To appear and

Applications

in Proceedings of the 18th IEEE Real-Time and Embedded Technology
Symposium (RTAS 2012) 1

PtidyOS: A Lightweight Microkernel for Ptides
Real-Time Systems

Jia Zou, Slobodan Matic, Edward A. Lee
University of California, Berkeley
{jiazou, matic, eal} @eecs.berkeley.edu

Abstract—Ptides, a programming model for distributed real-
time embedded systems, was proposed previously. In this work,
we focus on a workflow that applies Ptides in a single-CPU
environment using model-based design techniques. Our workflow
starts with a programming environment where a real-time
application is expressed as a Ptides model. The model captures
both the functionality of the system and the desired timing of
interactions with the environment. The Ptides simulator supports
simulation of both of these aspects. Once the designer is satisfied
with the design, a code generator can be used to glue together
the application code with a real-time operating system called
PtidyOS. To ensure the responsiveness of the real-time program,
PtidyOS’s scheduler combines Ptides semantics with the earliest-
deadline-first policy. To minimize scheduling overhead associated
with context switching, PtidyOS uses a single stack for event
scheduling and execution, while still enabling event preemptions.
We demonstrate the Ptides workflow through a motion con-
trol application. The automatically generated code running on
PtidyOS is compared with a manual C implementation running
on bare silicon. We discuss the tradeoffs in functionality and
performance between these two implementations.

I. INTRODUCTION

Most real-time software is structured either as threads with
priorities or as tasks with periods or deadlines. Zhao et al.
proposed an alternative programming model that they called
Ptides [19] (programming temporally integrated distributed
embedded systems) that structures real-time software as an
interconnection of actors [12] communicating using times-
tamped events. Ptides leverages network time synchronization
[10], [3] to provide a coherent global temporal semantics in
distributed systems. Zou et al. give an execution strategy for
Ptides and introduce feasibility analysis in [21]. Eidson et
al. further describe Ptides in [2], which shows how Ptides
supports modal behaviors and describes an application to
power plant control. This work builds on the previously
developed theory, and describes a workflow for distributed,
real-time systems.

Ptides builds on a particular variant of a discrete-event (DE)
model of computation (MoC), where software and hardware
components called actors send timestamped events to one
another [1], [5]. DE specifies that each actor should pro-
cess events in timestamp order, and thus the order of event
processing is independent of the physical times at which
events are delivered to the actors. Whereas classically DE is
used to construct simulations, in Ptides, a DE model is an
executable specification. The objective is to compile (or code
generate) this specification into a deployable implementation,
following the principles of model-based design [11]. This

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0931843 (ActionWebs), and #1035672 (CSR-CPS Ptides)), the U. S. Army
Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force Office
of Scientific Research (MURI #FA9550-06-0312), the Air Force Research
Lab (AFRL), the Multiscale Systems Center (MuSyC), one of six research
centers funded under the Focus Center Research Program, a Semiconductor
Research Corporation program, and the following companies: Bosch, National
Instruments, Thales, and Toyota.

PTIDES Simulator

Design

Simulation
(functionality
and/or timing)

Code

Program
Analysis

Generation

PtidyOS

PtidyOS
Runtime

Fig. 1. Ptides Design Flow

paper presents a design flow that encompasses a simulator,
a code generator, and an ultra-lightweight real-time operating
system, as shown in Fig. 1. The simulator is built on the
Ptolemy II framework [4].

By leveraging DE semantics, Ptides is well suited for
systems with aperiodic events. Periodic scheduling schemes
such as rate-monotonic have been widely adopted in the in-
dustry [16]. The research community has worked on extending
these schemes to allow aperiodic tasks [18], [13], [17]. These
approaches use a special purpose process called a “server”
to schedule aperiodic tasks. These servers take a “slack-
stealing” approach, where aperiodic tasks can “steal” as much
processing power as possible, without causing periodic tasks to
miss their deadlines. This approach is based on the assumption
that periodic tasks have hard deadlines, while aperiodic tasks
have soft or “firm” deadlines. Tasks with firm deadlines are
those whose executions can be rejected by the scheduler, but
the scheduler will meet deadlines for the accepted tasks, while
tasks with hard deadlines are those whose failure to execute
results in system failures. However, this assumption is not
true in many real-world applications. For example, faults are
inherently aperiodic, and they usually require hard real-time
processing in order to guarantee safety of the system. In its
current form, Ptides takes a purely event-triggered approach,
and treats all periodic and aperiodic tasks equally as hard
real-time tasks. Processing power is allocated purely based
on events’ priorities, where the priorities are inferred from the
real-time specifications of the system.

An example of a simple Ptides model is shown in Fig. 2,
where the model is rendered visually in Ptolemy II. This model
counts discrete events, producing outputs that are displayed.
It has two sensors, labeled EventSensor and ResetSensor.
These sensors abstract the hardware devices that interact
with the environment. When data is sensed, EventHandler

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text

marys
Typewritten Text
To appear in Proceedings of the 18th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2012)

PtidyOSCodeGenerator

Double click to
generate codd

PtidesPreemptiveEDFDirector

EventHandler
EventSensor

Accumulator ModelTimeDelay DisplayOutput

delay of
1.6E-4

DisplayActuator

ResetHandler ...
ResetSensor

Fig. 2. Simple Ptides Example

and ResetHandler are triggered, and events are produced to
the downstream Accumulator. The timestamp on such an
event represents the time at which the sensor was triggered
by the physical environment. The “handler” actors abstract
interrupt handlers that process incoming events. When the
Accumulator receives events from EventHandler, it increments
its count and issues an output event with the accumulated
count and timestamp equal to that of the input event. When the
Accumulator actor receives an event from the ResetHandler,
it resets its count and outputs an event with value zero and
timestamp equal to that of the reset event. The output of
the Accumulator goes into a ModelTimeDelay actor, which
increments the timestamp by a fixed non-negative amount.
The resulting event is delivered to the DisplayOutput, which
schedules an actuation at the DisplayActuator. The timestamp
of the actuation event is interpreted as a deadline for said
delivery, and also as an indication of when in physical time
the actuation should occur.

The workflow presented in this paper begins with construc-
tion of a model like that in Fig. 2 and provides a simulator
that can be used to check functionality of the model. The
model can then be elaborated with implementation details such
as execution times of the components, enabling simulating
execution of the model on an embedded platform. A code gen-
erator can then be used to translate the model into embedded
code, where a runtime library called PtidyOS provides event
handling, scheduling and memory management.

Notice the role of the ModelTimeDelay actor in Fig. 2.
Since the timestamp of a sensor event represents the time at
which the sensor is triggered by the physical environment,
and the timestamp at the actuator is interpreted as a deadline
and an indication of when in physical time the actuation
should occur, the value of the ModelTimeDelay increment
specifies the latency between the sensors and the actuator.
Hence, the timing of the program is captured as a part of
the Ptides model, and distributed real-time applications can
be designed and simulated without the knowledge of execution
times of software components. Designers can initially focus on
specifying the functionality of the system and the timing of
its interactions with the physical environment. A key principle
in Ptides is that if execution times of software components
are sufficiently small (the design is “feasible”), then the
timing of interactions between Ptides software and its physical
environment is independent of execution times. If execution
times of software components are not sufficiently small (the
design is “infeasible”), then deadlines specified by the Ptides
model will not be met by the implementation.

