
Low Contention Mapping of Real-Time Tasks onto a TilePro 64 Core Processor

Christopher Zimmer and Frank Mueller
North Carolina State University, Raleigh, NC 27695-8206, mueller@cs.ncsu.edu

Abstract

Predictability of task execution is paramount for real-time
systems so that upper bounds of execution times can be
determined via static timing analysis. Static timing analysis
on network-on-chip (NoC) processors may result in unsafe
underestimations when the underlying communication paths
are not considered. This stems from contention on the
underlying network when data from multiple sources share
parts of a routing path in the NoC. Contention analysis
must be performed to provide safe and reliable bounds. In
addition, the overhead incurred by contention due to inter-
process communication (IPC) can be reduced by mapping
tasks to cores in such a way that contention is minimized.

This paper makes several contributions to increase pre-
dictability of real-time tasks on NoC architectures. First, we
contribute a constraint solver that exhaustively maps real-
time tasks onto cores to minimize contention and improve
predictability. Second, we develop a novel TDMA-like ap-
proach to map communication traces into time frames to
ensure separation of analysis for temporally disjoint com-
munication. Third, we contribute a novel multi-heuristic ap-
proximation, HSolver, for rapid discovery of low contention
solutions. HSolver reduces contention by up to 70% when
compared with näıve and constrained exhaustive solutions.
We evaluate our experiments using a micro-benchmark of
task system IPC on the TilePro64, a real, physical NoC
processor with 64 cores. To the best of our knowledge, this
is the first work to consider IPC for worst-case time frames
to simplify analysis and to measure the impact on actual
hardware for NoC-based real-time multicore systems.

1. Introduction

Distributed software models on network-on-chip (NoC)
processor architectures provide significant advancementsbut
also challenges for real-time systems. These advancements
come from simplifications in processor cores that result
in increased accuracy of static timing analysis, simplified
scheduling algorithms due to an abundance of cores, and
synchronization free data resource models implemented
through explicit inter-process communication (IPC) in the
form of messages. Due to these advancements, this processor
architecture is seeing increased use in hard real-time systems
such as in [24] where the authors explore real-time hazard

This work was supported in part by NSF grants CNS-0720496 andCNS-
0905181

Figure 1. NoC Contention (Config 1)

detection in satellites using the Opera Maestro proces-
sor [10], a radiation hardened TilePro with 49 cores devel-
oped by Boeing. A drawback of these processors is posed
by NoC contention of multiple tasks. Such contention exists
for shared-memory accesses, for off-chip memory references
and for message passing when utilizing distributed software
models instead of shared memory. Our work focuses on
message passing over the NoC assuming separate NoC
interconnects for memory, coherence, I/O and messaging [3].
Other work on increasing predictability and coping with non-
uniform memory latencies is orthogonal [4].

Message-based communication over the NoC has been
shown to increase scalability compared to shared-memory
programming [7]. We conjecture that it can also assist in
increasing predictability by decreasing contention as it is
easier to analyze messages statically than shared memory
references [21]. Even under message passing, poor task-
to-core mappings can result in a loss of predictability due
to latencies incurred through NoC contention. Consider
a mesh NoC with full-duplex links, i.e., two messages
traveling in opposite directions over a link do not result
in contention, that utilizes static dimension-ordered worm-
hole routing favoring horizontal routing before vertical [3].
Consider the example “Config 1” in Figure 1 of nine cores
with a mesh NoC. Two messages are sent, one from core
4 → 2 and the other from3 → 8, as depicted by the
lines with arrows. When sent at the same time, contention
on the link 4 → 5 (depicted as a thick link in the NoC
mesh) results in a delay for one of these messages due to
arbitration within the NoC hardware routers. (Packets are
not interleaved as an open virtual channel monopolize links
between endpoints.) As a result, sending tasks experience
highly variable latencies. Such variability can be reduced
or even eliminated when tasks are layed out intelligently to
lower or even completely avoid contention, respectively. The
effect shown in this example is amplified as the size of NoC
meshes increases resulting in larger paths through networks
and communication that is more frequent.



We propose an abstraction model for message-based NoC
contention that, when applied to statically scheduled hard
real-time tasks, allocates messages into temporal windows,
so called “frames”. These frames provide the foundation
for static analysis on communication paths to evaluate task-
to-core mappings. We formulate a constraint problem and
implement an “exhaustive solver” that provides optimal
mappings. Unfortunately, exhaustive approaches do not scale
beyond small NoC mesh sizes as they can take days to
solve mapping layouts. Hence, we further develop a multi-
heuristic solver, called “HSolver”. We identify a set of effec-
tive mapping patterns that yield near-optimal results while
providing sustained scalability in finding such solutions even
for large NoC meshes. Finally, we contribute a micro-
benchmark that empirically tests our designed model and
evaluate our approach on a Tilera TilePro processor with 64
cores [3]. Using our solvers, we are able to reduce contention
by over 70% compared to a naı̈ve and the constrained
exhaustive solutions for NoC sizes too large to be solved
optimally within hours.

