Low Contention Mapping of Real-Time Tasks onto a TilePro 64 @re Processor

Christopher Zimmer and Frank Mueller
North Carolina State University, Raleigh, NC 27695-8206efter@cs.ncsu.edu

Abstract [o] jB

Predictability of task execution is paramount for real-tim
systems so that upper bounds of execution times can be
determined via static timing analysis. Static timing aséy
on network-on-chip (NoC) processors may result in unsafe
underestimations when the underlying communication paths
are not considered. This stems from contention on the . . .
underlying network when data from multiple sources share Figure 1. NoC Contention (Config 1)
parts of a routing path in the NoC. Contention analysisdetection in satellites using the Opera Maestro proces-
must be performed to provide safe and reliable bounds. Irsor [10], a radiation hardened TilePro with 49 cores devel-
addition, the overhead incurred by contention due to inter-oped by Boeing. A drawback of these processors is posed
process communication (IPC) can be reduced by mappin@y NoC contention of multiple tasks. Such contention exists
tasks to cores in such a way that contention is minimized. for shared-memory accesses, for off-chip memory refeence

This paper makes several contributions to increase preand for message passing when utilizing distributed softwar
dictability of real-time tasks on NoC architectures. Fjraste ~ models instead of shared memory. Our work focuses on
contribute a constraint solver that exhaustively maps-real message passing over the NoC assuming separate NoC
time tasks onto cores to minimize contention and improvénterconnects for memory, coherence, I/0 and messaging [3]
predictability. Second, we develop a novel TDMA-like ap-Other work on increasing predictability and coping with Aon
proach to map communication traces into time frames touniform memory latencies is orthogonal [4].
ensure separation of analysis for temporally disjoint com- Message-based communication over the NoC has been
munication. Third, we contribute a novel multi-heuristig-a shown to increase scalability compared to shared-memory
proximation, HSolver, for rapid discovery of low contemtio programming [7]. We conjecture that it can also assist in
solutions. HSolver reduces contention by up to 70% wheincreasing predictability by decreasing contention assit i
compared with n&ve and constrained exhaustive solutions.easier to analyze messages statically than shared memory
We evaluate our experiments using a micro-benchmark afeferences [21]. Even under message passing, poor task-
task system IPC on the TilePro64, a real, physical NoCto-core mappings can result in a loss of predictability due
processor with 64 cores. To the best of our knowledge, thiso latencies incurred through NoC contention. Consider
is the first work to consider IPC for worst-case time framesa mesh NoC with full-duplex links, i.e., two messages
to simplify analysis and to measure the impact on actualtraveling in opposite directions over a link do not result

hardware for NoC-based real-time multicore systems. in contention, that utilizes static dimension-ordered mwor
. hole routing favoring horizontal routing before vertical.|
1. Introduction Consider the example “Config 1” in Figure 1 of nine cores

with a mesh NoC. Two messages are sent, one from core

processor architectures provide significant advancentents 4 - 2_ End the 0\%? froms — ﬁ as dep!cted by the_
also challenges for real-time systems. These advancemer{'t'geS with arrows. en sent at the same time, contention

come from simplifications in processor cores that resul" tEe I|nk|4 = b gdelpm':ced as afth'ﬁk link in the Ngc
in increased accuracy of static timing analysis, simplifiedmes) results in a delay for one of these messages due to

scheduling algorithms due to an abundance of cores, an%rbi?ration within the NoC h_ardware routers. (Packets_are
synchronization free data resource models implementeEOt interleaved as an open virtual Cha”r_‘e' monopolize I_|nks
through explicit inter-process communication (IPC) in the etween endpoints.) As a result, sending tasks experience

form of messages. Due to these advancements, this proces&:&ghly vari_aple latencies. Such variability can be. reduced
architecture is seeing increased use in hard real-timergst or even eliminated when tasks are layed out intelligently to

such as in [24] where the authors explore real-time hazar!f"wer or even_completely avo!d contgr)tlon, respe(;tlveheT
effect shown in this example is amplified as the size of NoC

This work was supported in part by NSF grants CNS-0720496 GN8- meshes incre_ase_s resulti_ng in larger paths through neswork
0905181 and communication that is more frequent.

Distributed software models on network-on-chip (NoC)

We propose an abstraction model for message-based NoC Task TEm | T
contention that, when applied to statically scheduled hard T::k1 C T e
real-time tasks, allocates messages into temporal windows

Task3
Task4 -----

so called “frames”. These frames provide the foundation tess | T 13 Ui
for static analysis on communication paths to evaluate-task S I
to-core mappings. We formulate a constraint problem and Task5

implement an “exhaustive solver” that provides optimal Taské

mappings. Unfortunately, exhaustive approaches do ni# sca Tesk7 [HPOEEEEEE

beyond small NoC mesh sizes as they can take days to Taske NN

solve mapping layouts. Hence, we further develop a multi- TR

heuristic solver, called “HSolver”. We identify a set ofexff time

tive mapping patterns that yield near-optimal results evhil Figure 2. Temporal Framing Example

providing sustained scalability in finding such solutiomsre distributed model by eliminating the need to analyze shared
for large NoC meshes. Finally, we contribute a micro-memory and resource sharing. Instead, we focus on explicit
benchmark that empirically tests our designed model anénessage passing.
evaluate our_approach on a Tilera TilePro processor with _64‘13' Software-Based Temporal Framing
cores [3]. Using our solvers, we are able to reduce contentio
by over 70% compared to a naive and the constrained Temporal framing is a technique similar to time-division
exhaustive solutions for NoC sizes too large to be solvednultiple-access (TDMA) that imposes frames to bound
optimally within hours. communication into time windows. It differs from TDMA

