
Schedulability Tests for Tasks with Variable
Rate-Dependent Behaviour under Fixed Priority Scheduling

Robert I. Davis

Real-Time Systems Research Group,
University of York

rob.davis@cs.york.ac.uk

Timo Feld, Victor Pollex, Frank Slomka
Institute of Embedded Systems / Real-Time Systems

Ulm University, Germany
{timo.feld, victor.pollex, frank.slomka}@uni-ulm.de

Abstract—Automotive embedded real-time systems such as
Engine Management utilise cyclic tasks that are activated
periodically based on angular rotation rather than time. As well
as having variable inter-arrival times, these tasks also have
deadlines and worst-case execution times that are dependent on
angular velocity i.e. engine speed or rpm. Such tasks exhibit
Variable Rate-dependent Behaviour (VRB). In this paper, we
introduce response time analysis for systems comprising VRB
and sporadic tasks under fixed priority scheduling. Sufficient
schedulability tests are introduced; from simple linear upper
bounds on interference, to a more complex analysis using
information about the physical limitations of the system to
provide constraints for an ILP formulation of the problem.

Keywords: real-time scheduling; schedulability analysis;
fixed priority; variable rate; variable deadline; variable execution
time; mode changes; automotive;

I. INTRODUCTION
In automotive embedded real-time systems, some tasks in the
Engine Management ECU (Electronic Control Unit) are
activated according to interrupts generated by a sensor
reading the crankshaft position. These tasks execute with a
variable inter-arrival time or period reflecting the angular
velocity of the crankshaft (i.e. engine speed or rpm). The
purpose of these tasks includes determining parameters
controlling ignition timing, fuel injection, inlet and exhaust
valve timing etc. The deadline of each job of these tasks is
also determined by the engine speed and relates to a specific
angular position of the crankshaft or camshafts.

In a typical four cylinder, 4-stroke engine, a cylinder fires
every 180 degrees of crankshaft rotation; hence at an idle
speed of 600rpm, the tasks computing ignition timing and
fuel injection parameters have a period that equates to 50ms,
whereas at 6000rpm, this period reduces to 5ms with a
corresponding reduction in the tasks’ deadlines. The worst-
case execution time of the tasks is also dependent on engine
speed. The fuel injection system for a typical petrol engine
uses three injection pulses per cycle at low rpm and one
pulse at high rpm. By contrast, a typical diesel engine uses
seven injection pulses at low rpm, and three pulses at high
rpm. This is due to the fact that there is simply not enough
time for seven pulses at high rpm. Further, at high engine
speeds, the input data (e.g. accelerator pedal position) does
not change so much per cycle, as the elapsed time is shorter,
and so it is sufficient to compute the amount of fuel that
should be injected every two invocations of the task.

In general, at lower engine speeds, typical of normal
driving, complex functionality is executed minimising fuel
consumption and emissions, and ensuring that the engine
runs as smoothly as possible; however, if this functionality
was also executed at high rpm, then processor utilisation
would become prohibitive and the system unschedulable.
Instead, some functionality is shed at high engine speeds.

In his keynote talk [12] at ECRTS 2012, Buttle
highlighted the problem of tasks with Variable Rate-
dependent Behaviour (VRB), formulating it as a specific
schedulability analysis challenge.

 TASK(Variant_execution)(){
 f1();
 if(rpm < 3000) {
 f2();
 }
 f3();
}

Figure 1: Task with execution time dependent on its period.

Figure 1 adapted from slide 35 of [12] illustrates the pseudo
code for a task that sheds some functionality at high rpm, and
thus has a worst-case execution time (WCET) that correlates
with its inter-arrival time. This task effectively has two
execution modes corresponding to two distinct ranges for its
arrival rate or inter-arrival time.

Ci,4

Ci,3

Ci,2

Ci,5

Ci,1

Si,5 Si,4 Si,3 Si,2 Si,1

Engine speed

Ex
ec

ut
io

n
Ti

m
e

High rpmLow rpm

Figure 2: Worst-case execution time of a task as a function of engine speed.

In general, VRB tasks may be modelled as having a
number of execution modes, each related to a fixed range of
inter-arrival times or periods, as illustrated in Figure 2. A
VRB task is modelled as changing from one execution mode
to another at a particular value of angular velocity and hence
inter-arrival time. Figure 2 shows five different execution
modes for a single task, and how they relate to engine rpm.