To the best of our knowledge, this is the first work
to address predictability of NoC communication via fram-
ing messages into temporal windows for real-time tasks.
Previous work [11] viewed communication as temporally
stateless. This limited the amount of communication that
could feasibly be solved. It also resulted in solutions that
were overly conservative in thatany potentialfor common
message routes were considered contention. By using tempo-
ral windows, we are able to solve the problem byseparating
temporally disjoint messageswhen analyzing link contention
scenarios and thus increasing communication predictability.

2. Background
Prior work on conservation cores shows the potential

of heterogeneous multicores where cores are specialized
according to application demands and parallelization con-
straints [23], [15]. In such multicore scenarios with mesh
topologies, task-to-core mapping particularly affect appli-
cations with real-time constraints due to time perturbation
resulting from NoC contention. Our work considers a NoC
model in which a single task is mapped to a single core, i.e.,
where an abundance of cores is available (but only some of
them are active at any time) or where core specialization
requires such a mapping (as for conservation cores). Such
abstractions, sometimes referred to as “dark silicon” [13],
[12], assume that cores are abundant, yet not all cores can
necessarily be active simultaneously due to thermal/power
constraints or lack of parallelism. For example, Intel’s SCC
faces such a performance/power tradeoff that requires core
deactivation and/or dynamic voltage and frequency scaling
[1]. This model reduces real-time scheduling to core activa-
tion/deactivation, which simplifies static timing analysis as it
eliminates the penalties and complexities due to the caching
effects of context switching. We gain further accuracy in our

Figure 2. Temporal Framing Example
distributed model by eliminating the need to analyze shared
memory and resource sharing. Instead, we focus on explicit
message passing.

3. Software-Based Temporal Framing

Temporal framing is a technique similar to time-division
multiple-access (TDMA) that imposes frames to bound
communication into time windows. It differs from TDMA
in that it does not limit the amount of IPC in a single
frame; instead, it is used solely for analysis purposes to
try and statically map tasks to processors and to reduce
communication interference. Programmatically, this is facil-
itated using self-referential frame checking within a taskfor
identifying when a specific message can be sent/received. To
guarantee predictability within a real-time environment,we
assume that senders and receivers are at least predetermined
within the hyper-period of a periodic task set and that
communicating pairs are guaranteed to be active during any
frame in which they send or receive data. This assumption
is easily supported under the dark silicon model because
high utilization and delays due to resource sharing do not
exist. Because of this assumption, we can then use temporal
frames as a means of synchronizing senders and receivers
to reduce latency incurred through non-synchronized IPC.

As an example consider the nine real-time tasks shown in
Figure 2 where tasks are represented by shaded blocks. In
this figure, the execution of the system is broken into twelve
temporal frames. Communication in a frame is represented
by indicating within a sender’s frame the receiver address.
Communication too large to fit within a single frame is
considered across multiple frames. For example, Task 3
send a message to Task 8 during frames nine and ten (see
Figure 2). Using this model, we formulate a mathematical
model to map tasks to cores while maintaining temporarily
disjoint communication.

In this model, we abstract out directional links from a
core and its switch (input queues and an output port, see
Figure 1) without affecting correctness: Output contention
cannot occur between core and switch as only a single task,
i.e., only a single sender exists per core. Input contention
could result when multiple tasks send to a single receiver
along disjoint paths to a destination switch but only one



Figure 3. Contended Network Resource (Config 2)
message can be delivered at a time via the switch-to-core
link. Such contention is permissible under our model, and we
show how blocking under input contention can be bounded
by the number of senders. As an example, if task 6 sends a
message to task 8 in frame 2 of Figure 2, sends from tasks 3
and 6 would result in input contention at task 8, the receiver
of both. Whichever send, that of task 3 or 6, comes later, it
would block until the earlier message has been received due
to input contention. In the following, we will explicitly refer
to “input contention” and otherwise use the term contention
to refer to “link contention” within the mesh.

4. Motivation

Let us provide a motivational example to assess the impact
of contention-based latency on real-time tasks. We use a
3x3 NoC with nine tasks broken into 12 temporal frames
as described in the previous section, our “running example”
used throughout the paper. The randomly generated task set
has high utilization that takes advantage of the NoC archi-
tecture using message-based IPC. There are 10 messages
that are sent within the hyper-period. These messages are
shown in the temporal framing example in Figure 2. We
evaluated three layouts of the tasks on the NoC, each with
different amounts of network contention, to show the impact
of contention on jitter.

We first evaluate a contention scenario based on a naı̈ve
layout, “Config 1”, as shown in Figure 1. In this layout, the
tasks are mapped to the core corresponding to the task id.
The naı̈ve layout results in contention along edge4 → 5.
This contention is a result of two simultaneous messages, as
previously described. There is actually an additional message
during this frame 9 from Tasks5 → 1 (see Figure 2) that
does not result in contention due to link duplexing.

The second contention scenario, “Config 2” in Figure 3,
contains a shows the effect of contention across multiple
temporal frames and its effect on jitter. Temporal frames 7
and 9 result in contended links between two sending/receiv-
ing pairs in each frame.

We also evaluate a third layout without contention, “Op-
timal” in Figure 4. No routes are shown in this figure due
to the absence of contention since links are full duplex, i.e.,
edge traversals initiated on opposite ends of a link do not
result in contention.

