wake, do schedule, sleep, and pick cpu.
Since the three CSA schedulers mainly differ in how the
budget is consumed, we provide a real-time sub-framework
which abstracts common functions and data structures among
the CSA schedulers. The scheduling-related functions such as
do schedule are implemented as pointers to functions in sub-
schedulers. Under the real-time sub-framework, we implement
PTPS, WCPS, and CRPS separately. Figure 3 shows a high-
level view of CSA.
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Fig. 3: The CSA Schedulers Architecture

Data structure. Each VCPU has three parameters: budget,
period, and priority. In CSA, the priority is determined based
on the VCPU’s period according to the RM scheduling policy.
Each VCPU is implemented as a periodic server, where its
budget is set to full every period units of time, and the VCPU
consumes its budget whenever it is executed. Note that budget
is a fixed amount of resource given to a VCPU periodically,
computed so as to provide real-time guarantees for all tasks
in the system. This is different from credit in Xen, which is
given to each VCPU dynamically and is computed such that
all VCPUs have their fair shares of resource.

Each physical core has two queues: a Run Queue (RunQ)
and a Ready Queue (RdyQ). Both queues are used to store
active VCPUs. The IDLE VCPU, which has the lowest prior-
ity, is always located at the end of the RunQ. These queues
operate as follows.

The RunQ stores VCPUs that have jobs to run (regardless of
their budgets), sorted by priority. Whenever the do schedule
function is triggered, it first returns the current VCPU to the
RunQ or the RdyQ. It then selects an appropriate VCPU from
the RunQ based on the scheduling decision, and runs the
selected VCPU for one millisecond (which has been shown
to be a suitable scheduling quantum in [8]).

The RdyQ holds the VCPUs that have no jobs to run,
sorted by their priorities. Because one VCPU can consume
other VCPUs’ budget (e.g., via capacity reclaiming in the
CRPS, or scheduling the IDLE VCPU while consuming other
VCPUs’ budget in PTPS), all active VCPUs’ information is
needed to enable work conserving and capacity reclaiming.

Implementation of the do schedule function. The
do schedule function is responsible for updating VCPUs’
information and making scheduling decisions. We first present
the PTPS algorithm, as is shown in Algorithm 2, and then
explain the WCPS and CRPS extensions.

In this algorithm, the function queuePick returns the highest
priority VCPU with positive budget in the RunQ or in the
RdyQ. Whenever a higher priority VCPU has a positive
budget, we consume its budget by either scheduling it (if it has
jobs to execute) or scheduling the IDLE VCPU (otherwise).
Lines 1–6 demonstrate how we consume the highest priority
VCPU’s budget. Lines 12–17 show how the next VCPU is
selected.

For the WCPS, if a higher-priority VCPU has budget but is
idle, instead of scheduling the IDLE VCPU, we schedule in
advance the next highest priority VCPU among all the non-
idle lower-priority ones (so as to improve the responsiveness
of jobs belonging to that VCPU); in this case, we consume



Algorithm 2 do schedule function for PTPS
Input: currentVCPU, RunQ, RdyQ
Output: nextVCPU to run next

1: rdyVCPU = queuePick(RdyQ)
2: if currentVCPU = IDLE VCPU then
3: consume budget of rdyVCPU
4: else
5: consume budget of currentVCPU
6: end if
7: if currentVCPU has jobs to run then
8: insert currentVCPU into RunQ
9: else

10: insert currentVCPU into RdyQ
11: end if
12: nextVCPU = queuePick(RunQ)
13: if priority(rdyVCPU) > priority(nextVCPU) then
14: nextVCPU = IDLE VCPU
15: else
16: remove nextVCPU from RunQ
17: end if
18: return nextVCPU

both budgets in parallel. As a result, in Lines 12–17, the al-
gorithm always returns the VCPU from the RunQ, denoted by
queuePick(RunQ). Further, in Lines 1–6, if queuePick(RdyQ)
has a higher priority than that of queuePick(RunQ), their
budgets will be both consumed.