To the best of our knowledge, this is the first work in that it does not limit the amount of IPC in a single
to address predictability of NoC communication via fram-frame; instead, it is used solely for analysis purposes to
ing messages into temporal windows for real-time taskstry and statically map tasks to processors and to reduce
Previous work [11] viewed communication as temporallycommunication interference. Programmatically, this lfa
stateless. This limited the amount of communication thaitated using self-referential frame checking within a tésk
could feasibly be solved. It also resulted in solutions thatidentifying when a specific message can be sent/received. To
were overly conservative in thainy potentialfor common guarantee predictability within a real-time environmem¢,
message routes were considered contention. By using tempassume that senders and receivers are at least predetgrmine
ral windows, we are able to solve the problemdeparating within the hyper-period of a periodic task set and that
temporally disjoint messag&gen analyzing link contention communicating pairs are guaranteed to be active during any
scenarios and thus increasing communication predicabili frame in which they send or receive data. This assumption
2 Back d is easily supported under the dark silicon model because

- backgroun high utilization and delays due to resource sharing do not

Prior work on conservation cores shows the potentiakxist. Because of this assumption, we can then use temporal
of heterogeneous multicores where cores are specializddames as a means of synchronizing senders and receivers
according to application demands and parallelization conto reduce latency incurred through non-synchronized IPC.
straints [23], [15]. In such multicore scenarios with mesh As an example consider the nine real-time tasks shown in
topologies, task-to-core mapping particularly affect lapp Figure 2 where tasks are represented by shaded blocks. In
cations with real-time constraints due to time perturbatio this figure, the execution of the system is broken into twelve
resulting from NoC contention. Our work considers a NoCtemporal frames. Communication in a frame is represented
model in which a single task is mapped to a single core, i.e by indicating within a sender’s frame the receiver address.
where an abundance of cores is available (but only some dommunication too large to fit within a single frame is
them are active at any time) or where core specializatiortonsidered across multiple frames. For example, Task 3
requires such a mapping (as for conservation cores). Suckend a message to Task 8 during frames nine and ten (see
abstractions, sometimes referred to as “dark silicon” [13] Figure 2). Using this model, we formulate a mathematical
[12], assume that cores are abundant, yet not all cores canodel to map tasks to cores while maintaining temporarily
necessarily be active simultaneously due to thermal/powetdisjoint communication.
constraints or lack of parallelism. For example, Intel'sCSC In this model, we abstract out directional links from a
faces such a performance/power tradeoff that requires comore and its switch (input queues and an output port, see
deactivation and/or dynamic voltage and frequency scalindgrigure 1) without affecting correctness: Output contemtio
[1]. This model reduces real-time scheduling to core aetivacannot occur between core and switch as only a single task,
tion/deactivation, which simplifies static timing analysisit i.e., only a single sender exists per core. Input contention
eliminates the penalties and complexities due to the cgchincould result when multiple tasks send to a single receiver
effects of context switching. We gain further accuracy im ou along disjoint paths to a destination switch but only one

4]
- ' . [
Figure 3. Contended Network Resource (Config 2) Figure 4. ZéJCOSt l\work Lut (Optimal)

message can be delivered at a time via the switch-to-core

link. Such contention is permissible under our model, and we 4500

. . . /.
show how blocking under input contention can be boundec - % /
by the number of senders. As an example, if task 6 sends & 3232 / /
message to task 8 in frame 2 of Figure 2, sends from tasks £ . //
and 6 would result in input contention at task 8, the receive g 5000 S/ Config 1
of both. Whichever send, that of task 3 or 6, comes later, i 1s00 //// —Config 2
would block until the earlier message has been received duv g 1000 = Optimal
to input contention. In the following, we will explicitly fer 500 =

0 —

to “input contention” and otherwise use the term contentior

. . . . 512 1024 2048 4096
to refer to “link contention” within the mesh.

Data Transfer (Bytes)

4. Motivation Figure 5. Contention Related Jitter

: N . resence of contention, measured over the course of 100
Let us provide a motivational example to assess the |mpa(§

of contention-based latency on real-time tasks. We use aask executions for each of the layouts. The x axis indicates

3x3 NoC with nine tasks broken into 12 temporal framesgszsigilglszegnaQ%?S K/ASX ISTﬁgngZheAimrggQ;:f e“t?relg
as described in the previous section, our “running example y z ' ge stz

increase, jitter and WCTT along edges with link contention
used throughout the paper. The randomly generated task Sa{s:o increase for both Config 1 and Config 2. Additional

has high utilization that takes advantage of the NoC archi- X .
contention across temporal frames leads to greater jitter

tecture using message-based IPC. There are 10 messa% in the system as seen by high jitter for Config 2 than

that are sent within the hyper-period. These messages aE,eonfig 1. Results for Optimal, a zero-cost layout, show

shown in the temporal framing example in Figure 2. We onstant and low jitter as data transfer sizes increase. It
evaluated three layouts of the tasks on the NoC, each witffO" J . . -
IS important to note that small jitter is incurred even in

different amounts of network contention, to show the impact_ .. A .
: - optimal layouts as NoC grid sizes increase due to added
of contention on jitter.