As an alternative solution to VRB tasks, some systems
use a periodic task with a fixed inter-arrival time, combined
with interrupt handlers that make inputs and outputs
triggered by crankshaft rotation. However, this approach
suffers from the classic problems of polling delays and jitter,
while providing only limited capability to accommodate
functionality that is dependent on engine speed. This is due
to the need to continually run the periodic task at a high rate
to support high rpm operation, something that is unnecessary
with VRB tasks and fully event-driven operation.

In this paper, we address the challenge described by
Buttle, introducing sufficient schedulability tests for VRB
and sporadic tasks executing on a single processor, under a
fixed priority pre-emptive scheduler (such as the OSEK or
AUTOSAR RTOS used in automotive applications).
A. Related Work
Schedulability analysis has been developed for a variety of
different task models, including: periodic tasks [19], sporadic
tasks [22], multi-frame tasks [34], [23], generalised multi-
frame (GMF) tasks [5], non-cyclic GMF tasks [24], recurring
real-time tasks [6], non-cyclic recurring real-time tasks [7],
and the digraph task model [28], extended with constraints in
[29]. Currently, the most general is the digraph task model
which describes each task via a directed graph. Here, each
node represents a type of job the task can release and is
labelled with its deadline and execution time. An edge is
labelled with the minimum time between activations of the
jobs it connects. Constraints are added to this in [29] to
specify a minimum time between nodes.

While the problem we address could potentially be
mapped onto the non-cyclic GMF or digraph task models,
recent work has shown that exact analysis of the GMF task
model and the more general digraph task model are
intractable [30] assuming fixed priority scheduling, while the
complexity of exact analysis for the non-cyclic GMF task
model is to the best of our knowledge unknown. This
contrasts with EDF scheduling where pseudo-polynomial
time exact schedulability tests exist and are known for the
digraph task model [28]. Some progress has however been
made on sufficient schedulability tests for the non-cyclic
GMF model [9] for fixed priority scheduling, while exact
tests have recently been developed for the digraph task
model which although having exponential complexity in the
worst-case are in practice of similar efficiency to the pseudo-
polynomial time tests for EDF [31].

The problem of scheduling tasks with Variable Rate-
dependent Behaviour has some similarities to the classical
problem of system-wide mode changes in hard real-time
systems [32], [27]. In the classical case, on a mode change,
some tasks change their parameters (e.g. execution time,
deadline, and period) and all tasks must be schedulable in the
old mode, in the new mode, and also across the mode change
transition. Typically, no further mode changes are permitted
until the new mode is fully established (i.e. all tasks have
switched to their new mode parameters and the processor has

since become idle). VRB tasks differ from this classical
description of a mode change in that different VRB tasks
may change their execution mode according to different
thresholds (inter-arrival times), and multiple changes of each
task’s execution mode may take place over consecutive jobs
of the task. Further, in the general case with VRB tasks
driven from different angular sources (e.g. engine speed,
wheel speed, etc.), different VRB tasks may progress
through their different execution modes independent of each
other. Thus the concept of execution modes in VRB tasks is
distinct from that of system-wide operating modes.

Some preliminary steps have previously been taken to
analyse VRB tasks under fixed priority scheduling: In 2013
[26] Pollex et al. considered systems where the rotational
speed is arbitrary, but fixed; however, this simple first step
does not account for the important effect of transitions
between different execution modes. Pollex et al. [25]
subsequently provided a simple analysis for systems with
angular acceleration, but considering only the maximum
execution time and the minimum inter-arrival time that could
be obtained in the analysis interval, starting from different
engine speeds. Kim et al. [21] also studied VRB tasks
(referred to as rhythmic tasks), but only accounted for a
single VRB task with the highest priority among a set of
periodic tasks. In this paper, we provide analysis for the
more general and practical case of multiple VRB tasks at
arbitrary priorities among sporadic tasks, and fully account
for the dynamic behaviour of the system.