As a design is elaborated, the designer will become con-
cerned with whether the design is feasible. Our simulator
supports modeling execution times of software components,
enabling evaluation of feasibility of the model. This in turn
allows the system designer to check for scenarios in which
deadline misses occur.

Once the designer is satisfied with the design, our workflow
supports target-specific code generation using a real-time oper-
ating system that we call PtidyOS. Like its namesake, TinyOS

[7], PtidyOS is a C library against which the application code
links to run on bare iron, rather than an operating system that
supervises the execution of programs that come and go.

In order to ensure the responsiveness of the real-time pro-
gram, the PtidyOS scheduler combines Ptides semantics with
traditional scheduling methods, particularly earliest-deadline-
first (EDF). To minimize scheduling overhead associated with
context switching, PtidyOS performs all event processing in
interrupt service routines, using only a single stack.

The remaining sections are organized as follows. In Sec. II,
we review of basic concepts of the Ptides programming model.
Sec. III defines a family of execution strategies for Ptides,
and relates them to a set of simulator modules in Ptolemy II.
Sec. IV then talks about the Ptides design flow, in particular
about PtidyOS. Sec. V applies this design flow on a few
applications including a physical setup called the tunnelling
ball device. We conclude and provide pointers for future work
in Sec. VL

II. TIME AND CAUSALITY
A. Model Time

In DE and Ptides, actors communicate by sending events
through the actor connections. An event is a pair of data value
and timestamp. Here we assume that the timestamp is a real
number, also called the model time of the event. Each actor
may have a state associated with it. DE semantics requires that
an actor state be accessed in timestamp (or model-time) order.
For example, if the processing of an input event results in the
reading and/or writing of the state of the actor, then that actor
must process input events in timestamp order.

B. Causality Relationships Between Ports

An actor can manipulate the timestamp of an input event,
with the constraint that this manipulation must be causal, i.e.,
the timestamp of an output event must be greater than or
equal to that of the triggering input event. Here we review
two model time delay functions formally defined in [21]. The
first function is ¢ (¢, 0), where ¢ and o are input and output
port, respectively. &g represents the minimum model time delay
between this pair of ports. If these ports do not belong to the
same actor, or if there is no causality relationship between
these ports, then do(4,0) = oo. Since all actors are assumed
to be causal, dy(7, 0) takes a minimum value of 0. The second
delay function, called §(p1, p2), takes a pair of arbitrary ports
in the system. Intuitively, 0(p1, p2) is the minimum model time
delay from p; to ps.

Let I be the set of all input ports in the system, and O be
the set of all output ports in the system. i’,7” € I belong to
the same input port group G; if and only if there exists an
output port o € O such that §o(i’, 0) < oo and d¢(i”, 0) < 0.

C. Sensor and Actuator Ports

In general, for an event in the Ptides model there is no
relation between its model time and the physical time of its
occurrence. However, the relations are introduced at points
of interaction between the Ptides platform and the physical
environment. We call these points real-time ports.

Sensor ports are inputs to a platform. When an event from
the environment is detected, the sensor timestamps that data
with the current physical time, and sends the event to the Ptides
scheduler, where it is made visible to the rest of the platform.
Thus, if the physical time at which sensing occurs is 7, and
the physical time at which the event is made available to the
Ptides scheduler is ¢, then ¢t > 7. Also if we assume an upper
bound on the worst-case-response-time of a sensor actor, then

’1{
}éfeQ 34 |
“‘>(5_1<\ I
Q. .2
€ = o

Fig. 3. Deadline Example

t < 1+d,, where d, € RT is a parameter of the sensor input
port called the real-time delay.

On the actuator side, we enforce the following rule: an event
with timestamp 7 must be delivered to the actuator at physical
time t, where ¢t < 7. This constraint imposes a physical time
deadline for each event delivered to an actuator, where the
timestamp 7 serves as the deadline.

III. PTIDES EXECUTION STRATEGIES

In this section, a set of exeuction strategies based on the
Ptides programming model is reviewed. These strategies are
described in detail in [21]. The goal of these strategies is
to ensure all input port groups consume events causally. All
strategies take an event as argument, and return a boolean
to indicate whether this event can be “safely” processed. An
event is “safe to process” if the same input port group will not
receive an event with a smaller timestamp at a later physical
time. If an event e5 could potentially render an event e; unsafe,
then we say e causally affects e;. Take Fig. 3 for example,
where e causally affects ey if the processing of es produces
a future event e} such that €}, and e; reside in the same input
port group, and e, may have a timestamp that is less than or
equal to that of e;. In other words, eo causally affects e (or ey
is not “safe to process” if and only if there exists i, € G(i1)
such that 7(e3) + d(i2,i,) < 7(e1), where iy and ¢; are the
destination ports of es and ej, respectively; and 7(e) denotes
the timestamps of event e.

A. Baseline Strategy

Before we give a formal definition of the baseline strategy,
we define a physical-time delay function d: [— RT U{—o0}
that maps each port p € I as follows:

d(p) = { Ci"oo

Let I; denote all real-time sensor ports in the platform f.
Recall that [is the set of all input ports and G; denotes the
input port group for an input port 7 € I. A formal definition
of the baseline strategy is as follows:

An event at platform f and input port i € I with timestamp
T is safe to process when:

1) platform time (also called physical time) exceeds:

d(p) — 8(p, i’
T4 cmax {dp) o, 1)l

if p is a sensor input port,
otherwise.

and
2) for each port p' € I in platform f, each event at the
input queue of p' has timestamp
a) greater than T+maxycg,{—0(p',i")} ifp’ ¢ G;.
b) greater than or equal to T if p' € G;.

This strategy is described in the General Execution Strategy
Section of [21]. Note the first part of the strategy can be
enforced through a check of the timestamp of the event against
the physical time subtracted by some offset which is calculated
statically. We call this offset the delay offset. If this check
is only performed on the event of smallest timestamp in a
platform, then the second part of the Baseline Strategy can be
omitted. We call this form of the Baseline Strategy the Simple
Strategy.

B. Parallel Strategy

One way to avoid an unnecessary stall of event execution
in the Simple Strategy is to not constrain the check to the
earliest event in the queue. Here we present an approach that
achieves this goal in addition to avoiding the second part of
the Baseline Strategy.

Lemma 1. If ey causally affects es, and the first part of
the safe-to-process analysis as defined in the baseline strategy
fails for ey, then it must fail for es.

Lemma 1 says that if e; causally affects es, then at all time
instants of physical time, if there are potential events from
outside of the platform that can causally affect e;, then the
same events will causally affect e;; i.e., the first part of the
strategy cannot be true for es unless it is true for e;. Armed
with Lemma 1, we can scan the entire event queue, and a
later event will not pass the physical time check unless all
earlier events that causally affect it do so first. Proof for this
lemma can be found in [20]. Based on Lemma 1, we give the
operational semantics of the Parallel Strategy.

Step 1. Let e be the event of smallest timestamp in the event
queue for platform f.