) . . . latency from additional hops to traverse the network. These
We first evaluate a contention scenario based on a naive

“ N D . résults emphasize the necessity to consider and minimize
layout, “Config 1", as shown in Figure 1. In this layout, the . .
. task layout and network contention on NoC architectures
tasks are mapped to the core corresponding to the task i

The naive layout results in contention along edge- 5. or real-time systems.
This_contention i.s a result of_ two simultaneoug_messages, 3% Exhaustive Solver Model
previously described. There is actually an additional agss
during this frame 9 from Task§ — 1 (see Figure 2) that We utilize the temporal framing model described previ-
does not result in contention due to link duplexing. ously as a basis for a constraint programming formulation.
The second contention scenario, “Config 2" in Figure 3,This reduces contention, ease analysis, and maintain com-
contains a shows the effect of contention across multiplenunication flexibility. The constraint framework allows us
temporal frames and its effect on jitter. Temporal frames 4o systematically determine optimal task-to-core mapping
and 9 result in contended links between two sending/receivfor NoC architectures. In the formalization, the set of sask
ing pairs in each frame. is considered as a temporal frame graph shown in Figure 6.
We also evaluate a third layout without contention, “Op- The figure depicts the graph representation of our running
timal” in Figure 4. No routes are shown in this figure due example representing any inter-task communication, and
to the absence of contention since links are full duplex, i.e edge weights indicate the time frame during which the
edge traversals initiated on opposite ends of a link do notommunication occurs. We construct temporal frame graphs
result in contention. based on the specification of communication within the
The graph in Figure 5 shows a comparison of the jitterreal-time task sets (as in Figure 2) and map them onto a
across the worst case transfer times (WCTT), i.e., theore graph, a representation of the NoC topology. We then
maximum measured transfer latency for each transfer in théormulate a constraint-programming model that is solved

andwv; (see Def. 4). The set contains edge tuples in which
< vz, vy > defines a single edge betweep andv,. This
tuple is strictly (directionally) ordered such thatv,, v, >
and< v,, v, > refer to separate edges to support the notion
of full duplex edges that exist in many NoC architectures.
To determine the conflicts that occur between two paths, we
define the functiorCross(v;, v;,vm, v,) that specifies the
cardinality of the intersection of the two paths defined by
(viv;) and (vp,, vy).

. . The Cross function is used to define a scalar function
. Figure 6. Temporal Framing Graph ost(c!,c?) parametrized by two edges obtained the TFG
in a bral_’lch—and-bqund traversal to enumerate and evalua ?aph (see Def. 6). It then applies theap function on

all possible mappings so that the amount of IPC base ource and destinations i, ¢ and determines the number

contention is minimized. The following definitions specify of contended links that exist between the two paths. This

the constraint model for determining_ gn_optimal SOI[.Jtiondetermines the total number of contended links that exist
(thgg?irm%yntf K]'?'(ra%tgg&ogrz)n:g%g%?gei ((:%':]tg)n itlson. on the paths defined byt andc? assuming thati_1 and ¢?

a weighted and directed graph, where T represents tasks 0ccur during the same temporal frame. Otherwise, the result
in a real-time system and a directed edge ; € C repre- is zero since communication does not exist during the same
sents communication between two verti¢est;) wheret; temporal frame and thus no messages can interfere with
is the sender antj is the receiver within the temporal frame gne another. The optimization function of this constraint
f indicated bycy. framework is minimizing the sum of the cost functions

Pe(g;gggrﬂaﬁ:orﬁ OfD éﬁgg ((j)vl\e/lre ;hNOGéavp\;rfg{g V(‘?égr)elssene}[s across all edges in the TFG. The constraints to bound this

cores on a NoC and; € E is an edge between two cores function enforce a unique mappinige. each task is mapped

v;,v; identified in directional order byv;, v;). to one core and no two tasks share a core (see Def. 8).
Definition 3: A function Map(t) maps vertex € T onto a
vertexv € V. 6. Heuristic Model

Definition 4: An ordered setPath(v;,v;) denotes the XY

dimension ordered edges on the Manhattan path [19] (edge : Lo
traversal) between;,v; € G. Branch and bound, exhaustive optimization solvers scale

Definition 5: A function Cross(v;, vj, vy, v,) is defined as exponentially as the number of variables grow. This holds
true in our exhaustive contention solver detailed in the

|Path(vi,v;) if vi # viA previous section. Solutions for NoCs 5x5 and larger can take
NPath(vm, vn)| vm # vn/A hours to obtain an optimal solution. This is particularkyetr
Cross(vi, vj, vm, vn) = |Path(vi,v;)N when the full depth of the search tree has to be traversed,
Path(vm,vn)| >0 even when optimized in C and parallelized over multiple
0 Otherwise nodes (using MPI) as in our implementation. We developed

o] Lo Lo . HSolver, a heuristic solver to create a low contention layou
Definition 6: Function Cost(c',c®) with ¢',c® € Cis for NoCs too large to be solved exhaustively. HSolver is a

defined as multi-heuristic solver designed based on patterns idedtifi
Cross(Map(t;), Map(t;), from optimal solutions generated from the exhaustive solve
Cost(c',c?) = § Map(t), Map(t3)) if ¢} # ¢ HSolver composes multiple heuristics and generates fast
0 Otherwise and low contention mappings of tasks to cores based on

. communication traces. It determines the lowest cost swiuti
Definition 7: The objective function (to be minimized) is over a set the heuristics during the mapping process. HEolve
Min(TFG) =) coec Cost(ct, c?). applies two classes of heuristics at each stage of the mgippin
Definition 8: A set of constraints on the minimization process: (1) task selection heuristics and (2) core selecti
function are defined ast; € T\Vt, € T : t1 # to — heuristics. The base algorithm operates by choosing a task
Map(t1) # Map(ta). selection heuristic and then mapping it to each unmapped

The constraint framework defined above specifies arcore identified by each of the core selection heuristics,
optimization problem whose cost is to be minimized, i.e.,ultimately mapping it to the core that results in the lowest
the cost associated with mapping the TFG onto a Mesltontention cost (local minimization). The mapping process
Graph G. To understand the cost function, let us revisit thdor each task terminates after evaluating every core or when
definitions. Between any two vertices in the core graph thera single mapping results in an unchanged system cost. In this
is an ordered sePath(v;, v;) that represents the set of edgessection we use the term degree to denote the edge degree of
traversed over an XY dimension-ordered route between the corresponding temporal frame graph.