For CRPS, only one budget is consumed at a time and
“Capacity Reclaiming” is enabled between active VCPUs. In
Lines 1–6, the CRPS always consumes the highest prior-
ity VCPU’s budget among currentVCPU, queuePick(RunQ),
and queuePick(RdyQ). In Lines 12–17, if the function
queuePick(RunQ) returns a VCPU that is different from the
IDLE VCPU, that VCPU will be scheduled. Otherwise, the
IDLE VCPU is returned. There are two cases for this: either
the RunQ is empty, or all active VCPUs on RunQ have no
budget left. In the former case, the IDLE VCPU will be
scheduled. In the latter case, if queuePick(RdyQ) returns a
valid VCPU (i.e., other VCPUs have budget), the returned
VCPU will be executed; otherwise, all active VCPUs have no
budget left and thus, the IDLE VCPU will be scheduled (even
if the active VCPUs still have jobs to execute). In other words,
we do not allow budget to be stolen from the IDLE VCPU.
The implementations of all the above algorithms, along with
the hot-swap tool and the periodic tasks, are open source and
can be found in [10].

IV. EVALUATION

This section presents our evaluation of the PTPS, WCPS,
and CRPS approaches that are implemented in our CSA. We
focus on the run-time performance of real-time tasks, consid-
ering the following two evaluation criteria: (1) responsiveness,
which is the ratio of a job’s response time to its relative
deadline; and (2) deadline miss ratio. Our evaluation consists
of two types of workloads: synthetic workloads (Section IV-B)
and ARINC workloads obtained from an avionics system
(Section IV-C).

A. Experiment Setup

We implemented CSA in Xen version 4.0. Fedora 13 with
para-virtualized kernel 2.6.32 is used for all domains. We
pinned Domain 0 to core 0 with 1 GB memory, and pinned
all the guest operating systems to core 1 with 256 MB
memory each. This configuration is used to provide minimal
interference as in an ideal single core environment1. During
the experiments, we shut down the network service as well
as other inessential applications to avoid other sources of po-
tential interference. The experiments for synthetic workloads
were done on a Dell Q9400 quad-core processor while the
experiments for ARINC workloads were performed on a Dell
Vostro 430 quad-core processor, neither with hyper-threading.
During the experiments, SpeedStep was disabled and all cores
constantly ran at 2.66 GHz.

We assume all tasks are CPU intensive and independent of
each other. Every task is characterized by three parameters:
worst case execution time (WCET), period (equals deadline),
and execution time factor (ETF). Here, the ETF represents
the variance of each job’s actual execution time (uniformly
distributed in the interval (WCET ∗ETF,WCET )). An ETF
of 100% indicates that every job of the task takes exactly
WCET units of time to finish. The task model fits typical soft
real-time applications (e.g., multimedia decoding applications
where frames’ processing times are varied but are always
below an upper limit).

In the rest of the paper, UW denotes the total utilization
of all tasks in the system (utilization of the workload);
URM denotes the total bandwidth of interfaces (utilization of
resource models); URM −UW denotes the interface overhead.

Due to space constraints, for more detailed information
about task implementation and how to set up the guest OS
schedulers we refer the reader to [9].

Real-time scheduling of domains. We first determined the
domains’ resource needs by computing an optimal PRM
interface for each domain. These interfaces were implemented
as PTPS, WCPS, or CRPS variants of periodic servers, which
were then scheduled by the VMM. For synthetic workloads,
we applied Algorithm 1 to compute the optimal integer-
valued PRM interfaces for the domains. The PRM interfaces
of ARINC domains were computed based on Eq. (1) using
the harmonic workload case. Since the domain periods are
pre-specified in the ARINC workloads, the quantum-based
interface computation technique in Algorithm 1 cannot be
applied. Therefore, we resorted to computing optimal rational-
valued interfaces, and then rounding up the budgets to the
closest integer values. Although the real-valued interfaces may
have interface overheads of zero, rounding may introduce
additional overheads, effectively allocating extra budget to the
corresponding domains.

For each workload and corresponding interfaces obtained as
above, we repeated the experiment and evaluated the respec-

1Delegating a separate core to handle I/O and interrupts to reduce overheads
is a common practice in multi-core real-time systems research (see e.g., [11]).



tive performances of the system when setting the hypervisor
scheduler to be WCPS, CRPS, and the baseline PTPS.

B. Synthetic Workloads

The purpose of this set of experiments is to compare the soft
real-time performance of the three different periodic servers.
The PTPS, WCPS, and CRPS servers differ primarily in
how idle time is utilized within the system. The idle time
comes from two main sources: the interface overhead due
to theoretical pessimism [1]; and over-estimation of tasks’
execution times (also called slack). Hence, we design two sets
of experiments to show the effect of different idle times: (1)
The range for the workload periods is varied to create different
interface overheads; (2) The ETF for the jobs is varied so that
if a job executes less than its WCET, it would potentially give
some slack to other domains.