Step 2. Let i be the destination port of e, and let T be its
timestamp. If physical time exceeds

— i
T+ peﬁ??é@,{d(p) 5(p,i')},

then e is safe to process. Otherwise, let e be the event of next
smallest timestamp in the queue, and repeat step 2.

Like the Simple Strategy, the Parallel Strategy is simplified
to a simple check against physical time. Moreover, the Parallel
Strategy exploits parallelism inherent in the model, and never
wastes processor cycles as long as a safe event exists, while
the Simple Strategy may block the execution of other events
if the smallest one is not safe to process.

Moreover, if the event queue is ordered by timestamps,
then the scheduler can simply step through the queue while
performing Step 2. This results in an efficient implementation
since it avoids analyzing all events in the event queue. Instead,
as soon as a safe event is found, it is processed.

C. Deadline-Based Strategy

Both the Simple and Parallel strategies use event ordering by
timestamp. In this section we explore other possible priorities.
A natural choice is the earliest-deadline-first (EDF) scheme,
where the scheduler selects to process the safe event of earliest
deadline.

To understand how deadlines are defined, recall that events
arriving at an actuator have deadlines associated with them,
where the timestamp of the event is the deadline. Thus, for
any event e that is separated by model time delay § away from
the nearest actuator, the deadline of e is 7(e)+0. Take Fig. 3 as
an example, where the deadline for e; is 7(e;)+J3, the closest
actuator port is io, and the delay between the destination port
of e; and i is d3. To aid the deadline calculation for events, we
define a notion of relative deadline for each actor input port.
This relative deadline function (rd()) captures the minimum
model time delay between the input port and its reachable
actuator ports. Let the function port(e) denote the destination
port of event e, then in the previous example, rd(port(e;)) =
93, rd(port(e2)) = min{di,d2 + 03}. The relative deadline
for each input port can be calculated with a simple shortest
path algorithm starting from each input port of actuators, and
traversing backwards until the entire graph is visited. With
the definition of relative deadlines, the absolute deadline of
an event can be defined as ad(e) = 7(e) + rd(port(e)). In
this deadline-based strategy, the event queue is sorted by these

absolute deadlines. When two events have the same deadlines,
they are sorted by timestamps.

Recall that if e, causally affects e;, e; will not pass the
time check for safe-to-process at an earlier platform time than
eo2. Moreover, es is placed at an earlier position than e; in an
event queue sorted by timestamp order. Finally, we state the
following Lemma.

Lemma 2. [f es causally affects ey, then eo will be placed
at an earlier position than ey in an event queue sorted by
absolute deadlines.

With Lemma 2, both the simple and parallel strategies can
be used with a queue that is sorted by deadline order. Proof
for this lemma can be found in [20].

D. Strategy Implementations In the Ptides Simulator

All of the above strategies are implemented as directors in
Ptolemy II. A director is a software component that defines
actor interactions within a model. The most basic of these is
the PtidesBasicDirector. This director implements the Simple
Strategy as explained at the end of Sec. III-A. However,
preemption is disabled in this director, which means if an event
is currently executing, and another event of smaller timestamp
arrives at the platform, it will need to wait for the first event
to finish before starting its own execution. Another interest-
ing director is the PtidesPreemptiveEDFDirector, shown in
Fig. 2. This director implements the deadline-based strategy as
defined in Sec. III-C. The PtidesPreemptiveUserEDF Director
is similar to the PtidesPreemptiveEDFDirector, however it
allows users to define arbitrary deadlines for system events.
Finally, notice the Parallel Strategy as defined in Sec. III-B
can be simulated using the PtidesPreemptiveUserEDF Director
by setting all relative deadlines to positive infinity. This results
in all events having the same absolute deadlines, and the event
queue will be sorted by timestamps.

These implementations in Ptolemy II allow for the design
and simulation of distributed real-time systems. Once satisfied
with the design, a code generator can then translate the model
into a runtime called PtidyOS, the details of which is examined
in the next section.

IV. PTIDYOS
A. Related Work

First, we look at some of the similarities and differences
between PtidyOS and conventional off-the-shelf RTOS.

The software architecture of the generated PtidyOS is unlike
RTOS’s such as QNX [6] or VxWorks [15], but instead, is
more similar to TinyOS [14]. PtidyOS’s microkernel includes a
scheduler that performs interrupt handling and context switch-
ing and a primitive memory management unit. However, other
conventional OS feature such as file system are not provided.
When compiled, the PtidyOS kernel links against application
code and produces one executable. Since applications are
statically linked, dynamic instantiations of applications during
runtime are not allowed.

PTIDES is particularly suited to systems where the order
of distributed events must be determined to high accuracy and
this order preserved in processing and response. To implement
this, PtidyOS requires that actors with state process events in
timestamp (model-time) order. This is an important difference
from typical event-based frameworks, including TinyOS, that
process events in the order they are received. In addition,
PtidyOS is designed for systems with real-time requrements,
and scheduling is mandated through event priorities. As ex-
plained in Sec. III-C, PtidyOS scheduler always processes
the safe event of earliest deadline, and the processing of an
event is preemptible by an occurrence of another safe event of

earlier deadline. This is contrary to TinyOS, which uses FIFO
scheduling and tasks are preemptible only by interrupts and
not by other tasks.

PtidyOS is similar to QNX [6] in that it is a real-time
microkernel that implements a message-passing scheme for
inter-process communication. QNS provides send(), receive()
and reply() primitives for explicity message passing. PtidyOS
is based on actor-oriented programming paradigm, where
events (messages) are transmitted between actors as defined
by the actor graph. Both QNX and PtidyOS allows inter-
process messages to be sorted by priorities. However priorties
in PtidyOS are specific to each event, and are inferred through
model-time based deadlines, while priorities in QNX are
statically defined for each process by the user. Associating
priorities to events instead of processes makes PtidyOS more
applicable for event-triggered systems.

Also unlike traditional RTOS, PtidyOS steps away from
thread-based approach, but instead uses a single stack for
event execution. This eliminates the need for additional data
structures to store outstanding system threads, and reduces
context switching to simple push() and pop() operations.
The Ptides formulation and the choice of model-time based
deadlines allows for context switching to the earliest deadline
event even in a single stacked environment. We elaborate on
how this is achieved in Sec. IV-E3.

B. Design Requirements

First, we should note our current implementation of PtidyOS
does not yet have networking and time synchronization com-
ponents installed, and thus cannot be used in a distributed
environment. We leave the distributed aspect as future work
and focus on single and multi-core platforms where all com-
putation cores use a common clock to reference physical time.

The primary goal of PtidyOS (or any RTOS) is to support
the timely execution of applications. To achieve this goal,
a deterministic scheduling scheme is required. Our goal for
PtidyOS is to meet deadlines “optimally”, where optimality is
defined with respect to feasibility. In other words, if there ex-
ists a scheduler that is able to meet deadlines for a model, the
PtidyOS scheduler should be able to meet these deadlines. At
the same time, the scheduler should not be overly complicated,
in order to minimize and bound scheduling overhead.

Also depending on the application, hardware resources may
be especially constrained. The particular microcontroller plat-
form for our prototyping purposes only allows for implemen-
tations (PtidyOS + application) of size 32kB or smaller. Even
if more powerful computation platforms are available, again
to avoid delays in the operating system layer and minimize
scheduling overhead, PtidyOS’s application programming in-
terfaces (API) methods should be as lightweight as possible.
We discuss our approaches to meet these requirements.