The graph in Figure 5 shows a comparison of the jitter
across the worst case transfer times (WCTT), i.e., the
maximum measured transfer latency for each transfer in the

Figure 4. Zero Cost Network Layout (Optimal)

Figure 5. Contention Related Jitter
presence of contention, measured over the course of 100
task executions for each of the layouts. The x axis indicates
message size, and the y axis shows the amount of jitter in
CPU cycles on a 700 MHz TilePro64. As message sizes
increase, jitter and WCTT along edges with link contention
also increase for both Config 1 and Config 2. Additional
contention across temporal frames leads to greater jitter
within the system as seen by high jitter for Config 2 than
Config 1. Results for Optimal, a zero-cost layout, show
constant and low jitter as data transfer sizes increase. It
is important to note that small jitter is incurred even in
optimal layouts as NoC grid sizes increase due to added
latency from additional hops to traverse the network. These
results emphasize the necessity to consider and minimize
task layout and network contention on NoC architectures
for real-time systems.

5. Exhaustive Solver Model

We utilize the temporal framing model described previ-
ously as a basis for a constraint programming formulation.
This reduces contention, ease analysis, and maintain com-
munication flexibility. The constraint framework allows us
to systematically determine optimal task-to-core mappings
for NoC architectures. In the formalization, the set of tasks
is considered as a temporal frame graph shown in Figure 6.
The figure depicts the graph representation of our running
example representing any inter-task communication, and
edge weights indicate the time frame during which the
communication occurs. We construct temporal frame graphs
based on the specification of communication within the
real-time task sets (as in Figure 2) and map them onto a
core graph, a representation of the NoC topology. We then
formulate a constraint-programming model that is solved



Figure 6. Temporal Framing Graph
in a branch-and-bound traversal to enumerate and evaluate
all possible mappings so that the amount of IPC based
contention is minimized. The following definitions specify
the constraint model for determining an optimal solution
(there may be more than one) that minimizes contention.

Definition 1: A Temporal Frame GraphTFG = (T, C) is
a weighted and directed graph, whereti ∈ T represents tasks
in a real-time system and a directed edgeci,j,f ∈ C repre-
sents communication between two vertices(ti, tj) whereti
is the sender andtj is the receiver within the temporal frame
f indicated bycf .
Definition 2: A Directed Mesh GraphG = (V, E) is a
representation of cores over a NoC wherevi ∈ V represents
cores on a NoC andei ∈ E is an edge between two cores
vi, vj identified in directional order by(vi, vj).
Definition 3: A function Map(t) maps vertext ∈ T onto a
vertexv ∈ V .
Definition 4: An ordered setPath(vi, vj) denotes the XY
dimension ordered edges on the Manhattan path [19] (edge
traversal) betweenvi, vj ∈ G.
Definition 5: A function Cross(vi, vj , vm, vn) is defined as

Cross(vi, vj , vm, vn) =

8

>

>

>

>

>

<

>

>

>

>

>

:

|Path(vi, vj) if vi 6= vj∧

∩Path(vm, vn)| vm 6= vn∧

|Path(vi, vj)∩

Path(vm, vn)| > 0

0 Otherwise

.
Definition 6: Function Cost(c1, c2) with c1, c2 ∈ C is
defined as

Cost(c1
, c

2) =

8

>

<

>

:

Cross(Map(t1i ), Map(t1j),

Map(t2i ), Map(t2j)) if c1

f 6= c2

f

0 Otherwise

.
Definition 7: The objective function (to be minimized) is
Min(TFG) =

∑
c1∈C,c2∈C Cost(c1, c2).

Definition 8: A set of constraints on the minimization
function are defined as∀t1 ∈ T, ∀t2 ∈ T : t1 6= t2 =⇒
Map(t1) 6= Map(t2).

The constraint framework defined above specifies an
optimization problem whose cost is to be minimized, i.e.,
the cost associated with mapping the TFG onto a Mesh
Graph G. To understand the cost function, let us revisit the
definitions. Between any two vertices in the core graph there
is an ordered setPath(vi, vj) that represents the set of edges
traversed over an XY dimension-ordered route betweenvi

andvj (see Def. 4). The set contains edge tuples in which
< vx, vy > defines a single edge betweenvx and vy. This
tuple is strictly (directionally) ordered such that< vx, vy >
and< vy, vx > refer to separate edges to support the notion
of full duplex edges that exist in many NoC architectures.
To determine the conflicts that occur between two paths, we
define the functionCross(vi, vj , vm, vn) that specifies the
cardinality of the intersection of the two paths defined by
(vivj) and (vm, vn).

The Cross function is used to define a scalar function
Cost(c1, c2) parametrized by two edges obtained the TFG
graph (see Def. 6). It then applies themap function on
source and destinations inc1, c2 and determines the number
of contended links that exist between the two paths. This
determines the total number of contended links that exist
on the paths defined byc1 and c2 assuming thatc1 and c2

occur during the same temporal frame. Otherwise, the result
is zero since communication does not exist during the same
temporal frame and thus no messages can interfere with
one another. The optimization function of this constraint
framework is minimizing the sum of the cost functions
across all edges in the TFG. The constraints to bound this
function enforce a unique mapping,i.e. each task is mapped
to one core and no two tasks share a core (see Def. 8).