6.1. Task Mapping Heuristics frequently communicating tasks to highest degree cores.

. . - . This gives high degree tasks more flexibility in establighin
_HSoIve_r applies three dn‘feren_t heunsnc _selectlon tech’communication channels over the NoC without contention.
nigues with each of the core heuristic strategies to dete¥mi (2) Maximum Cross Chat First: Similar to the task
the Iowest. cost solution. . , , . mapping strategy, this core mapping strategy attempts to
(1) Maximum D‘?gree F'r_St: This selecnqn stra_tegy IS _place tasks with high degrees of common communication
bf"‘SEd on the_ premise _that high dggree solut|ons_W|II rels_ult 'physically close. When a task is selected, the core mapping
high contention on a given NoC with few scheduling choices, o igic analyzes the current mapping layout to determine

to avoid contention. Here, we seek to schedule the highesfq 1551 o the map with the largest common communication
degree tasks first so that we have a higher degree of ﬂex'b'lﬂegree. If the highest degree of cross chat is greater than a

|t3r/1_wf;]en scheduhpg subbsequ_ent_task_s adjar(ient n lthe -::F redetermined threshold, it will then determine an empty
This heuristic performs best in situations where only a feWe, o \yithin the fewest number of hops and attempt to

tasks communicate frequently. In such a situation, the feV‘échedule the task in that location. If the task selection

communicating tasks are scheduled to cores early offeringe,istic selects a task below the threshold, the coretimiec
the most scheduling alternatives to reduce contention cos euristic places the task as far away as possible from the
We expect that this heuristic will be used frequently. previously mapped groups.

(2) Minimum Degree First: The onvest degree selection (3) Spiral Out-To-In : This mapping strategy orders core
strategy chooses tasks starting with the least frequentlgjection onto a spiral traversal of the NoC starting at the

communicating one first. Using either sending or receivinggt core in the Cartesian space and the assigning cores as a
activity increases the communication degree. This styateggpira| around a matrix. This solution is most effective when
is the inverse of the previous strategy. We do not expec{chequling lowest degree tasks first. This places low degree
frequent use but include it for symmetry. tasks along the low edge count tiles on the outside edges
(3) Maximum Cross Chat First: This strategy operates f the NoC, with the highest degree tasks toward the center
on the principle of scheduling tasks together that fregyent ¢ the NoC. We expect Maximum Degree First selection to
communicate. The selection heuristic starts by scheduling,, i equally well in most scenarios and thus do not expect
the task with the highest degree onto the empty core magp;s core selection heuristic to be used frequently.
We then select subsequent tasks that most frequently com- (4) Spiral In-To-Out : This mapping strategy reverses the
municate with the currently scheduled group if the numbery|ocation order of the Out-To-In spiral and allocatestitgr
of message exchanges with this group is greater than a prjith the internal high degree nodes. This allocation sgate
determined minimum threshold. When no tasks to be schedgpjle originally included for symmetry is expected to work
uled remain within that group, determined through graphyyite well when paired with task selection strategies that
connectivity within the TFG, we schedule the remainingschedule high degree tasks early, giving more flexibility in
highest degree task and begin group scheduling again. Thigcation to high degree tasks. Later contention then would
heuristic is based on a common pattern seen within thg.q mainly from placement of lower edge tasks and may

optimal solutions of frequently communicating partitions ,egyit in more frequent use of this selection technique.
We expect this to be a frequently used heuristic for high-

frequency communicating task sets. 7. Micro-Benchmark

(4) Minimum Cross Chat First: This strategy operates 14 eyaluate the effect of task mappings onto NoCs of a a
on a trivial change to the Maximum Cross Chat Firstyoq) nrocessor, we have designed and implemented a micro-

strategy: It schedules the lowest degree nodes first. Thgenchmark that emulates the layouts and message traces on
objective here is to schedule the smallest partitions fi&t. ,.tual hardware. We found it necessary to implement our

do not expect to see this pattern but included it for symmetry,n benchmark due to a lack of NoC-level message passing

benchmarks for massive multicores (e.g., Parsec [9] and
Splash-2 [26] support shared memory only while NAS [6]
The following are strategies used to select the order ofelies on heavy MPI semantics with collectives). Our micro-
the cores to evaluate an also selected single task at a tim&enchmark provides cycle-accurate measurements on this
(1) Maximum Degree First. NoC tiles on 2D meshes hardware platform and allows the distinction between hard-
have a varying number of communication edges dependentare or the software overheads. Our benchmark implements
on their location. Innermost tiles contain four communica-the temporal frames abstraction described previously.
tion edges, non-edge corner tiles contain three communi- The micro-benchmark requires as input the real-time
cation edges, and corner tiles contain two communicatiorschedule, message traces, and a mapping layout. The com-
edges. This technique attempts to schedule tasks to highlete framework and inputs are shown in Figure 7. These
degree cores first to try to reduce opportunities for coient inputs are divided into various phases based on the message
later. This example is based on optimal solutions that mapraces and real-time schedule. These phases are defined