C. Memory Management

As in many conventional RTOSs, to ensure real-time system
behavior, and to meet the limited memory requirements,
memory management in PtidyOS is kept as simple as possible.
Specifically, application code is not allowed to dynamically
allocate memory on a heap, but instead must allocate memory
either on the stack or as static variables. Moreover, recall that
actors in a Ptides model communicate through timestamped
events. The memory for these events is allocated as static
variables at compile time. The size of the allocated memory
must correspond to the maximum number of events running
in the system at any time. However, this number is difficult to
determine. It depends on factors such as the rate of incoming
events in the system, worst-case-execution-times, as well as

scheduling decisions. We do not attempt to tackle this problem
here. Instead, we throw a runtime exception if the pool of free
events is exhausted. A linked list is used to maintain the pool
of free events. This data structure is chosen because it supports
event allocation and deallocation methods in O(1) time.

D. Ptides Scheduler

The scheduler in PtidyOS implements the deadline based
scheduler, as presented in Sec. III-C. Among all the presented
schedulers, this scheduler is chosen because it is most ap-
plicable as a real-time scheduler. First, it integrates Ptides
with EDF, thus allowing us to leverage EDF’s optimality with
respect to feasibility. Also, it performs the safe-to-process
analysis for all events in the event queue; i.e., if there exists
an event that is safe, then the CPU will not be idle.

Efficiency of queue accesses also plays an important
role in minimizing overhead of the scheduling. For this
reason, a doubly linked list is chosen to implement the
event queue, and the following API methods are sup-
ported: peekNextEvent(Event*), addEvent(Event*), and re-
moveEvent(Event*). addEvent() and removeEvent() simply
insert (in deadline order) and remove events from the event
queue, respectively. The peekNextEvent() returns the next
event in the event queue without removing it. Both peekNex-
tEvent() and removeEvent() take O(1) time, while addE-
vent() takes O(n) in the worst case, where n is the number
of events in the system. A binary search algorithm is planned
for addEvent() in future work, which will reduce the bound
to O(logn).

Finally, note that all event access functions are made atomic
by disabling interrupts during the procedure in order to ensure
correct concurrent behavior, which we discuss next.

E. Concurrency Management

Since PtidyOS is developed for systems with critical timing
constraints, it is necessary that preemption is supported. In this
subsection, we examine the implementation of this preemptive
scheduler in PtidyOS. The preemptive scheduler includes two
parts: interrupt handling, followed by event processing. We
examine these separately.

1) Interrupt Handling: There are two kinds of interrupts
that are of interest: safe-to-process interrupts and external in-
terrupts. Safe-to-process interrupts are timer interrupts, which
are set up to happen when some event(s) become safe to
process. External interrupts on the other hand, are triggered
through hardware peripherals such as GPIO or network de-
vices. These interrupts could potentially post new events into
the event queue. The stripped down implementation of the
interrupt service routines is shown below:

// ISR for a sensor interrupt.
externalInterrupt () {
fireActor (thisSensor);
permitAllInterrupts();
if (addedNewEvent ()) {
processEvents (1) ;
}
}

// ISR for the safe to process timer interrupt
safeToProcessInterrupt () {
permitAllInterrupts();
processEvents (1) ;

Here fireAction() processes events for a particular actor,
while processEvents() (elaborated in Sec. IV-E2) is the main
scheduler routine that picks the safe event of earliest deadline
to process. Note we trigger processEvents() at the end of
each ISR in order to achieve preemptive behavior. In the case

S o ®uw AW -

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

where a safe event of earlier deadline than the preempted event
becomes available through the ISR, the the state of preempted
event is saved, and the earlier deadline event is processed.

Also note these ISR’s are almost identical. For a sensor
ISR, since we have an actor that abstracts the sensor hardware
device, that actor is fired during the ISR. On the other hand,
since the safeToProcessInterrupt() is simply a timer interrupt
to indicate an event has become safe to process, no actor is
fired during this ISR. Next, we notify the rest of the system
that new interrupts can be handled. This is the most important
function that ensures the responsiveness of PtidyOS, where we
assume the hardware supports a permitAlllnterrupts() func-
tion, which allows all peripherals (including timer) to preempt
the currently executing stack once it is called, even if those
interrupts are of lower priority than the currently executing
interrupt. Another way to interpret permitAllinterrupts() is
that it tricks the system into thinking that there are no ISRs
running in the system. This function is needed because we
start the event processing routine next (in processEvents())
and we want to be able to handle all system interrupts during
that routine.

Note in the PtidyOS implementation, the interrupt priorities
are not important because these interrupts are only assumed to
insert new events into the queue. Instead, the event deadlines
dictate how computation resources are allocated. With the
permitAllinterrupts() function, all interrupts can be given
arbitrary priorities, as long as permitAlllnterrupts() allows all
other interrupts to preempt the currently executing one.

2) Event Processing: When new events are created, or
when a safe-to-process timer interrupt occurs, the ISRs in
PtidyOS end with a call to processEvents(). As mentioned
before, this is the main scheduling function of the Ptides
scheduler, and is the second part of the context switching
algorithm. This routine traverses through the entire event
queue, and processes all events that are declared safe-to-
process. The pseudo-code is shown below:

processEvents (int restoreStateFlag) {
processVersion++;
platformTime getPlatformTime () ;
disableInterrupts();
Eventx event = peekNextEvent (NULL) ;
while (event && hasEarlierDeadline (event)) {
earliestTime safeToProcessTime (event) ;
if (platformTime >= earliestTime) {
pushDeadline (event) ;
enableInterrupts();
fireActor (event);
platformTime getPlatformTime () ;
disableInterrupts();
popDeadline (event) ;
freeEvents (event) ;
event = NULL;
} else {
setTimerInterrupt (earliestTime) ;
localProcVer = processVersion;
enableInterrupt ();
disableInterrupt () ;
if (localProcVer != processVersion) {
break;

}
}
event = peekNextEvent (event);
}
enableInterrupts();
if (restoreStateFlag) {
restoreState () ;
}
}

On line 5 and 26, peekNextEvent() is used to traverse
through the event queue. This method takes a pointer to Event
as an input. If the input argument is null, then the earliest
deadline event from the queue is returned. If the input is not

R T S I S

null, then the event of next earliest deadline compared to the
input event is returned. If the input is already the event with
the latest deadline (last event) in the queue, then a null pointer
is returned. Using this method, the main while loop performs
safe-to-process analysis for all events until a safe one is found
(line 8). In that case, the safe event is processed, and we start
again from the top of the event queue (line 16 and 26). For
each event that is unsafe, a timer interrupt is set up to wake
up the system at the earliest platform time when that event
becomes safe (line 18), and the safe-to-process analysis is
performed for the next earliest deadline event.

Also note a deadline stack is used to decide whether the
preempting event should be executed before the preempted
event. Before a safe event is processed, and before interrupts
are enabled, that event’s deadline is pushed onto the stack (line
9). When another interrupt preempts the currently executing
event, the deadline of the preempting event is compared to that
of the preempted event through hasEarliestDeadline() (line 6).
The scheduler returns to process the preempted event if that
event has a larger or equal deadline. Mirroring line 9, line 14
pops the deadline once actor firing finishes. When there are
no more events to process, or when the preempted event is
of earlier deadline, all system interrupts are enabled (line 28),
and we restore the machine to its previous executing state.