For soft real-time systems, we are interested not only in
schedulable situations but also in overloaded situations. As a
result, we ranged the UW from 0.7 to 1.0, with a step of 0.1,
to create different UW conditions.

All the experiments were conducted as follows. We first
defined a particular UW , and then generated tasks (utilization
uniformly distributed between 0.2% and 5%) until the UW

was reached. The distributions of execution times are typically
application dependent; here, we used the uniform distribution,
which has been commonly used in the real-time scheduling
literature (see e.g., [11], [12]). Using this generation method,
the generated UW is usually larger than the desired one, but
would only be 0.05 more in the worst case. After all the tasks
were generated, we randomly distributed the tasks among five
domains.

We ran each experiment for 5 minutes, and then calculated
the ResponseT ime

Deadline for all the task sets within each domain of
the experiment. For clarity of presentation, any job whose
ResponseT ime

Deadline is greater than 3 is clipped at 3.

Impact of Task Period. We varied the task period range
in this experiment to create different interface overheads,
and evaluated the three schedulers for the generated task
sets. For each different UW (from 0.7 to 1.0), we gener-
ated three different task sets whose periods are uniformly
distributed between (550ms, 650ms), (350ms, 850ms), and
(100ms, 1100ms), respectively. From the calculated interfaces,
the (350ms, 850ms) task period range gives the most interface
overhead, followed by (100ms, 1100ms), and then (550ms,
650ms). For all the experiments, the ETF value was set to
100%. In other words, we let all jobs execute at their worst
case execution times, so that the idle time comes only from
the interface overheads. Note that when the UW is the same,
we scheduled different task sets under different task periods.

Figure 4 shows the results for all domains under UW = 0.9,
where DMR means Deadline Miss Ratio. This UW (= 0.9)
represents a typical heavily overloaded situation; other cases
include [9]: either guaranteed to be schedulable theoretically
and only incurred negligible deadline miss (UW = 0.7), not
heavily overloaded (UW = 0.8), or too overloaded to be

schedulable (UW = 1.0). Detailed results about other UW

can be found in [9].
Since we are using rate monotonic scheduling, the higher

priority domains have shorter periods, and thus have a larger
number of jobs. The data in Figure 4 are therefore dominated
by the results for higher priority domains. Lower priority
domains, though having fewer jobs, suffer most from the
overloaded situation. As such, we plot the data for the lowest
priority domain (domain 5) in Figure 5 with the interface
parameters given in the format of (period, budget). Figure 4
and Figure 5 clearly show that the CRPS outperforms the
WCPS, which in turn outperforms the PTPS. Notably, with
an interface overhead of 24% (Figure 5c), while all jobs miss
their deadlines under the PTPS (ResponseT ime

Deadline > 1), 60.5%
and 6.2% of the jobs in domain 5 missed their deadlines under
the WCPS and CRPS, respectively. These results demonstrate
the effectiveness of the work-conserving and capacity-
reclaiming mechanisms in exploiting the interface overhead to
improve the performance of low-priority domains. The CRPS
is the most effective of these approaches for implementing
the interfaces in CSA.

Impact of Execution Time Factor (ETF). In real-time appli-
cations such as multimedia frame decoding, every frame may
take a different amount of time to finish. Traditionally, the
WCET is used to represent every task’s execution time. This
usually results in a relatively large interface, giving more idle
time for the domain.

In this set of experiments, the same UW ranging from 0.7
to 1.0 were used. Under each UW , we only generated one
task set. Then, for each particular task set, three ETF values
(100%, 50%, 10%) were configured for the three highest
priority domains, while leaving the two low priority ones
with an ETF of 100%. A lower ETF value means a lower
“actual” UW for that domain; for example, if an ETF of 10% is
applied, all jobs’ execution time uniformly distributes between
10% and 100% of WCET. On average, the actual UW is
0.55 ( 100%+10%

2 ). All task periods were uniformly distributed
between 550 ms and 650 ms. We note that the idle time comes
not only from the interface overhead but also from the over-
estimation of jobs’ execution times.