Initial work on analysing VRB tasks under EDF
scheduling has been carried out by Buttazzo et al. [11],
providing a simple utilisation-based test for implicit deadline
tasks, which also accounts for dynamic behaviour.
B. Organisation
The remainder of the paper is organised as follows. Section
II describes the system model, terminology and notation
used. Section III presents sufficient schedulability tests for
VRB tasks assuming that any arbitrary sequence of permitted
inter-arrival times and hence execution modes is possible.
Section IV uses information about the physical limitations of
the system (i.e. maximum rate of engine acceleration and
deceleration) to provide more precise schedulability analysis.
Section V provides an experimental evaluation, comparing
the effectiveness of the various schedulability tests. Finally,
section VI concludes with directions for future work.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION
In this paper, we consider the fixed priority pre-emptive
scheduling of a set of n tasks on a single processor. Each task

iτ is assumed to have a unique index i from 1 to n
representing its priority. We assume a discrete time model,
so all task parameters are integers.

We assume that each VRB task iτ may give rise to a
potentially unbounded sequence of invocations (or jobs). We
assume that task iτ has iM (1≥) unique execution modes
corresponding to a distinct set of inter-arrival time intervals

),[2,1, ii TT ,),[3,2, ii TT , …),[,1, ii MiMi TT − ,],[, ∞
iMiT where

iMiiii TTTT ,3,2,1, ... <<<< . Each execution mode m of task
iτ is thus characterised by a triplet),,(,,, mimimi TDC

representing the worst-case execution time (WCET) miC , ,
minimum relative deadline miD , , and minimum inter-arrival
time or period miT , for a job executing in that mode. Note
the minimum inter-arrival time miT , for a mode corresponds
directly to the maximum angular velocity (e.g. engine speed)

miS , for that mode, under steady state conditions (i.e.
constant engine speed). The mode m of each job of task iτ is
determined at runtime by the task’s inter-arrival time.

We assume that each execution mode of each VRB task
has a constrained deadline, and is not trivially
unschedulable, hence mi,∀ mimimi TDC ,,, ≤≤ , thus each
task meets the frame separation constraint, whereby each job
of the task must complete before the next job is released. We
place no other restrictions on the relative values of these
parameters across different execution modes. We note that
both the release and absolute deadline of a job of a VRB task
typically correspond to angular positions, and thus the task’s
period and its relative deadline are variable, dependent on
engine speed, but related by some constant ii TD λ= . Our
model is however more general than this and copes with the
situation were, for example the deadline is some fraction of
the task’s period plus a fixed time.

We use max
iC , max

iD , max
iT to mean the maximum

execution time, relative deadline, and period of any job of
task iτ in any execution mode, and similarly, min

iC , min
iD ,

and min
iT to mean the minimum of such values. The

maximum processor utilisation of task iτ in mode m is
given by mimimi TCU ,,, /= . The maximum utilisation of the
task in any mode is denoted by max

iU .
Simple sporadic tasks are also accommodated in the

model. They have a single execution mode, with no
dependency on engine speed.

We assume that tasks may access shared resources
according to the Stack Resource Policy [4], and so a job of
task iτ which executes in mode m may be blocked for at
most miB , during which the processor is occupied by a lower
priority task accessing a resource that is shared with the
mode m execution of task iτ or a higher priority task. We
assume that tasks are otherwise independent and do not have
any precedence constraints.

The worst-case response time miR , of a job of task iτ
which executes in mode m is given by the longest possible
time from release of such a job until it completes execution.
Thus task iτ is schedulable if and only if for every
execution mode m of the task, mimi DR ,, ≤ , and a taskset is
schedulable if and only if all of its tasks are schedulable.

The VRB task model is a general one; it covers tasks that
are driven from different angular sources (e.g. engine speed,
wheel speed etc.) and hence have inter-arrival times (and
execution modes) that are independent of one another. It also
covers tasks that are driven from the same angular source,
but have different thresholds (angular velocities) denoting
their transitions from one mode to the next, as well as tasks

that use the same thresholds and effectively transition
through their execution modes in lock-step. Further, it also
covers tasks that only actually execute in a subset of their
execution modes (e.g. at high engine speeds). For clarity, this
latter case is not explicitly considered in the analysis;
however, it is easily catered for by setting the worst-case
execution time of the task to zero for any modes in which it
does not execute. To ease consideration of inter-arrival
times, and the overall interference on other tasks, empty jobs
(with a worst-case execution time of zero) should still be
regarded as arriving. (We note that schedulability analysis is
not required, or valid, for execution modes with a worst-case
execution time of zero).