Finally, lines 2 and 19-24 are added as an optimization
for events with earlier deadlines. Imagine the case where the
event queue is very large, and none of these events are safe.
Then processEvents() would traverse the entire queue, testing
each one for safe-to-process before returning. If an interrupt
occurs while we are traversing through the queue, that interrupt
will not be handled since interrupts are disabled during the
traversal. If the requested interrupt posts a event with a very
early deadline, then that event might miss its deadline due to
the traversal overhead. To avoid this behavior, lines 20 and
21 are added to enable interrupts briefly so that they can be
handled. However, if an interrupt indeed occurs between these
lines, then the event queue might have been modified, and this
instance of processEvents() must stop executing; i.e., we break
out of the while loop at line 23.

The only other function linked during code generation is the
main entry function. The main() function first initializes all
actors. During the initialization, actors may post initial events
onto the event queue. Following initialization, processEvents()
is called with restoreStateFlag set to 0 to process any of the
initial events. On line 30, restoreState() in processEvents()
is only called if restoreStateFlag is true. Since no interrupt
has occurred, there is no need to restore the original state of
execution. At the end of processEvents(), the machine can go
into hibernation if there is hardware support for such mode.
If not, we simply loop forever in while (TRUE) to wait for
future interrupts.

void main () {
initializeAllActors();
processEvents (0) ;
while (TRUE) {
hibernate () ;

}

3) Single Stack for Storing Execution Context: As men-
tioned in Sec. IV-A, PtidyOS uses a single stack for event
execution. To ensure the responsiveness of the scheduler,
PtidyOS still allows preemptive context switching even under
a single stacked scheme.

There are two important properties with our scheduler that
allow us to implement a single-stacked solution:

1) The deadline of an event does not change throughout

the lifespan of the event.
2) PtidyOS schedules events according to the monotonic
ordering of the deadlines.

These properties ensure that if an event e; is preempted by
a earlier deadline event ey, then e; will never be processed
before e, finishes processing; i.e., the saved state for e; will
not be accessed before the state of e5 is accessed. This in effect
allows the use of a stack to save the state for all processing
events. Each time an event e; is preempted, its state can be
simply pushed onto the stack. The only time this state is
accessed again is when e; becomes the earliest deadline event
in the system. As the stack grows, more events are preempted,
and the priority of the events on the stack grows monotonically
as well. Due to this property, PtidyOS does not need to keep a
separate data structure that stores all the currently preempted
events. Instead, the event states are all pushed onto the stack.
Thus, the only context switch operations are to push the current
state in order to execute a new event, or pop the last preempted
processing state. Note these are O(1) operations, which do
not depend on the number of preempted events in the system.
Thus, it is easy to bound the context switching time in the
PtidyOS environment.

4) Stack Manipulation: As we mentioned before, permi-
tAlllnterrupts() assumes there exists hardware support (usu-
ally in the form of writing a register bit) for the user to
signal the end of this ISR, and to allow the CPU to pro-
cess other interrupts. Unfortunately, not all microcontrollers
provide this support. The ARM Cortex-M microcontroller
(which was used for prototyping) for example does not to
provide such functionality for security reasons. Instead, a stack
manipulation scheme is used to achieve the desired behavior.
To take advantage of this scheme, the ISRs are modified, and
we show the modified sensor ISR below:

externallInterrupt () {
saveState () ;
fireActor (thisSensor);
if (addedNewEvent ()) {
addStack () ;
}

First, a saveState() function is performed when we enter
the ISR. This function saves the registers used to execute the
preempted event. Normally these registers are saved when
we first enter the ISR. However, as we will explain later,
addStack() is a stack manipulation scheme which updates the
program counter (PC) to point to an instruction which the
compiler does not expect, thus the compiler may not push
the necessary registers. Instead, we need to manually save the
previously executing registers onto the stack. The functions
permitAllinterrupts() and processEvents() are replaced by
addStack(), which is a stack manipulation procedure written
in assembly. On line 5, addStack() modifies the stack as
well as the stack pointer. The modification ensures the PC
saved on the stack now points to the start of processEvents()
instead of the preempted instruction. Once we reach the
end of of the ISR (line 7), the updated stack is popped,
and the program executes processEvents(). At the end of
processEvents(), a restoreStack() function is called to restore
the stack to the preempted state. In the next section we discuss
the performance, including latency of the context switching
algorithm.

F. Meeting the Key Constraints

We now examine the key constraints we set out to satisfy
for PtidyOS.

1) Limited Memory: The base size of the generated
PtidyOS is 16.18kB. This includes all utility functions in the
PtidyOS APIL In this case, the pool of events consists of a
single Event structure. This means, 16.18kB is the absolute
minimal amount of memory needed to run PtidyOS. As we
will talk about in more detail in the next section, the tunneling
ball device demo was implemented using the Ptides design
flow. After code generation, the entire PtidyOS file is of size
22.32kB, which includes PtidyOS, 5 event structures allocated,
as well as the application code.

2) Reactive Concurrency: PtidyOS’s support for concur-
rency is evaluated based on the following two metrics: 1) the
concurrency exhibited by the application and 2) scheduling
overhead.

Exhibited Concurrency: A common metric to test the con-
currency exhibited by an application is to look at the percent-
age of code that is reachable through interrupt contexts [14].
In other words, this is the amount of code that runs between
when an interrupt occurs and when we return to the previously
executing state. since all interrupts could end with a call to
processEvents(), and processEvents() can access all the actor
processing code (through fireActor()), this means the entire
PtidyOS code base is reachable through interrupts, except for
main entry and initialization functions. This constitutes 83.9%
of the code base.

This indicates PtidyOS is highly concurrent, however this
behavior is achieved by running the scheduler at the end of
ISR. Thus the efficiency of the scheduling overhead has a big
impact on the concurrency of the system. We analyze this
scheduling overhead next.

Context Switching Overhead: Fig. 4 shows the context
switch overhead. Measurements are taken on a Luminary
controller that runs at SOMHz. The overhead was measured
using an oscilloscope. The x-axis of the timing diagram is
platform time, and the number annotated on each execution
trace indicates the amount of time (in microseconds) it takes
to run a number of procedures. The line numbers on top of
the traces indicate the procedures that are run during that
period of time. These values correspond to the line numbers
shown earlier in the pseudo-code for processEvents(). Since
the interrupt handling routines are short, they are not annotated
with line numbers. At some points of the timeline, there are
multiple procedure running. e.g., at platform time 20us, two
procedures are active. This indicates a possible branching
condition. We will explain these branching conditions in more
detail below.

As mentioned before, the context switching procedure can
be broken down into two parts: interrupt handling and schedul-
ing. The interrupt handling overhead takes either 7.14us or
7.74pus to complete. If the interrupt did not insert new events
into the event queue, then the system simply restores its
original state, and goes back to the preempted event. In this
case, the total latency for this interrupt is 7.74us, which
translates to 387 cycles given a S0MHz clock. If however,
new events have been inserted into the event queue, then it
takes 7.14s before addStack() finishes, and processEvents()
starts.