6. Heuristic Model

Branch and bound, exhaustive optimization solvers scale
exponentially as the number of variables grow. This holds
true in our exhaustive contention solver detailed in the
previous section. Solutions for NoCs 5x5 and larger can take
hours to obtain an optimal solution. This is particularly true
when the full depth of the search tree has to be traversed,
even when optimized in C and parallelized over multiple
nodes (using MPI) as in our implementation. We developed
HSolver, a heuristic solver to create a low contention layout
for NoCs too large to be solved exhaustively. HSolver is a
multi-heuristic solver designed based on patterns identified
from optimal solutions generated from the exhaustive solver.

HSolver composes multiple heuristics and generates fast
and low contention mappings of tasks to cores based on
communication traces. It determines the lowest cost solution
over a set the heuristics during the mapping process. HSolver
applies two classes of heuristics at each stage of the mapping
process: (1) task selection heuristics and (2) core selection
heuristics. The base algorithm operates by choosing a task
selection heuristic and then mapping it to each unmapped
core identified by each of the core selection heuristics,
ultimately mapping it to the core that results in the lowest
contention cost (local minimization). The mapping process
for each task terminates after evaluating every core or when
a single mapping results in an unchanged system cost. In this
section we use the term degree to denote the edge degree of
the corresponding temporal frame graph.



6.1. Task Mapping Heuristics

HSolver applies three different heuristic selection tech-
niques with each of the core heuristic strategies to determine
the lowest cost solution.

(1) Maximum Degree First: This selection strategy is
based on the premise that high degree solutions will result in
high contention on a given NoC with few scheduling choices
to avoid contention. Here, we seek to schedule the highest
degree tasks first so that we have a higher degree of flexibil-
ity when scheduling subsequent tasks adjacent in the TFG.
This heuristic performs best in situations where only a few
tasks communicate frequently. In such a situation, the few
communicating tasks are scheduled to cores early offering
the most scheduling alternatives to reduce contention cost.
We expect that this heuristic will be used frequently.

(2) Minimum Degree First: The lowest degree selection
strategy chooses tasks starting with the least frequently
communicating one first. Using either sending or receiving
activity increases the communication degree. This strategy
is the inverse of the previous strategy. We do not expect
frequent use but include it for symmetry.

(3) Maximum Cross Chat First: This strategy operates
on the principle of scheduling tasks together that frequently
communicate. The selection heuristic starts by scheduling
the task with the highest degree onto the empty core map.
We then select subsequent tasks that most frequently com-
municate with the currently scheduled group if the number
of message exchanges with this group is greater than a pre-
determined minimum threshold. When no tasks to be sched-
uled remain within that group, determined through graph
connectivity within the TFG, we schedule the remaining
highest degree task and begin group scheduling again. This
heuristic is based on a common pattern seen within the
optimal solutions of frequently communicating partitions.
We expect this to be a frequently used heuristic for high-
frequency communicating task sets.

(4) Minimum Cross Chat First : This strategy operates
on a trivial change to the Maximum Cross Chat First
strategy: It schedules the lowest degree nodes first. The
objective here is to schedule the smallest partitions first.We
do not expect to see this pattern but included it for symmetry.

6.2. Core Mapping Heuristics:

The following are strategies used to select the order of
the cores to evaluate an also selected single task at a time.

(1) Maximum Degree First: NoC tiles on 2D meshes
have a varying number of communication edges dependent
on their location. Innermost tiles contain four communica-
tion edges, non-edge corner tiles contain three communi-
cation edges, and corner tiles contain two communication
edges. This technique attempts to schedule tasks to high
degree cores first to try to reduce opportunities for contention
later. This example is based on optimal solutions that map

frequently communicating tasks to highest degree cores.
This gives high degree tasks more flexibility in establishing
communication channels over the NoC without contention.

(2) Maximum Cross Chat First: Similar to the task
mapping strategy, this core mapping strategy attempts to
place tasks with high degrees of common communication
physically close. When a task is selected, the core mapping
heuristic analyzes the current mapping layout to determine
the task on the map with the largest common communication
degree. If the highest degree of cross chat is greater than a
predetermined threshold, it will then determine an empty
core within the fewest number of hops and attempt to
schedule the task in that location. If the task selection
heuristic selects a task below the threshold, the core selection
heuristic places the task as far away as possible from the
previously mapped groups.

(3) Spiral Out-To-In : This mapping strategy orders core
selection onto a spiral traversal of the NoC starting at the
first core in the Cartesian space and the assigning cores as a
spiral around a matrix. This solution is most effective when
scheduling lowest degree tasks first. This places low degree
tasks along the low edge count tiles on the outside edges
of the NoC, with the highest degree tasks toward the center
of the NoC. We expect Maximum Degree First selection to
work equally well in most scenarios and thus do not expect
this core selection heuristic to be used frequently.

(4) Spiral In-To-Out : This mapping strategy reverses the
allocation order of the Out-To-In spiral and allocates starting
with the internal high degree nodes. This allocation strategy
while originally included for symmetry is expected to work
quite well when paired with task selection strategies that
schedule high degree tasks early, giving more flexibility in
location to high degree tasks. Later contention then would
occur mainly from placement of lower edge tasks and may
result in more frequent use of this selection technique.