III. SCHEDULABILITY ANALYSIS FOR VRB TASKS
In this section, we derive sufficient schedulability tests for
VRB tasks. First, we briefly recapitulate on Response Time
Analysis [3] used to provide an exact schedulability test for
sporadic tasks with constrained deadlines. We then discuss
what is required for schedulability analysis of VRB tasks,
giving a Theorem that helps in deriving this analysis. We
then provide schedulability tests for VRB tasks for the
general case of tasks with multiple execution modes, using
(i) an ILP formulation and (ii) a simple linear upper bound.

The schedulability tests given in this section make no
assumptions about the relationships between the inter-arrival
times or execution modes of different VRB tasks. Hence, the
tests are applicable to tasks driven from angular sources with
different behaviours (e.g. engine speed, wheel speed etc.).
A. Recapitulation of Schedulability Analysis for FPPS
Under fixed priority pre-emptive scheduling, the worst-case
response time iR of a constrained-deadline, sporadic task iτ
corresponds to the length of the longest priority level-i busy
period, which starts at a critical instant. The busy period
comprises three components, the blocking time iB , the
execution time iC of the task itself, and so called
interference, equal to the time for which task iτ is prevented
from executing by higher priority tasks. The length of the
busy period iw , can be computed using the following fixed
point iteration [3], with the summation term giving the
interference due to the set of higher priority tasks hp(i).

∑
∈∀

+ ++=
)(

1)(
ihpj

q
ijii

q
i wICBw (1)

where:

  jjj CTwwI /)(= (2)
Iteration starts with an initial value 0

iw , typically ii Cw =0 ,
and ends when either q

i
q
i ww =+1 in which case the worst-

case response time iR , is given by 1+q
iw , or when i

q
i Dw >+1

in which case the task is unschedulable. We note that
convergence can be speeded up by starting with a suitable
lower bound on the response time [13].

We note that baseline schedulability analysis for VRB
tasks can be obtained by pessimistically converting each
VRB task iτ into a sporadic task such that max

ii CC = ,

min
ii DD = , min

ii TT = ; however, such a simple approach
can potentially be grossly pessimistic.
B. Maximum interference and the mode change problem

We now consider schedulability analysis for VRB tasks.
Given the frame separation constraint and fixed priority pre-
emptive scheduling, then there can be no push-through
interference from one job of a task to the next. Hence to
prove the schedulability of a task iτ , we need only show that
it is schedulable in each execution mode m, assuming a
priority level-i busy period starting at the release of the task
in that mode. The difficulty arises in determining the worst-
case interference from each higher priority VRB task in that
busy period. One might naively assume that it is sufficient to
compute the interference from each higher priority task in
each of its execution modes and take the largest value;
however, this is not sufficient as we now show.

Consider a system with two tasks; a VRB task 1τ , and a
sporadic task 2τ , with 1τ having a higher priority than 2τ .
Assume that task 1τ has a period corresponding to 360° of
crankshaft rotation, and a deadline corresponding to 180°.
Further, below 3000rpm, (i.e. 20ms period, 10ms deadline),
it has a WCET of 5ms, and above 3000rpm, but below the
maximum engine speed of 6666 rpm (9ms period, 4.5ms
deadline) it has a WCET of 2ms. Task 2τ has a fixed period
of 50ms, a deadline of 35ms, and a WCET of 25ms.

 τ1, τ2

τ2 τ1

 τ1, τ2

24

 τ1

32 40

τ1

τ2

0 8 16 24

 τ1

32 40

τ1 τ1 τ1 τ1

0 8 16

 τ1 τ1

 τ1, τ2

τ2

0 8 16 24

 τ1

32 40

τ1

 τ1

τ1 τ1

 Deadline

(b)

(a)

(c)

Figure 3: Mode transitions may provide the worst-case interference.

In this example, task 1τ would be trivially unschedulable
if it did not shed some functionality, as its low rpm execution
time of 5ms is greater than its minimum high rpm deadline
of 4.5ms. However, with its variable rate-dependent
behaviour task 1τ is schedulable, and we would like to know
if this is also the case for task 2τ .

Using conventional response time analysis, if the system
operates continuously at high rpm (6666rpm), then the
response time of task 2τ is 33ms, see Figure 3(a). Similarly,
if it operates continuously at just under 3000rpm, then the
response time of task 2τ is 35ms, see Figure 3(b). However,
if after a cycle of high rpm operation, we get two cycles of
low rpm operation for 1τ , then the total interference from
task 1τ will be 12ms and task 2τ will have a response time
of 37ms and so miss its deadline, see Figure 3(c). This is an
example of the classic mode change problem [32].