It might seem unintuitive that the execution trace where
an event is inserted takes longer than the execution trace
where no event was inserted. This is because restoring the
previous execution state requires writing more registers than
addStack(). Also notice, in both cases, we assume a sensor
firing time (execution time of fireActor(thisSensor)) of 2.7us,
based on the tunneling ball device example discussed in the
next section.

Recall that addStack() leads to the running of the sched-
uler, which performs processEvents(). There are four possible
scenarios: the event queue is empty; the queue is not empty,
but the preempted event is of higher priority; the queue is
not empty, the preempted event is of lower priority, but the
preempting event is not safe to process; or the queue is not
empty, the preempted event is of lower priority, the preempting
event is safe to process.

The first two cases result in almost the same overhead,
since hasEearlierDeadline() is an O(1) operation that takes
less than 1us to process. These two cases also correspond
to the situation when context switching time is the smallest.
The scheduler would simply call restoreStack() to return to
the previously processing event. In this case processEvents()
takes a total of 11.75us to complete.

If the event is safe, then interrupts are enabled after 15.01us.
Right after enabling interrupts, that event is processed. In other
words, the context switch time to process the earliest deadline
event in the queue (assuming that event is safe) takes 7.14 +
16.63 = 23.77us, or roughly 1100 cycles. Finally, if the event
is not safe, processEvents() takes 32.46us to finish, which
includes setting up a timer interrupt.

To put these numbers into perspective, assume there are n
events in the event queue, and none of these events are safe
except for the last one. Then, it would take 7.14+6.35+4(3.38+
17.38) x (n — 1) + 3.38 + 5.28 = 22.15 + 20.76 X (n — 1)us
until the n*" event is processed. Assuming there are no other
interrupts occurring during this time, this is the worst case
context switching overhead time.

Also just to emphasize, as we have discussed earlier, since
interrupts are enabled after the safe-to-process analysis of each
event, if earlier deadline events are inserted into the event
queue during context switching, we can switch to those events
and immediately process them. In other words, the PtidyOS
scheduler is optimized for the earliest deadline events (the
essence of EDF).

V. DESIGN FLOW EXPERIMENTS

This section discusses two example applications imple-
mented with the Ptides design flow.

A. Execution Time Simulation

The first example is the simple Accumulator model shown in
Fig. 2. C code is generated using the Luminary microcontroller
as the target platform. The main functionality we wish to
illustrate with this example is the ability of the Ptides simulator
to simulate the timing of critical time instants in the execution
of the model, including end-to-end delays between sensors
and actuators. This ability to simulate physical time delays
enables checks against deadline misses for Ptides models.
We will show that with properly annotated execution times
and scheduling overheads, the simulated end-to-end delays are
tight bounds of the actual delays.

For the Accumulator model, execution time for each of
the actors is measured individually on the target Luminary
platform. This information is annotated via the executionTime
parameter at each actor’s input port. Notice that in this model,
the execution time of the SensorHandler includes the context
switching time as well as time to produce a sensor event.

Next, we need to annotate the model with scheduler over-
head execution time. This overhead can be captured in the
schedulerExecutionTime parameter of the Ptides director. As
discussed in the previous section, the scheduling overhead
depends on whether the events are safe. By default, we take
the conservative approach and assume that all events are not
safe, which yields the largest overhead. As shown in the last

Interrupt handling Event queue is empty, or the
overhead, switch to preempted event is of higher priority
processEvents . 11.7u -

@—7.14us—P> Event s safe to process, get ready to process
Interrupt handling |]fS'OIL“ o
overhead, return to Event is not safe to process, setup timer interrupt, and return to preempted event
preempted event (<& 32.46us >
7. 74us—P
| | [[1 I I | I 1
v e s s g [2 [&8 | ¢ | g [
| |] 1 I 1 1]] Ly
lines 29 - 32
—5.4us
™ i B
L':ﬁ(rjrllilnpt I lines 2 - 6 : lines 9-11
h % | 6.35us——— —05.28us)
overhea 1 (lines 7 - 8 lines 29 - 32
6.62us——t L-3.38us— _ ——5.4us:
| | lines 19 - 27 I
! ' 17.38us '

Fig. 4. Scheduling Overhead Timing Diagram

section, assuming there is at most one event in the queue, this
overhead is measured to be 32.46us. We will now illustrate
how these values can be used to simulate end-to-end delays
in different scenarios.

The first scenario we consider is the one where only the
EventSensor is connected, while the ResetSensor is idle. Here
we also assume d, = 0 at both sensors. By annotating the
Ptides model with measured execution times for actors and
the scheduler, the Ptides simulator shows an end-to-end delay
from EventSensor to DisplayOutput of 175.69us. However,
the actual measured delay is 110us. The reason our simulated
delay does not provide a tight bound is due to the fact we
assumed events are always not safe-to-process. However, in
this case, since d, = 0, input events are actually always safe,
which leads to over-estimation of the scheduling overhead. If
we use the previously measured overhead for the case where
events are always safe, which is 16.63us (an overhead of
15.01us is shown in Fig. 4; however, that does not include
functions popDeadline() and freeEvents() as shown in lines
14 and 15 of processEvents()), the end-to-end delay reduces
to 112.37us, which is a tighter bound for the measured delay
of 110us.

Next, we measured the end-to-end delay for the case when
both inputs are triggered by the same input signal. Here both
sensor interrupts would run one after the other. This adds
additional end-to-end latency into the system. The delay from
EventSensor to DisplayOutput is simulated to be 162.8us in
this setup. The actual measured delay is 144pus. Again, the
optimistic overhead of 16.63us is used. Notice this bound is
not as tight as what we obtained the last time. This is due
to an imperfection of the current simulator implementation,
which assumes a scheduling overhead after each actor firing,
including ISR executions. However, in the actual implementa-
tion, since EventSensor and ResetSensor are triggered at the
same time, the sensor ISRs execute one after another, and only
one context switch to processEvents() is needed to find the
safe event (the second call to processEvents() is stacked, and
will be called after all safe events are processed). Indeed, if
the simulator supported this simulation strategy, then a tighter
bound of 162.8 — 16.63 = 146.17us would be simulated,
which is closer to the measured value.

Notice the execution times for Accumulator and TimeDelay
are larger in the latter scenario. Recall from Sec. IV-C,
addEvent() is an O(n) procedure, where n is the number of
events in the queue. Since addEvent() is typically called as
a part of the actor firing, to correctly simulate the end-to-end
delay, the execution time of the actors must be modified.