6.2. Core Mapping Heuristics:

the maximum hyper-period and the number of messages

_ » _ within each task set allowed us to control the communication
Optimal Heuristic Naive Real-time Message
Solver Solver Map Schedule Traces density to improve the likelihood of link contention. The
| exhaustive solver was implemented using C++ with MPI and
‘ ‘ - evaluated using 64 cores over 4 nodes with two sockets of
AMD Opteron 6128 processors (8 cores per socket). HSolver
was implemented in C++ using only a single processing

thread within the same hardware configuration. To evaluate
this work systematically, we randomly generated multiple
real-time task sets and message traces for all evaluated NoC
dimensions. Thresholds used in HSolver were dynamically
evaluated from two td /2 the number of cores in the NoC
and compared to determine which threshold value resulted
in the lowest cost solution.

In our first experiment, we compare the minimum so-
lutions for each of the solvers as the complexity of the

Figure 7. Tilera Evaluation Framework systems increase. We refer to two different complexity

as computation, sending, receiving, and idle phases. Thgeatrics: (a) the size of the grid and (b) the number of
benchmark uses the rgal—time task configuration to det@rminmessages sent during a task set's hyper-period. Increasing
the emulated NoC size and lays out the task set on e number of messages increases the probability thatglurin
contiguous grid of the configured NoC according to thegny single time frame multiple transfer pairs contend for
layout designated. the same link, thus decreasing the chances for a zero cost

The benchmark is deployed on a Tilera TilePro64 processo|ution. Also, increasing the size of the grid exponeltial
sor running at 700 MHz that contains 64 cores in an 8x§ncreases the time to convergence. This requires timeslimit
NoC mesh and six independent mesh networks for memory, the exhaustive solver to avoid indefinitely waiting for
coherence, I/O, etc. Among these meshes is a low latencyo|ytions. We refer to this in the remainder of the paper as
message-passing network called the user-dynamic netwokke constrained exhaustive mogdabhich only provides an
(UDN) that can be used to transfer messages of sizes up ¥htimal solution if it terminates within the given time balin
1KB at a time. The network is 32 bits wide and supports__ ptherwise, the minimum within the traversed subspace is
bi-directional communication. Messages are transferiad Vv retyrned. We constrain the exhaustive approach to runtimes

path between two cores during the transfer of a messag@oc sizes.

Further exploration of the Tilera message passing networ!
can be found elsewhere [25]. The benchmark is designed t
take advantage of the dataplane options supported by tt
Tilera architecture that include a low overhead operating
system variant of Linux called Zero-Overhead-Linux. Using .
this platform, our benchmark is able to allocate a grid of I
cores on the TilePro64 to emulate smaller grids that dc

not service operating system interrupts. This results ity ve 100 I
predictable execution. Our micro-benchmark allows us tc ” o -i I

execute randomly generated task-sets derived from the o a o ' o6 ‘ o
message traces. We measure the impact of layout, netwol Noc e

contention, and temporal abstraction on predictability. Figure 8. Average Contention for Mapping Strategies

8. Results We evaluated the minimum aggregate cost across 100
) randomly generated task sets in naive , heuristic, and con-
We implemented two solvers, an exhaustive solver andtrained exhaustive mappings as the NoC size increases

HSolver, to find effective mappings that minimize/reducealong with a linear increase in the number of messages. The

contention costs. We then compared their outcomes acrosesults in Figure 8 show the aggregate contention for each

100 randomly generated task sets of multiple sizes. EacNoC size. For each NoC size plotted over the x axis, three

randomly generated benchmark consisted of a number dfars report the CPU cycle delays due to links contention (y

tasks equal to the number of cores in the experiment. Thaxis) for the naive , the HSolver and constrained exhagistiv

period for each task was randomly generated but limitedsolver, respectively. The x-axis scales quadraticallylite

by varying the maximum resultant hyper-period. Varyingsize of the NoC. Table 1 shows the averaged amount of

Benchmark

M Naive M Heuristic Constrained Exhaustive

350

300

250

200

150

Contended Links

8x8

Table 1. Average Solving Times [hh:mm:ss.ms)]

— - . .. Minimum

NoC Heuristic Constrained Exhaustive Minimum .

4x4 | 00:00:00.60 00:08:00.00 CrossChat Jegree

5x5 | 00:00:03.00 02:57:00.00 Fir ; First; 1%

6x6 | 00:00:14.00 06:46:00.00 ’

7x7 | 00:00:50.00 06:58:00.00

8x8 | 00:03:00.00 11:06:00.00 Maxinim
processor time taken by the two solver types for each of thi Ximum o eo
NoC sizes. In the constrained exhaustive approach, after tt oss Cha First; 43%
time cut-off, we still allowed execution to occur but no new First; 55%

branches to be formed. This is why the times vary for the Figyre 10. Percent Use of Task Selection Strategies
constrained exhaustive solutions as the remaining subspa

will still be considered after disabling further branchtsu
The results show that as the grid and message complex
ties increase, the solving time for the constrained exhaust
case increases exponentially while HSolver’s time ina@sas
linearly with mesh sizes. Furthermore, the aggregate con
tention cost for constrained exhaustive solutions exceed
that of HSolver as mesh sizes increase. The constraine
exhaustive solver generates optimal results consistéotly

M Heuristic ® Exhaustive(Optimal) Naive

700

Standard Deviation (CPU Cycles)