7. Micro-Benchmark

To evaluate the effect of task mappings onto NoCs of a a
real processor, we have designed and implemented a micro-
benchmark that emulates the layouts and message traces on
actual hardware. We found it necessary to implement our
own benchmark due to a lack of NoC-level message passing
benchmarks for massive multicores (e.g., Parsec [9] and
Splash-2 [26] support shared memory only while NAS [6]
relies on heavy MPI semantics with collectives). Our micro-
benchmark provides cycle-accurate measurements on this
hardware platform and allows the distinction between hard-
ware or the software overheads. Our benchmark implements
the temporal frames abstraction described previously.

The micro-benchmark requires as input the real-time
schedule, message traces, and a mapping layout. The com-
plete framework and inputs are shown in Figure 7. These
inputs are divided into various phases based on the message
traces and real-time schedule. These phases are defined



Figure 7. Tilera Evaluation Framework
as computation, sending, receiving, and idle phases. The
benchmark uses the real-time task configuration to determine
the emulated NoC size and lays out the task set on a
contiguous grid of the configured NoC according to the
layout designated.

The benchmark is deployed on a Tilera TilePro64 proces-
sor running at 700 MHz that contains 64 cores in an 8x8
NoC mesh and six independent mesh networks for memory,
coherence, I/O, etc. Among these meshes is a low latency
message-passing network called the user-dynamic network
(UDN) that can be used to transfer messages of sizes up to
1KB at a time. The network is 32 bits wide and supports
bi-directional communication. Messages are transferred via
wormhole routing that locks the XY ordered Manhattan
path between two cores during the transfer of a message.
Further exploration of the Tilera message passing network
can be found elsewhere [25]. The benchmark is designed to
take advantage of the dataplane options supported by the
Tilera architecture that include a low overhead operating
system variant of Linux called Zero-Overhead-Linux. Using
this platform, our benchmark is able to allocate a grid of
cores on the TilePro64 to emulate smaller grids that do
not service operating system interrupts. This results in very
predictable execution. Our micro-benchmark allows us to
execute randomly generated task-sets derived from their
message traces. We measure the impact of layout, network
contention, and temporal abstraction on predictability.

8. Results

We implemented two solvers, an exhaustive solver and
HSolver, to find effective mappings that minimize/reduce
contention costs. We then compared their outcomes across
100 randomly generated task sets of multiple sizes. Each
randomly generated benchmark consisted of a number of
tasks equal to the number of cores in the experiment. The
period for each task was randomly generated but limited
by varying the maximum resultant hyper-period. Varying

the maximum hyper-period and the number of messages
within each task set allowed us to control the communication
density to improve the likelihood of link contention. The
exhaustive solver was implemented using C++ with MPI and
evaluated using 64 cores over 4 nodes with two sockets of
AMD Opteron 6128 processors (8 cores per socket). HSolver
was implemented in C++ using only a single processing
thread within the same hardware configuration. To evaluate
this work systematically, we randomly generated multiple
real-time task sets and message traces for all evaluated NoC
dimensions. Thresholds used in HSolver were dynamically
evaluated from two to1/2 the number of cores in the NoC
and compared to determine which threshold value resulted
in the lowest cost solution.

In our first experiment, we compare the minimum so-
lutions for each of the solvers as the complexity of the
systems increase. We refer to two different complexity
metrics: (a) the size of the grid and (b) the number of
messages sent during a task set’s hyper-period. Increasing
the number of messages increases the probability that during
any single time frame multiple transfer pairs contend for
the same link, thus decreasing the chances for a zero cost
solution. Also, increasing the size of the grid exponentially
increases the time to convergence. This requires time limits
on the exhaustive solver to avoid indefinitely waiting for
solutions. We refer to this in the remainder of the paper as
the constrained exhaustive model, which only provides an
optimal solution if it terminates within the given time bound
— otherwise, the minimum within the traversed subspace is
returned. We constrain the exhaustive approach to runtimes
ranging from three minutes at 4x4 up to one hour for 8x8
NoC sizes.

Figure 8. Average Contention for Mapping Strategies
We evaluated the minimum aggregate cost across 100

randomly generated task sets in naı̈ve , heuristic, and con-
strained exhaustive mappings as the NoC size increases
along with a linear increase in the number of messages. The
results in Figure 8 show the aggregate contention for each
NoC size. For each NoC size plotted over the x axis, three
bars report the CPU cycle delays due to links contention (y
axis) for the naı̈ve , the HSolver and constrained exhaustive
solver, respectively. The x-axis scales quadratically with the
size of the NoC. Table 1 shows the averaged amount of



Table 1. Average Solving Times [hh:mm:ss.ms]
NoC Heuristic Constrained Exhaustive
4x4 00:00:00.60 00:08:00.00
5x5 00:00:03.00 02:57:00.00
6x6 00:00:14.00 06:46:00.00
7x7 00:00:50.00 06:58:00.00
8x8 00:03:00.00 11:06:00.00

processor time taken by the two solver types for each of the
NoC sizes. In the constrained exhaustive approach, after the
time cut-off, we still allowed execution to occur but no new
branches to be formed. This is why the times vary for the
constrained exhaustive solutions as the remaining subspace
will still be considered after disabling further branch-outs.