C. Sequences maximising interference
To obtain schedulability tests for VRB tasks, we need to
consider the maximum amount of interference)(wI j due to
a higher priority VRB task jτ that can be released in a
window of length w. The example in Figure 3 showed that in
general it is necessary to consider all possible combinations
of execution modes in deriving this worst-case interference.
Theorem 1: There is a sequence Y of jobs of task jτ , that
releases the maximum interference)(wI j in a window
[0,w), where (i) the offset, from the start of the window, of
the first job of jτ is zero, (ii) each of the jobs of jτ released
in the window has the minimum period commensurate with
its particular execution mode, and (iii) the last job has the
largest WCET for any execution mode. (Note, sequence Y
may, without restriction other than (iii), contain jobs of a
number of different execution modes).
Proof: We assume that there exists some arbitrary sequence
X of jobs of task jτ , that releases the maximum amount of
interference)(wI j in the window [0,w). Note, sequence X
makes no restrictions on the inter-arrival times of the jobs of
task jτ , only that they are valid (i.e. min

jT≥), hence the
different jobs may have different execution modes (and
execution times) commensurate with their inter-arrival times.
We prove the three aspects of the theorem by transforming
sequence X into sequence Y without reducing the interference

)(wI j . (i) We move the release of every job in X earlier by
the offset of the first job in X. As all of the jobs continue to
be released within the window, the amount of interference
cannot decrease. (ii) We reduce the time intervals between
releases to the minimum for the corresponding execution
mode. Again, as all of the jobs continue to be released within
the window, the overall interference cannot decrease. (iii)
We change the execution mode of the last job to the mode
that has the maximum execution time max

jC . As this job is
by definition the last to be released in the window, then any
increase in its period cannot cause a reduction in interference
due to later release of the following job. Further, setting the
execution mode of the last job in this way cannot decrease
the amount of execution time released in the window, as it
now has the largest WCET of any job of the task. □
D. Schedulability analysis for VRB tasks
We now make use of Theorem 1 to derive an upper bound on
the interference)(wI j from a VRB task jτ released in a
window of arbitrary length w. Let 0, ≥xjk be the integer
number of jobs of execution mode x released by task jτ
within a window of length w. From Theorem 1, finding the
maximum interference is equivalent to maximising:

∑
∀

=
x

xjxjj CkwI ,,)((3)

Subject to the constraints that:
yxk xj ≠∀≥ 0,

yxk xj =≥ 1,
1,,, −+≤∑

∀
yj

x
xjxj TwTk (4)

where y is the mode with the longest execution time
(arbitrarily chosen in the case of ties). Note that the last job
must be released strictly before the end of the window, hence
the ‘-1’ in the final inequality in (4) as all values are integers.

The above Integer Linear Programming (ILP) problem in
the variables xjk , is a combinatorial optimisation problem
which can be solved in a reasonable time frame (see Section
V.D for runtime information) for the small numbers of
execution modes characteristic of real systems.

Assuming that)(wI j can be found, then an upper bound
on the worst-case response time miR , of any job of task iτ
executing in mode m can be computed as follows:

∑
∈∀

+ ++=
)(

,,,
1

,)(
ihpj

q
mijmimi

q
mi wICBw (5)

Iteration starts with an initial value 0
,miw , typically

mimi Cw ,
0
, = , and ends when either q

mi
q
mi ww ,

1
, =+ in which case

the worst-case response time miR , , is given by 1
,
+q
miw , or

when mi
q
mi Dw ,

1
, >+ in which case the task is unschedulable in

that execution mode. (The task is schedulable if all of its
execution modes are schedulable).

Consider the set of tasks defined in Table I, where Aτ
has the highest priority. Table II illustrates how the fixed
point iteration of (5) progresses from an initial value of

270=BC , showing the total number of mode x and mode y
jobs of task Aτ that are included in the interference term.

TABLE I: TASK PARAMETERS

Task Mode miC , miT , miD ,

Aτ x 20 90 45
 y 50 200 100
Bτ 270 500 400

TABLE II: FIXED POINT ITERATION

Iteration (q) qw xAk , yAk ,)(q
A wI

1+qw
0 270 0 2 100 370
1 370 4 1 130 400
2 400 2 2 140 410
3 410 0 3 150 420
4 420 0 3 150 420

TABLE III: RESPONSE TIMES VERSUS PATTERNS OF EXECUTION MODES

Pattern of task Aτ jobs by mode with response time BR
y, y 370 x, y, x 360

y, x, y 390 x, x, y 360
y, x, x 360 x, x, x, y 380
x, y, y 390 x, x, x, x 350

This example serves to show that the response time
computed via (3), (4) and (5) is an upper bound, rather than
an exact value. This is because the combination of jobs that
give the maximum interference for a specific window length

qw may be different from the combination required to give
the maximum interference for the subsequent window of
length 1+qw .