Figure 6 shows the box plot results for all UW for the lowest
priority domain. Results for all domains exhibit the same
behavior. On each box, the central mark represents the median
value, whereas the upper and lower box edges show the 25th
and 75th percentiles separately. If the data values are larger
than q3+1.5∗(q3−q1) or smaller than q1−1.5∗(q3−q1) (where
q3 and q1 are the 75th and 25th percentiles, respectively), they
are considered outliers and plotted via individual markers.
Within one subfigure, the boxes are divided into three sets,
from left to right, corresponding to the results under the ETFs
of 100%, 50%, and 10%, respectively. The detailed CDF plots
for all the results can be found in [9].

As is shown in Figure 6, the CRPS again outperforms the
WCPS and PTPS. In Figure 6c, the deadline miss ratio under
the PTPS stays constant when the ETF is varied (26.9%,
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27.3%, and 27.3% respectively), while performance improve-
ment is seen under the WCPS (11.7%, 8.51%, and 0.49%)
and CRPS (0.02%, 0%, and 0%). In an extremely overloaded
situation (Figure 6d), all jobs missed their deadlines under the
PTPS, whereas (75.6%, 32.7%, and 31.3%) of jobs missed
their deadlines under the WCPS, and (36.1%, 0%, and 0%)
of jobs missed their deadlines under the CRPS. This again
demonstrates that the WCPS and the CRPS benefit from
the idle time introduced by interface overheads and over-
estimations of jobs’ execution times.

C. ARINC-653 Workloads

In this section, we evaluate the performance of our CSA
implementation using ARINC-653 data sets obtained from

an avionics system [13]. These data sets contain 7 harmonic
workloads, each of which represents a set of domains (com-
ponents) scheduled on a single processor, with each domain
consisting of a set of periodic tasks. The descriptions of the
workloads are available in the appendix of [5].

The evaluation goals are threefold: (1) to validate the
effectiveness of the CSA implementation on real workloads;
(2) to evaluate the relative performance of the PTPS, WCPS,
and CRPS approaches under harmonic workloads and under
different workload conditions; and (3) to quantify the impact
of extra bandwidth available in the implemented interfaces
(introduced by rounding up interface budgets, which are
required in the implementation as the ARINC interface periods
are fixed).
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Fig. 7: CDF Plots of ResponseT ime
Deadline For Different Types of ARINC Workloads.

Implementation of ARINC domains. Table I shows the
interface overheads introduced for all 7 workloads. We ran
each workload for 10 one-minute runs. The obtained results
are then averaged across the 10 runs.

W. ID 1 2 3 4 5 6 7
URM 0.460 0.570 0.560 0.450 0.583 0.465 0.020
UW 0.378 0.511 0.481 0.389 0.537 0.426 0.003

URM - UW 0.082 0.059 0.079 0.061 0.046 0.039 0.017

TABLE I: Interface Overheads in ARINC Workloads.

Experimental results and observations. Figure 7 shows the
responsiveness (ResponseT ime

Deadline ) distribution of the three server
designs for three representative types of workloads: (a) having
a high interface overhead; (b) having a low interface overhead;
and (c) having a minimum number of domains. The CDF plots
for all the workloads can be found in [9]. We observed the
following behaviors:

(1) The WCPS and CRPS approaches consistently outper-
formed the PTPS approach for all three types of workloads in
terms of miss rates and responsiveness, as shown in Figure 7.
Note that in this experiment, we did not include all sources
of system overheads in the components’ parameters; as a
result, the computed interfaces cannot account for all system
overheads, resulting in potential deadline misses.

(2) In terms of responsiveness, the CRPS approach achieves
the greatest improvement over the PTPS and WCPS ap-
proaches when the interface overhead is high, as is illustrated
in Figure 7a. Conversely, when the interface overhead is
low, the responsiveness improvement is less, as is shown in
Figure 7b. These behaviors can be explained by the fact that
a higher interface overhead potentially leads to more available
residual-capacity that can be utilized by the scheduler.

(3) In terms of deadline miss rates, the CRPS approach
improves significantly over the other two approaches regard-
less of the interface overheads, as is shown in both Figure 7a
and 7b. For example, when the interface overhead is high, the
CRPS approach incurs no deadline misses whereas both PTPS
and WCPS experience deadline misses. Similarly, when the
interface overhead is low, the PTPS (WCPS) approach incurs
a miss rate of at least 200 times (100 times) more than the
CRPS approach.

(4) As is illustrated in Figure 7c, the PTPS, WCPS, and
CRPS approaches show similar distributions of responsiveness

(with some small differences due to different system inter-
ference during different runs). This is expected because all
approaches should behave identically if the workload contains
a single domain, as is the case for Workload 7.