The results show that as the grid and message complexi-
ties increase, the solving time for the constrained exhaustive
case increases exponentially while HSolver’s time increases
linearly with mesh sizes. Furthermore, the aggregate con-
tention cost for constrained exhaustive solutions exceeds
that of HSolver as mesh sizes increase. The constrained
exhaustive solver generates optimal results consistentlyfor
NoC sizes of 4x4. At 5x5, it was still able to generate
optimal solutions for a large subset of the test cases —
but not all of them. At 6x6 and beyond, the constrained
exhaustive solver no longer provided optimal solutions or
even mappings anywhere close to those of HSolver when
its traversal was cut short by timing constraints due to
the exponential explosion of the search space. Error bars
show the disparity between the minimum and maximum
results within each local benchmark grouping. The error
bars indicates that HSolver results in solutions that are more
consistent across each data set. We also observe a near
constant growth rate in overhead for the heuristic approach
but a faster (at last second degree polynomial if not higher)
growth rate for both the naı̈ve and the constrained exhaustive
solvers as solution sizes increase. This is important for
assessing scalability for large NoC processors and with high
IPC utilization. The growth rate shows that as these metrics
increase, naı̈ve and constrained exhaustive approaches will
result in real-time systems with quadratically increasing
levels of contention. Hence, heuristic schemes seem very
promising as the first 100-core processors are said to be
released in 2011 with the TileGX [2].

Figure 9. Percent Use of Core Selection Strategies
We also evaluated the HSolver approach to determine

the rate at which heuristics were used to generate the
low-cost solution. These results allow us to identify which
are the important heuristics and to provide a direction for

Figure 10. Percent Use of Task Selection Strategies

Figure 11. Contention Jitter on a 4x4 NoC
analysis in determining why certain heuristics are more
effective. Results in Figures 9 and 10 are taken across all
benchmarks generated. Figure 9 shows the core selection
strategies and the percent of use of each during heuristic
solving. These results show a significant variation in the
effectiveness of core strategies. Overall, minimizing the
distances between frequently communicating cores is the
most beneficial heuristic. This correlates well with the results
from Figure 10, where two selection strategies account for
98% of the low-cost solutions. The most effective solution
is generally obtained by selecting tasks by maximum cross-
chat relative to the currently mapped tasks.

We further conducted experiments to assess the impact of
link contention on communication jitter. We evaluated a 4x4
mesh with 10 randomly generated task sets, each containing
200 messages within their hyper-period. Using the exhaus-
tive solver without time constrains to yield optimal results,
we determined that only tests 8 and 10 contained schedules
where mappings with zero contended links were found. For
all cases, time-frame windows of 10µs were imposed. We
then calculated the standard deviations over all 2KB transfers
that were issued. Figure 11 depicts the standard deviation in
clock cycles for different tasks sets for the three mapping
approaches. The figure shows that any single contended link
can have a significant impact on the standard deviation of
transfer latencies. The exhaustive results for all test cases
(except for 8 and 10) show that the standard deviation of a
system is only affected by cache latencies. Cache warm up
is included in these costs and acts as an additive constant on
the worst-case transfer times due to additional latencies for
data and instruction references. In test cases 8 and 10 the
heuristic algorithm shows better performance than the opti-



Table 2. Solving Times per Task Set for a 4x4 Mesh
[hh:mm:ss.ms]

Test Case Heuristic Exhaustive(Optimal)
1 00:00:00.60 00:00:26.66
2 00:00:00.60 00:04:53.33
3 00:00:00.60 00:02:93.33
4 00:00:00.60 00:02:93.33
5 00:00:00.60 00:01:06.00
6 00:00:00.60 00:00:26.66
7 00:00:00.60 00:00:08.00
8 00:00:00.60 01:10:13.33
9 00:00:00.60 00:00:08.00

10 00:00:00.60 01:00:02.00

Figure 12. Jitter as a Percentage of Worst Case Trans-
fer Time on a 4x4 NoC

mal contention solver. The heuristic solver and the optimal
solver found solutions with the same amount on contention
but the mappings were different. Further analysis into these
discrepancies indicated varying performance depending on
the path lengths of communication resulting in contention.

HSolver was unable to generate any zero-cost solutions
for the benchmarks in our 4x4 configuration but was able
to show a reduction in jitter of almost 40% when compared
with the naı̈ve mapping. To understand this impact, it is
necessary to discuss the amount of time required to converge
on a solution within the exhaustive and heuristic approaches.
Table 2 shows the timing results for each configuration
evaluated in this experiment. All results determined by the
heuristic approach converged within fractions of a second.
Using the exhaustive solver, convergence can take up to 70
of minutes for solutions with contention. As grid sizes grow,
convergence grows exponentially for the exhaustive solver
while HSolver’s convergence times grow linearly. To help
correlate the impact of the results, Figure 12 shows the
contention jitter as a percentage of the measured worst-case
transfer time for the same task sets and solver approaches.
These results indicate that naı̈ve mappings can result in jitter
of almost 13% of the total worst case transfer time. Jitter of
this scale could result in missed deadlines in hard real-time
systems due to poor task placement. In comparison, heuristic
scheduling reduces that impact by up to 50% while optimal
task placement without contention shows less than 1% jitter.