NoC sizes of 4x4. At 5x5, it was still able to generate 1 2 3 4 5 6 7 8 9 10
optimal solutions for a large subset of the test cases — Task Set
but not all of them. At 6x6 and beyond, the constrained Figure 11. Contention Jitter on a 4x4 NoC

exhaustive solver no longer provided optimal solutions Oranalysis in determining why certain heuristics are more
even mappings anywhere close to those of HSolver whegffective. Results in Figures 9 and 10 are taken across all
its traversal was cut short by timing constraints due topenchmarks generated. Figure 9 shows the core selection
the exponential explosion of the search space. Error bar§trategies and the percent of use of each during heuristic
show the disparity between the minimum and maximumsolying. These results show a significant variation in the
results within each local benchmark grouping. The errolffectiveness of core strategies. Overall, minimizing the
bars indicates that HSolver results in solutions that areemo distances between frequently communicating cores is the
consistent across each data set. We also observe a ngfbst beneficial heuristic. This correlates well with theuttss
constant growth rate in overhead for the heuristic approacfom Figure 10, where two selection strategies account for
but a faster (at last second degree polynomial if not higherygos of the low-cost solutions. The most effective solution
growth rate for both the naive and the constrained exhausti jg generally obtained by selecting tasks by maximum cross-
solvers as solution sizes increase. This is important foghat relative to the currently mapped tasks.

assessing scalability for large NoC processors and with hig \\e further conducted experiments to assess the impact of
IPC utilization. The growth rate shows that as these metric§nk contention on communication jitter. We evaluated a 4x4
increase, naive and constrained exhaustive approacties Wiesh with 10 randomly generated task sets, each containing
result in reaI—tim_e systems with _qu_adratically increasingys g messages within their hyper-period. Using the exhaus-
levels of contention. Hence, heuristic schemes seem Veriye solver without time constrains to yield optimal resylt
promising as the first 100-core processors are said t0 bge determined that only tests 8 and 10 contained schedules

released in 2011 with the TileGX [2]. where mappings with zero contended links were found. For
iral Maximum all cases, time-frame windows of A8 were imposed. We
Spiral In- —Degree then calculated the standard deviations over all 2KB tenssf

that were issued. Figure 11 depicts the standard deviation i
clock cycles for different tasks sets for the three mapping
approaches. The figure shows that any single contended link
Cross) can have a significant impact on the standard deviation of
. _er/ transfer latencies. The exhaustive results for all tesesas
. (except for 8 and 10) show that the standard deviation of a
Figure 9. Percent Use of Core Selection Strategies system is only affected by cache latencies. Cache warm up
We also evaluated the HSolver approach to determinés included in these costs and acts as an additive constant on
the rate at which heuristics were used to generate ththe worst-case transfer times due to additional latencies f
low-cost solution. These results allow us to identify which data and instruction references. In test cases 8 and 10 the
are the important heuristics and to provide a direction forheuristic algorithm shows better performance than the opti

1200
Table 2. Solving Times per Task Set for a 4x4 Mesh
[hh:mm:ss.ms)

1000 S 7 25—

800

Test Case| Heuristic Exhaustive(Optimal) 8
1 [00:00:00.60 00:00:26.66 & O e e e
2 | 00:00:00.60 00:04:53.33 200
3 | 00:00:00.60 00:02:93.33
4 | 00:00:00.60 00:02:93.33 200
5 00:00:00.60 00:01:06.00 —Optimal -0 +Heuristic-0 Naive - 6
6 | 00:00:00.60 00:00:26.66 0 . T r . . .)
7 00:00:00.60 00:00:08.00 0 5 10 15 20 25 30 35
8 | 00:00:00.60 01:10:13.33 Send Number
9 | 00:00:00.60 00:00:08.00 Figure 13. Scatter Send One to One on a 4x4 NoC
10 | 00:00:00.60 01:00:02.00
1200
M Heuristic WCET % ™ Exhaustive WCET % Naive WCET %
1000 o
14.00%
o 12.00% " 800
I 009 Q@ o
2 oo] R WS Pea = Py = e
5 6.00% 400
E 400%
R 2.00% 200
0.00% o I—OptlmaII—O +He|ur|st'|c—0I Nalvel-6 . .
1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30 35

Task Set

Receive Number

Figure 14. Scatter Receive One to One on a 4x4 NoC
Figure 12. Jitter as a Percentage of Worst Case Trans-
fer Time on a 4x4 NoC

The final experiments illustrate the impact of unavoidable

contention on real-time predictability. We previously defil
mal contention solver. The heuristic solver and the optimathis as input contention (Section 3), i.e., two or more cores
solver found solutions with the same amount on contentiorsend to a single receiver in the same time frame. In this sce-
but the mappings were different. Further analysis intoghesnario, task placement may result in (unavoidable) cormenti
discrepancies indicated varying performance depending oimposed by the application code. Figures 13- 16 depict
the path lengths of communication resulting in contention.the cost for sends and receives for one-to-one and two-
HSolver was unable to generate any zero-cost solutiont9-one pairing of senders/receivers. In taking these tesul

for the benchmarks in our 4x4 configuration but was ableve allowed a cache warm-up period prior to capturing the
to show a reduction in jitter of almost 40% when comparedeffects of contention. Senders under one-to-one (Figuye 13
with the naive mapping. To understand this impact, it isexperience tight WCET send costs of exactly 515 cycles
necessary to discuss the amount of time required to converdérespective of hop counts), only naive has higher costs
on a solution within the exhaustive and heuristic approache as it results in occasional link contention. Senders under
Table 2 shows the timing results for each configurationfwo-to-one (Figure 15) experience overheads in three bands
evaluated in this experiment. All results determined by theContention-free sends require 515 cycles. The other bands
heuristic approach converged within fractions of a secondresult from input contention for a single packet transfer.
Using the exhaustive solver, convergence can take up to 7 1600
of minutes for solutions with contention. As grid sizes grow 1400 4 % L L
convergence grows exponentially for the exhaustive solve
while HSolver's convergence times grow linearly. To help
correlate the impact of the results, Figure 12 shows the
contention jitter as a percentage of the measured worst-ca:

1200
1000 TiERmEgEE ek ——St——ibigiur <Hisek
800

Cycles

600

transfer time for the same task sets and solver approache SR P * 426 nex
These results indicate that naive mappings can resuttén ji 400

of almost 13% of the total worst case transfer time. Jitter of 200 —Optimal-1 +Heuristic-1 XNaive-16

this scale could result in missed deadlines in hard rea-tim 0 ' ' ' ' ' ' !
systems due to poor task placement. In comparison, heurist 0 P dNumber

scheduling reduces that impact by up to 50% while optimal
task placement without contention shows less than 1%.jitter Figure 15. Scatter Send Two to One on a 4x4 NoC

1200

1000 + X = and focuses on resource mapping to reduce communication

200 overheads.
g More recent work by Chou and Marculescu [11] explores
T T I T T T L T intelligent task mapping to reduce contention in order to
400 increase throughput and reduce the number of hops used

per communication to reduce energy consumption. They also

—Optimal-1 +Heuristic-1 % Naive - 16 utilize a solver model but consider communication without
0 , . - , temporal properties. This can lead to overly conservative

° 5 Receive Number 1 20 solutions with less flexibility for mappings compared to

our approach. Zhet al. [27] create task to core mappings

without considering communication. After the mapping is
completed, scheduling is then performed on the communi-
cation to reduce contention. Both of these papers operate on
a class of programs known as streaming data flow (SDF)
ograms that are generally related to media with soft real-
time constraints. Our focus is on hard real-time systems
and considers communication first rather than in a second

step. Leeet al. [5] investigate reducing power and delays

200

Figure 16. Scatter Receive Two to One on a 4x4 NoC

When a sender is blocked once under input contention,

1000 cycles are observed. The band around 1500 cycles
due to link contention and input contention. This effect is
shown twice for both optimal and heuristic solutions and
is a result of a single link contention and input contention

on seperate cores. This example shows the worst-case ©XRfiat result from contention on a NoC memory network. In
rienced over multiple runs and emphasises the significargOntrast our focus is on predictability

impact that contention can have on bounding WCET. In Stuijk et al. [22] look into resource allocation for multi-

this example the two types of contention discussed lead t rocessor SDFs to increase throughput. This approach uses
an 1.91% increase in WCET. Figures 14 and 16 depict th DMA to schedule communication into time slices but
receiver over_head _for one-to-one_ar_ld two-to-ope tranZSferskeeps communication physically disjoint via hardware. Our
which IS quite “r?'fo”" for_ heur|_st|c and optlmalu (Iink temporal frames are TDMA-like and require the programmer
conj[ennon free_) with occa_smnal hlgher cost f_or naive dueto comply with frame access constraints in software. As NoC
to link contenpo.n. Occasu_)nally higher receive costs (sizes increase, they offer significant real estate to suppor
1000) for heuristic and optimal (two cases each) appear Qeveral simultaneous messages without contention where
correspond to the 1500 send cases. Overal, overheads_ C¥BMA approaches significantly limit available bandwidth.
be safely bounded for sends (600/1500 cycles) and reCeVeshother area in which our work differs from most of these
(600/1100 cyqles) per packet (WithOUt/Wit_h inpu_t contenyi works is that we do not consider the SDF model but instead
for hard real-time systems. For soft real-tlmg, t'ghte”‘“"ﬂ% focus on a hard real-time model. In SDF models, the impetus
of 600/600 a_nd 600/1100 for send and receives, respectlvel}g on achieving maximum throughput; our work focuses on
can be provided. reduction of contention to increase predictability.
Goossenst al. [14] survey contention free routing via
9. Related Work TDM slot reservation for both wires and buffers. TDM in
Bender [8] uses mixed integer linear programming mod-the network is realized at the hardware level. Our work is
els of heterogeneous multi-cores to solve the task layouimmplemented on top of an architecture that does not provide
problem to guarantee execution time. The solver operatesontention avoidance at the hardware level. Their model
agnostically of the underlying communication mechanismis more restrictive and costly in terms of power in that
and is unable to model delays due to contention. In contrasfiDM hardware will even be used at times when there is
our work operates on a precise model of the underlyingio contention on the network. Our software model allows
network structure for the sole purpose of contention arlys for variable frame sizing to avoid impeding performance in
and its effect on execution time. Communication size andsystems with little contention.
time is considered in both their and our work. Murali and In the context of framing, NoC links and routers could
De Micheli [20] investigate splitting communication along potentially be gated when no messages are crossing them
alternate paths to avoid network based delays. Our work foto reduce power consumption [16]. Our work could benefit
cuses on NoC architectures with static routing, i.e., witho from such an approach, but we focus on predictability for
alternate path routing, as seen in current multicores. lai/M real-time systems instead of power, and we utilize curyentl
culescu as well as Kuchcinski investigate resource aliocat available architectures instead of resorting to simutatio
of acyclic graphs to provide timing guarantees [17], [18]. .
These approaches address heterogeneous multi-core arcpﬂQ' Conclusion
tectures and focus on mapping tasks to the correct processorWe have designed a temporally aware distributed real-
types while our paper addresses homogeneous architecturiame abstraction for creating contentionless task-tecor