In both of the previous cases, we assumed a sensor real-

time delay d, = 0. In the last case, we measured the end-
to-end delay assuming real-time delay d, = 60us. This delay
translates to a non-zero delay offset (defined in Sec. III-A)
at the input ports of the Accumulator. Here the overhead
to execute the safe-to-process interrupt takes 10us (an event
becomes safe at the 60us mark, but processEvents() does
not start until the 70us mark). This delay can be attributed
to two sources. First, even though we would expect the
interrupt to occur at platform time 60us, it actually happens
at 65us. This delay is related to the hardware timer support
of the Luminary microcontroller. The functionality of the
Luminary microcontroller’s timer interrupt can be summarized
as follows: a value is loaded into a timer register. As soon
as this timer is enabled, it starts counting down. When it
counts down to zero, an interrupt occurs. Thus, this timer
is perfect if we want to wakeup after a specific period of
time. However, this timer is less optimal when we wish to
wake up at a specific time. Notice the subtle difference here,
where we need to first get the current platform time, and
then perform a subtraction in order to find the value that
should be loaded into the timer register. Both of these actions
together with the interrupt latency contribute to the 5us delay
before the safeToProcessInterrupt is handled. In addition,
interrupt handling of the safeToProcess interrupt plus the time
to context switch to processEvents takes another 5us, thus the
total overhead for the safe-to-process interrupt is 10us.

A more ideal microcontroller platform for the purpose of
Ptides would be one which provides hardware support for
interrupt triggers at a specific time. However, even then the
interrupt handling overhead may not be negligible. Thus the
Ptides simulator provides another parameter called safeTo-
ProcessTimerHandlingOverhead to capture this latency. In
the above scenario 10us is entered for this parameter. The
simulated delay is predicted to be 161.56s, while the actual
measured delay is 161us.

B. Application Example

1) Application Setup: A more real-world application called
the Tunneling Ball Device (TBD) was developed by Jeff C.
Jensen [8]. The detailed explanations of this device can be
found in [9]. This setup is chosen because it is an exemplary
motion control application. In such an application, the physical
plant usually interfaces to the computers through three kinds
of signals: periodic, e.g., control loop signals; quasi-periodic,
e.g., signals whose rates are proportional to the velocity of the
motor; and sporadic. e.g., signals that indicate irregular events.

The physical device consists of a spinning disc with two
holes on opposite ends, and the disc is connected to a

PtidesPreemptiveEDFDirector PtidyOSCodeGenerator

Double click tof
generate codq

ModelTimeDelay MotorOutput
MotorActuator

DropHandler
DropSensor

Control

EncoderHandler

EncoderSensor

UserinputSensor

Fig. 5. Ptides Model For Tunneling Ball Device

motor. The motor is controlled by a microcontroller, which
interacts with the environment through GPIO and pulse-width-
modulator (PWM). Every revolution, the motor generates
encoder pulses to a GPIO pin of the microcontroller. These
pulses are interpreted to measure the current position of the
disc. The controller outputs a periodic pulse through the PWM.
The width of the pulse dictates the power output of the motor,
and thus the speed of the disc. Aside from the motor-disc
setup, there is also a tube placed above the parameter of the
disc, with two optical sensors mounted on the top of the tube.
Metal balls are dropped through these sensors. When drop
events are detected, pulses are sent to the microcontroller
through another GPIO pin. According to these pulses, the
speed of the ball is calculated. Using this information, along
with the vertical distance from the sensors to the disc, and the
current position of the disc (which is captured by the encoder
ticks), the control algorithm calculates the change in disc speed
to ensure one of the holes intersects the trajectory of the ball so
the ball can pass through it. To control this application, Jeff
Jensen developed a C implementation that runs without an
operating system. Another implementation is developed using
the Ptides design flow.

The C program consists of four external interrupt handlers:
encoder interrupt, which updates the current position of the
disc from the motor encoder ticks, planned position interrupt,
which updates the planned position of the disc, ball drop
interrupt, which indicates that a ball drop event has occurred,
and user startup interrupt, which starts rotating the disc at
a nominal speed. The main function of the C program runs
in an infinite loop. As control theory dictates, the controller
must run periodically. Thus the loop starts by busy waiting
until the current platform time is equal to a multiple of that
period. This is followed by polling for system state informa-
tion and executing the control routine, which implements a
proportional-derivative (PD) controller. The calculated output
is sent to the PWM, followed by returning to the start of the
loop. This loop runs indefinitely until the system reset signal
is received. We will show that this common style of polling
for sensor data as control inputs is actually nondeterminate.
Although this nondeterminism is tolerable in most cases, the
determinism of Ptides has measurable advantages when a large
delays is experienced by the sensed data.

The Ptides model for the TBD is shown in Fig. 5. This
model abstracts each of the previously mentioned sensors as
sensor actors except the planned position interrupt. Instead of
having an interrupt that updates the planned position, a local
variable in the Control actor keeps track of this position. This
variable is updated every time the control loop runs. An ISR is
generated for each of the sensors in Fig. 5. The main control
logic resides in the Control actor.

2) Application Analysis: The key Ptides feature we will
demonstrate with this application focuses on the use of timed
semantics to ensure deterministic event execution. In particu-
lar, when a drop event occurs, the controller calculates the new

R T T

— — — manualCwithdelay /.| ¥ Errorfor Ptidyos: 24¢
| — - - — PtidyOS with delay Error for Manual C: 9.36°
(<]
% without delay /
S . [SR
3 hd
g g 7/
5 7/
o

to t t; Platform Time

Fig. 6. Position Errors For PtidyOS vs. Manual C Implementation

speed of the disc based on the time-to-impact for the drop ball
(calculated from the ball drop event) and the current position
of the disc (calculated from the encoder event). Notice that
the implicit assumption here is that both of these values refer
to the state of the disc at the same instance in physical time.
However, this assumption may not be true in general. Our goal
is to compare the manual and the Ptides implementations in
situations where this assumption does not hold.

In particular, we are interested in the scenario where the
controller is physically far away from the drop sensor. In order
to reduce the amount of wiring in the physical implementation,
a separate platform would be used to parse drop sensor data.
This drop sensor controller would then communicate with the
controller through a network. This communication delay can
range from microseconds to a few milliseconds depending on
the communication protocol used. We will examine the effect
of this delay on both implementations. Note that we have
not implemented a distributed control of the TBD. Instead,
an artificial delay of 5ms is introduced at the input of drop
sensors using timer interrupts, i.e., when a drop event occurs
at platform time ¢, a timer interrupt is set to occur at t 4 5ms.

As shown in Fig. 6, if there is no delay at the sensor, the
new rate of the disc is calculated immediately at (. If the drop
data is delivered at ¢1, the Ptides implementation would still
acknowledge the drop occurred at ¢y due to timestamping at
the drop sensor platform. Also, Ptides semantics still ensures
events from drop and encoder sensors are processed in tag
order. This means the calculated output will have both vari-
ables referencing the same state of the disc, which allows for
the correct calculation of new disc rate (the slope for Ptides
implementation with delay is the same as the slope for the case
without delay). Thus, even though the Ptides implementation
experienced some position error as a consequence of the sensor
delay, the rate calculation is not affected, and the position error
at impact time is minimized.

For the manual C implementation, however, the drop data
still indicates that a ball drop occurred at t(, but since the
manual implementation has been polling encoder inputs during
the bms delay interval, it would use the current position of the
disc at t; instead of tg. This leads to a wrong rate calculated
for the manual implementation, which leads to a much larger
position error.

We performed experiments with both the PtidyOS and
manual C implementations to control the TBD, first without
and then with the simulated 5ms network delay. The nominal
speed of the disc was set to 3 revolutions per second (RPS).

For the Ptides implementation, a delayed sensor input results
in a planned position error of 3 encoder ticks, which translates
to 2.16°. In other words, at the impact time of the ball,
the planned center of the disc is 2.16° away from the ideal
position, where a ball drop is guaranteed to be successful.