Figure 13. Scatter Send One to One on a 4x4 NoC

Figure 14. Scatter Receive One to One on a 4x4 NoC

The final experiments illustrate the impact of unavoidable
contention on real-time predictability. We previously defined
this as input contention (Section 3), i.e., two or more cores
send to a single receiver in the same time frame. In this sce-
nario, task placement may result in (unavoidable) contention
imposed by the application code. Figures 13- 16 depict
the cost for sends and receives for one-to-one and two-
to-one pairing of senders/receivers. In taking these results
we allowed a cache warm-up period prior to capturing the
effects of contention. Senders under one-to-one (Figure 13)
experience tight WCET send costs of exactly 515 cycles
(irrespective of hop counts), only naı̈ve has higher costs
as it results in occasional link contention. Senders under
two-to-one (Figure 15) experience overheads in three bands.
Contention-free sends require 515 cycles. The other bands
result from input contention for a single packet transfer.

Figure 15. Scatter Send Two to One on a 4x4 NoC



Figure 16. Scatter Receive Two to One on a 4x4 NoC

When a sender is blocked once under input contention,≈

1000 cycles are observed. The band around 1500 cycles is
due to link contention and input contention. This effect is
shown twice for both optimal and heuristic solutions and
is a result of a single link contention and input contention
on seperate cores. This example shows the worst-case expe-
rienced over multiple runs and emphasises the significant
impact that contention can have on bounding WCET. In
this example the two types of contention discussed lead to
an 191% increase in WCET. Figures 14 and 16 depict the
receiver overhead for one-to-one and two-to-one transfers,
which is quite uniform for heuristic and optimal (link
contention free) with occasional higher cost for naı̈ve due
to link contention. Occasionally higher receive costs (≈

1000) for heuristic and optimal (two cases each) appear to
correspond to the 1500 send cases. Overall, overheads can
be safely bounded for sends (600/1500 cycles) and receives
(600/1100 cycles) per packet (without/with input contention)
for hard real-time systems. For soft real-time, tighter bounds
of 600/600 and 600/1100 for send and receives, respectively,
can be provided.

9. Related Work

Bender [8] uses mixed integer linear programming mod-
els of heterogeneous multi-cores to solve the task layout
problem to guarantee execution time. The solver operates
agnostically of the underlying communication mechanism
and is unable to model delays due to contention. In contrast,
our work operates on a precise model of the underlying
network structure for the sole purpose of contention analysis
and its effect on execution time. Communication size and
time is considered in both their and our work. Murali and
De Micheli [20] investigate splitting communication along
alternate paths to avoid network based delays. Our work fo-
cuses on NoC architectures with static routing, i.e., without
alternate path routing, as seen in current multicores. Hu/Mar-
culescu as well as Kuchcinski investigate resource allocation
of acyclic graphs to provide timing guarantees [17], [18].
These approaches address heterogeneous multi-core archi-
tectures and focus on mapping tasks to the correct processor
types while our paper addresses homogeneous architectures

and focuses on resource mapping to reduce communication
overheads.

More recent work by Chou and Marculescu [11] explores
intelligent task mapping to reduce contention in order to
increase throughput and reduce the number of hops used
per communication to reduce energy consumption. They also
utilize a solver model but consider communication without
temporal properties. This can lead to overly conservative
solutions with less flexibility for mappings compared to
our approach. Zhuet al. [27] create task to core mappings
without considering communication. After the mapping is
completed, scheduling is then performed on the communi-
cation to reduce contention. Both of these papers operate on
a class of programs known as streaming data flow (SDF)
programs that are generally related to media with soft real-
time constraints. Our focus is on hard real-time systems
and considers communication first rather than in a second
step. Leeet al. [5] investigate reducing power and delays
that result from contention on a NoC memory network. In
contrast, our focus is on predictability.

Stuijk et al. [22] look into resource allocation for multi-
processor SDFs to increase throughput. This approach uses
TDMA to schedule communication into time slices but
keeps communication physically disjoint via hardware. Our
temporal frames are TDMA-like and require the programmer
to comply with frame access constraints in software. As NoC
sizes increase, they offer significant real estate to support
several simultaneous messages without contention where
TDMA approaches significantly limit available bandwidth.
Another area in which our work differs from most of these
works is that we do not consider the SDF model but instead
focus on a hard real-time model. In SDF models, the impetus
is on achieving maximum throughput; our work focuses on
reduction of contention to increase predictability.

Goossenset al. [14] survey contention free routing via
TDM slot reservation for both wires and buffers. TDM in
the network is realized at the hardware level. Our work is
implemented on top of an architecture that does not provide
contention avoidance at the hardware level. Their model
is more restrictive and costly in terms of power in that
TDM hardware will even be used at times when there is
no contention on the network. Our software model allows
for variable frame sizing to avoid impeding performance in
systems with little contention.

In the context of framing, NoC links and routers could
potentially be gated when no messages are crossing them
to reduce power consumption [16]. Our work could benefit
from such an approach, but we focus on predictability for
real-time systems instead of power, and we utilize currently
available architectures instead of resorting to simulation.