mappings. Using constraint programming techniques we
modeled an exhaustive solver to determine optimal map-
ping for solvable NoCs. Based on heuristics derived from12]
solutions to optimal task layouts, we were able to design &l3]
multi-heuristic solver, HSolver, that generates fast aowd |

contention solutions for heavily contended NoCs. Compared

with naive and time-constrained exhaustive solving, M&ol
was able to reduce aggregate contention by up to 70% while

reducing jitter by up to 40% in our experiments. We addi-
tionally contributed a micro-benchmark of task system IPC[15]

implemented and evaluated on a Tilera TilePro64, a state-

of-the-art NoC processor with 64 cores. We evaluated 100

randomly generated task sets of increasing NoC size, some

[14]

containing up to 600 messages in NoCs of 8x8 using 6 16]
temporal frames on the TilePro64. Overall, we contributed a

compelling method for a novel approach to contention-based

modeling of real-time tasks that communicate via messaged7]

over a NoC on a multicore processor and demonstrated

how predictability can be significantly improved in such
environments.

(18]

References

[1] Single-chip cloud computer. [19]
blogs.intel.com/research/2009/12/sccloudcomp.php.

[2] Tilera X processor family. [20]
http://www:.tilera.com/products/processors/TILE-Gamily.

[3] Tilera processor family. http://www.tilera.com/. [21]

[4] Exploration of distributed shared memory architectufer
noc-based multiprocessordournal of Systems Architecture
53(10):719 — 732, 2007.

[5] Communication-aware task assignment algorithm for aops [22]

(6]

using shared memory. Journal of Systems Architectuyre
56(7):233 — 241, 2010.
D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L

Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.[23]

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks.
The International Journal of Supercomputer Applications
5(3):63-73, Fall 1991.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs(24]

[8] A. Bender.

(9]

[10]

[11]

S. Peter, T. Roscoe, A. Schilpbach, and A. Singhania. The
multikernel: a new os architecture for scalable multicore
systems. InSymposium on Operating Systems Principles
pages 29-44, 20009.

Milp based task mapping for heterogeneous
multiprocessor systems. Proceedings of the conference on

European design automatipEURO-DAC '96/EURO-VHDL

(25]

'96, pages 190-197, Los Alamitos, CA, USA, 1996. |IEEE [26]

Computer Society Press.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: Characterization and architectural izapl

tions. InInternational Conference on Parallel Architectures [27]

and Compilation Technique®ctober 2008.

M. Cabanas-Holmen, E. H. Cannon, C. Neathery, R. Brees,
B. Buchanan, A. Amort, and A. Kleinosowski. Maestro
processor single event error analysis.

C.-L. Chou and R. Marculescu. Contention-aware apfibhc
mapping for network-on-chip communication architectures

In International Conference on Computer Desigrages 164
-169, oct. 2008.

J. Donovan. Arm cto warns of dark silicon.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralinga
and D. Burger. Dark silicon and the end of multicore scaling.
In International Symposium on Computer Architectyrages
365-376, 2011.

K. Goossens, J. Dielissen, and A. Radulescu. Ä:tie
network on chip: Concepts, architectures, and implementa-
tions. IEEE Des. Test22:414-421, September 2005.

N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia
J. Auricchio, P.-C. Huang, M. Arora, S. Nath, V. Bhatt,
J. Babb, S. Swanson, and M. Taylor. The greendroid mo-
bile application processor: An architecture for silicodark
future. IEEE Micro, 31:86-95, March 2011.

K. C. Hale, B. Grot, and S. W. Keckler. Segment gating for
static energy reduction in networks-on-chip. Workshop on
Network on Chip Architecturepages 57—-62, 2009.

J. Hu and R. Marculescu. Energy- and performance-aware
mapping for regular noc architecturdEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems
24(4):551-562, 2005.

K. Kuchcinski. Constraints-driven scheduling andowse
assignmentACM Trans. Des. Autom. Electron. Sy&.355—
383, July 2003.

W. Lipski, Jr. An o(n log n) manhattan path algorithrmf.
Process. Lett.19:99-102, September 1984.

S. Murali and G. D. Micheli. Bandwidth-constrained rpamm

of cores onto NoC architectures, 2004.

H. Ramaprasad and F. Mueller. Bounding worst-case data
cache behavior by analytically deriving cache referende pa
terns. InlEEE Real-Time Embedded Technology and Appli-
cations Symposiunpages 148-157, Mar. 2005.

S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Multi
processor resource allocation for throughput-constcasya-
chronous dataflow graphs. Design Automation Conference
pages 777 —782, june 2007.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor.
Conservation cores: reducing the energy of mature computa-
tions. InArchitectural Support for Programming Languages
and Operating Systempages 205-218, 2010.

Villalpando, C.Y., Johnson, A.E., Some, R., J. Oberold-
berg, and S. Investigation of the tilera processor for rieaé t
hazard detection and avoidance on the altair lunar lander. |
Aerospace Conference, 2010 IEREages 1 -9, march 2010.
D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown I, and
A. Agarwal. On-chip interconnection architecture of the ti
processorlEEE Micro, 27:15-31, September 2007.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: characterization and methodalbgic
considerations. Ininternational Symposium on Computer
Architecture pages 24 —36, june 1995.

J. Zhu, 1. Sander, and A. Jantsch. Constrained global
scheduling of streaming applications on mpsocsAsia and
South Pacific Design Automation Conferengages 223-228,
Jan. 2010.