We also examined the performance of the PTPS approach
with respect to the individual interface overheads of different
domains within a component. Table II shows a typical example
of the interface overhead versus deadline miss rate of different
domains. It can be observed from the experimental results
that, in general, a domain with a lower interface overhead
often incurs a higher miss rate and vice versa. However, the
effect of interface overhead on the domain’s miss rate is less
prominent when using the CRPS approach. This is expected
because in the CRPS approach, the domains with lower
interface overheads (smaller extra budgets) are allowed to
reclaim capacity from domains with higher interface overheads
(larger extra budgets).

Dom. ID 2 4 6 3 5 1 Total
Overhead 0.000 0.002 0.004 0.006 0.012 0.035 0.059

DMR 0.844 0.400 0.459 0.000 0.141 0.001 0.222

TABLE II: Relation between Interface Overhead and Deadline
Miss Ratio of PTPS in Workload 2.

V. RELATED WORK

In terms of system architecture for compositional schedul-
ing, only a few implementations exist and none of those con-
siders the Xen virtualization platform. For example, Behnam
et al. [14] and Heuvel et al. [15] provided an implementa-
tion of a CSF on VxWorks and on µC/OS-II, respectively.
However, neither approach considered virtualization. Yang et
al. [16] developed a two-level CSF for virtualization using the
L4/Fiasco. This work differs from ours in several aspects: (1) it
builds on L4/Fiasco, which has a different system architecture
from that of Xen; (2) it does not provide different work
conserving enhancements to the periodic server; and (3) its
interface computation is not optimal as it assumes identical
periods for all domains and is based on a lower-bound of the
SBF instead of the actual SBF.

Hierarchical real-time scheduling frameworks (HSFs) for
closed systems also have been implemented in different
OS kernels (e.g., [17]–[21]). These approaches, however,
are non-compositional. Further, they implement all levels of



the scheduling hierarchy within the same operating system.
HSF implementations through virtualization also have been
explored lately. For instance, [22] proposed a bare VMM
which uses virtualization and dedicated device techniques with
a fixed cyclic scheduling policy. Cucinotta et al. [23] used
KVM with a hard reservation behavior variant of the Constant
Bandwidth Server (CBS). Our work is different from these in
that our architecture supports compositional scheduling, which
they do not. Further, ours builds on Xen, which has a different
system architecture from that of KVM. (Xen is a stand-alone
hypervisor that lies between guest OS and the hardware,
whereas KVM is integrated into the manager domain, see
e.g., [24] and [25].)

In terms of server designs, the general idea of ‘capacity
reclaiming’ has been explored earlier in other contexts. For
instance, Lehoczky et al. [26] provided a ‘slack stealing’ al-
gorithm that allows aperiodic tasks to steal slack from periodic
tasks. Caccamo et al. [27] and Nogueira et al. [28] provided
CBS algorithms that allow one server to ‘steal’ another server’s
budget under EDF scheduling. These approaches, however,
do not support compositional scheduling. In addition, their
‘reclaiming capacity’ includes only idle budget due to an over-
estimation of tasks’ execution times, whereas ours includes the
idle budget due to interface overheads as well.

In terms of theoretical computation of server parameters
for quantum-based platforms, the only existing technique we
are aware of was developed by Yoo et al. [29]. That work,
however, assumes a manually chosen bound on the server
period, which cannot guarantee an optimal resource period. In
this paper, we provide a method for computing the maximum
optimal server period, thus avoiding such sub-optimality.

VI. CONCLUSION

In this paper we have presented CSA, an architecture
with system support for compositional scheduling of real-
time systems. CSA realizes the key concepts and important
results of a PRM-based CSF within the Xen virtualization
platform, bringing the benefits of existing CSF theory to prac-
tical application. We discuss several challenges faced in the
development of CSA, and propose theoretical extensions and
server design enhancements to address these challenges. We
also present an extensive evaluation to demonstrate the utility
and effectiveness of CSA in optimizing real-time performance.
Our evaluation using both synthetic and avionics workloads
shows significant improvements in terms of response time and
interface utilization. Our implementation provides a number
of scheduling policies; at the same time, it is modular and
easily extensible with new server-based scheduling algorithms.
CSA is released as open-source and is available at http:

//sites.google.com/site/realtimexen.
CSA currently supports only independent periodic CPU-

intensive tasks running on a uniprocessor. We plan to extend
it to support dependent tasks and multicore processors, which
undoubtedly will present additional challenges.
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