10. Conclusion

We have designed a temporally aware distributed real-
time abstraction for creating contentionless task-to-core



mappings. Using constraint programming techniques we
modeled an exhaustive solver to determine optimal map-
ping for solvable NoCs. Based on heuristics derived from
solutions to optimal task layouts, we were able to design a
multi-heuristic solver, HSolver, that generates fast and low
contention solutions for heavily contended NoCs. Compared
with naı̈ve and time-constrained exhaustive solving, HSolver
was able to reduce aggregate contention by up to 70% while
reducing jitter by up to 40% in our experiments. We addi-
tionally contributed a micro-benchmark of task system IPC,
implemented and evaluated on a Tilera TilePro64, a state-
of-the-art NoC processor with 64 cores. We evaluated 100
randomly generated task sets of increasing NoC size, some
containing up to 600 messages in NoCs of 8x8 using 60
temporal frames on the TilePro64. Overall, we contributed a
compelling method for a novel approach to contention-based
modeling of real-time tasks that communicate via messages
over a NoC on a multicore processor and demonstrated
how predictability can be significantly improved in such
environments.

References

[1] Single-chip cloud computer.
blogs.intel.com/research/2009/12/sccloudcomp.php.

[2] Tilera gx processor family.
http://www.tilera.com/products/processors/TILE-GxFamily.

[3] Tilera processor family. http://www.tilera.com/.
[4] Exploration of distributed shared memory architectures for

noc-based multiprocessors.Journal of Systems Architecture,
53(10):719 – 732, 2007.

[5] Communication-aware task assignment algorithm for mpsoc
using shared memory. Journal of Systems Architecture,
56(7):233 – 241, 2010.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks.
The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new os architecture for scalable multicore
systems. InSymposium on Operating Systems Principles,
pages 29–44, 2009.

[8] A. Bender. Milp based task mapping for heterogeneous
multiprocessor systems. InProceedings of the conference on
European design automation, EURO-DAC ’96/EURO-VHDL
’96, pages 190–197, Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: Characterization and architectural implica-
tions. In International Conference on Parallel Architectures
and Compilation Techniques, October 2008.

[10] M. Cabanas-Holmen, E. H. Cannon, C. Neathery, R. Brees,
B. Buchanan, A. Amort, and A. Kleinosowski. Maestro
processor single event error analysis.

[11] C.-L. Chou and R. Marculescu. Contention-aware application
mapping for network-on-chip communication architectures.

In International Conference on Computer Design, pages 164
–169, oct. 2008.

[12] J. Donovan. Arm cto warns of dark silicon.
[13] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,

and D. Burger. Dark silicon and the end of multicore scaling.
In International Symposium on Computer Architecture, pages
365–376, 2011.

[14] K. Goossens, J. Dielissen, and A. Radulescu. &#198;thereal
network on chip: Concepts, architectures, and implementa-
tions. IEEE Des. Test, 22:414–421, September 2005.

[15] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia,
J. Auricchio, P.-C. Huang, M. Arora, S. Nath, V. Bhatt,
J. Babb, S. Swanson, and M. Taylor. The greendroid mo-
bile application processor: An architecture for silicon’sdark
future. IEEE Micro, 31:86–95, March 2011.

[16] K. C. Hale, B. Grot, and S. W. Keckler. Segment gating for
static energy reduction in networks-on-chip. InWorkshop on
Network on Chip Architectures, pages 57–62, 2009.

[17] J. Hu and R. Marculescu. Energy- and performance-aware
mapping for regular noc architectures.IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems,
24(4):551–562, 2005.

[18] K. Kuchcinski. Constraints-driven scheduling and resource
assignment.ACM Trans. Des. Autom. Electron. Syst., 8:355–
383, July 2003.

[19] W. Lipski, Jr. An o(n log n) manhattan path algorithm.Inf.
Process. Lett., 19:99–102, September 1984.

[20] S. Murali and G. D. Micheli. Bandwidth-constrained mapping
of cores onto NoC architectures, 2004.

[21] H. Ramaprasad and F. Mueller. Bounding worst-case data
cache behavior by analytically deriving cache reference pat-
terns. InIEEE Real-Time Embedded Technology and Appli-
cations Symposium, pages 148–157, Mar. 2005.

[22] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Multi-
processor resource allocation for throughput-constrained syn-
chronous dataflow graphs. InDesign Automation Conference,
pages 777 –782, june 2007.

[23] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor.
Conservation cores: reducing the energy of mature computa-
tions. In Architectural Support for Programming Languages
and Operating Systems, pages 205–218, 2010.

[24] Villalpando, C.Y., Johnson, A.E., Some, R., J. Oberlin, Gold-
berg, and S. Investigation of the tilera processor for real time
hazard detection and avoidance on the altair lunar lander. In
Aerospace Conference, 2010 IEEE, pages 1 –9, march 2010.

[25] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal. On-chip interconnection architecture of the tile
processor.IEEE Micro, 27:15–31, September 2007.

[26] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. InInternational Symposium on Computer
Architecture, pages 24 –36, june 1995.

[27] J. Zhu, I. Sander, and A. Jantsch. Constrained global
scheduling of streaming applications on mpsocs. InAsia and
South Pacific Design Automation Conference, pages 223–228,
Jan. 2010.