This is compared to a position error of 13 encoder ticks,
or 9.36° for the manual C implementation. This difference is
large enough to cause ball drop failures. A total of 50 ball
drops are performed for each implementation. The success
rates for different cases of ball drops are shown below:

Manual With- PtidyOS With- Manual PtidyOS
out Delay out Delay With Delay With Delay
96%] 100% | 100% [100% | 40% | 62% 98% [100%

Two percentages are shown for each case. The one on the
left denotes percentages of ball drops that went through the
hole without touching the disc, while the one on the right
denotes the percentages of drops that touched the disc, but
still went through the hole, i.e., a drop that touched the side
of the hole but still went through would count as a success in
the second case, while failure in the first. As we can see, with
the added delay, the success rate of the manual implementation
dropped significantly for both cases, while the success rate of
the PtidyOS implementation remained virtually unchanged.

It should be noted, however, that the deterministic behavior
of the Ptides model is not obtained without a price. One
limitation of the Ptides implementation is that each time an
encoder interrupt occurs, a corresponding event is created and
inserted into the event queue. The safe-to-process analysis is
then performed on this event. Since we expect around (500
ticks / revolution x 3 RPS =) 1500 encoder events per second,
this process results in much larger scheduling overhead than
the manual C implementation (which does not have overheads
such as event queue management and safe-to-process analy-
sis). The side effect is that the PtidyOS implementation can
only handle lower disc rates. If the nominal rate is set to more
than 8 RPS for example, the large number of encoder interrupt
preemptions would result in stack overflow in the PtidyOS
implementation, where the manual implementation can handle
a disc rate of up to 20 RPS.

Finally, we should note that it is, of course, possible to
modify the manual implementation such that the calculated
planned position takes into account the delay experienced
by the drop sensor. Just like the PtidyOS implementation,
this would minimize the position error and ensure successful
ball drops. However, Ptides guarantees deterministic functional
behavior regardless of the sensor delay. Once the sensor delay
d,’s are known, the programmer only needs to update the
Ptides model with this value, and the working implementation
is generated with the click of a button. This opposes the
manual implementation, where the programmer has to change
both the program structure and functionality manually in order
to take into account this delay.

VI. CONCLUSION AND FUTURE WORK

A set of execution strategies that implements Ptides se-
mantics is introduced in this work. By assuming bounds on
synchronization error and network delay, and by defining
a relationship between model time and physical time, our
strategies ensure event processing that results in determinis-
tic logical and timing behavior, while allowing out-of-order
execution without backtracking. These strategies use different
event queue orderings and result in different complexities for
their safe-to-process analyses.

The second part of this work focuses on the implementation
of these strategies as a part of the Ptides design flow. This
design flow includes a simulator, a code generator, and a real-
time operating system PtidyOS. The simulator allows applica-
tion programmer to capture both the logical operation and the
timing aspects of the interaction with the environment without
the knowledge of execution times, which are dependent on low
level hardware details. If execution times and kernel overheads

are available, however, these information can be annotated as
part of the model to simulate deadline misses. The programmer
can then generate a runtime implementation onto a target-
specific hardware platform.

A motion control application called the tunneling ball device
is implemented using the Ptides design flow. The generated
PtidyOS runtime is compared to a manual C implementation.
We showed the Ptides semantics ensures the correct order of
event execution, which prevents performance degradation even
with a large delay introduced at the sensor. This contrasts the
manual implementation, whose performance degraded signif-
icantly when the same delay is introduced.

One possible future direction is to expand the Ptides pro-
gramming model and enable its use for soft real-time systems.
A possible approach would be to define a utility function on
event timestamps and have the scheduler maximaize it. On the
implementation side, we are working on a distributed setting,
since this is what Ptides strategies were originally formulated
for. This requires an integration of a time synchronization
protocol such as IEEE1588 into the PtidyOS framework.

REFERENCES

[1] C. G. Cassandras. Discrete Event Systems, Modeling and Performance
Analysis. Irwin, 1993.

[2] J. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou. A time-centric
model for cyber-physical applications. In Workshop on Model Based
Architecting and Construction of Embedded Systems (ACES-MB), pages
21-35, 2010.

[3] J. C. Eidson. Measurement, Control, and Communication Using IEEE
1588. Springer, 2006.

[4] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity-the Ptolemy approach.
Proceedings of the IEEE, 91(1):127-144, 2003.

[5] G. S. Fishman. Discrete-Event Simulation: Modeling, Programming,
and Analysis. Springer-Verlag, 2001.

[6] D. Hildebrand. An architectural overview of qnx. In Proceedings of
the Workshop on Micro-kernels and Other Kernel Architectures, pages
113-126, Berkeley, CA, USA, 1992. USENIX Association.

[71 1. Hill, R. Szewcyk, A. Woo, D. Culler, S. Hollar, and K. Pister. System
architecture directions for networked sensors. In 9th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 93—104, 2000.

[8] J. Jensen. Tunneling ball device. http://chess.eecs.berkeley.edu/tbd/.

[9] J. Jensen. Elements of Model-Based Design. University of Califor-

nia, Berkeley, Technical Memorandum. UCB/EECS-2010-19, February,

pages 2010-19, 2010.

S. Johannessen. Time synchronization in a local area network. IEEE

Control Systems Magazine, pages 61-69, 2004.

G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-

integrated development of embedded software. Proceedings of the IEEE,

91(1):145-164, 2003.

E. Lee, S. Neuendorffer, and M. Wirthlin. Actor-oriented design of

embedded hardware and software systems. Journal of Circuits, Systems,

and Computers, 12(3):231-260, 2003.

J. Lehoczky, L. Sha, J. Strosnider, et al. Enhanced aperiodic respon-

siveness in hard real-time environments. In Proceedings of the IEEE

Real-Time Systems Symposium, pages 261-270, 1987.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An operating system

for sensor networks. Ambient Intelligence, pages 115-148, 2005.

W. River. Vxworks: Embedded rtos with suport for posix and smp.

http://www.windriver.com/products/vxworks/.

L. Sha, M. Klein, and J. Goodenough. Rate monotonic analysis for

real-time systems. Kluwer Academic Publishers, 1991.

M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest

deadline scheduling. In Real-Time Systems Symposium, 1994., Proceed-

ings., pages 2—11. IEEE, 1994.

S. Thuel and J. Lehoczky. Algorithms for scheduling hard aperiodic

tasks in fixed-priority systems using slack stealing. In Real-Time Systems

Symposium, 1994., Proceedings., pages 22-33. IEEE, 1994.

Y. Zhao, J. Liu, and E. A. Lee. A programming model for time-

synchronized distributed real-time systems. In Proceedings of RTAS

07, pages 259-268, 2007.

J. Zou. From Ptides to PtidyOS, Designing Distributed Real-Time

Embedded Systems. PhD thesis, EECS Department, University of

California, Berkeley, May 2011.

J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler. Execution

strategies for Ptides, a programming model for distributed embedded

systems. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), San Francisco, CA, 2009. IEEE.

(10]
(11]

[12]

[13]

[14]

[15]
[16]
(17]

(18]

[19]

[20]

(21]