Table III gives the response time of task Bτ for all of the
distinct scenarios in terms of the sequence of mode x and
mode y jobs of task Aτ that can occur up to the completion
of Bτ . (Note we do not include sub-sequences such as x,x
which omit a further job that could execute within the
response time). The exact worst-case response time is 390
rather than 420 as computed by the sufficient test. The
pessimism in the test can be seen in the progression from
iterations 0 to 1 in Table II where two distinct combinations
of jobs are required to maximise interference with an invalid
transition between them. By an invalid transition, we mean
that the scenario cannot progress from having some number
of jobs of a given mode to subsequently having fewer jobs of
that mode, for example two mode y jobs, and then only one.
We note that obtaining the exact worst-case response time
involves examining sequences for different combinations of
jobs in different execution modes. With multiple higher
priority VRB tasks, these combinations extend to the jobs of
all higher priority tasks, making the problem intractable.
E. Linear upper bounds on the interference

In this section, we provide a sufficient schedulability test
for VRB tasks using linear bounds, similar to the ones
derived in [14]. These tests are potentially less precise than
the analysis given earlier, but require much less computation.

A simple upper bound on the maximum amount of
interference due to a VRB task jτ that could be released in
an interval of length w can be derived from Theorem 1. Here,
we assume that the interval is filled by an integer number of
periods of jobs with the maximum utilisation max

jU and then
a job with maximum execution time max

jC is released at the
end of the interval, thus:

maxmax)(jj
UB
j CwUwI += (6)

This upper bound can be improved upon using the
techniques described in [14] as follows: The solid line in
Figure 4 depicts the processing time that could be used by
task jτ against time for some sequence of jobs of task jτ
that result in the maximum amount of execution time strictly
within an interval of length w, assuming that task jτ is the
only task in the system. Let)1,1(1 ytP be the last minima on
this line such that wt <1 . As P1 is the last minima, then it
follows that the maximum processing time in an interval of
length w is achieved when a job of task jτ with the
maximum execution time is released at time t1. Hence we
define: max12 jCtt += and max12 jCyy += . Further, t1 is the
sum of an integer multiple (e.g. 1,jk , 2,jk etc.) of each of the
minimum inter-arrival times for the different execution
modes of task jτ (i.e. ...1 2,2,1,1, ++= jjjj TkTkt). Similarly,
y1 is the sum of the same set of integer multiples of each of
the execution times for the different execution modes of task

jτ (i.e. ...1 2,2,1,1, ++= jjjj CkCky), and therefore
11 maxtUy j≤ . A valid upper bound)(wI UB

j on the execution
time of task jτ in an interval of length w (depicted by the
dashed line in Figure 4) is thus given by:

)1()(maxmaxmax
jjj

UB
j UCwUwI −+=

 (7)

Since this upper bound is guaranteed to be no smaller
than the actual amount of execution of jτ in the interval, and
the actual amount is a value in discrete time units, then we
can convert the upper bound to discrete time units using the
floor function:

 )()(* wIwI UB
j

UB
j =

 (8)

Tj,a

Cj,a

P2(t2,y2)

t

y

Tj,b Tj,1

Cj,b

Cj
max

Ij
UB(w) (Upper bound)

P1(t1,y1)Cj
max

Cj
max

Figure 4: Upper bound on interference within an interval.

We note that this upper bound covers the amount of
execution of task jτ that could actually take place within an
interval of length w, rather than the amount of execution that
could be released in such an interval. Such a bound can
however be used in the fixed point iteration (5). This follows
from the fact that (8) is a monotonically non-decreasing
function of w, and the worst-case response time for any
mode m job of task iτ is no larger than the smallest value of
w that is large enough to accommodate the execution time of
that job, and all the execution of higher priority tasks that
could possibly occur within the same interval. We note that
using (7) & (8) may in some circumstances cause the fixed
point iteration to converge relatively slowly.

We now briefly return to the example used in the previous
section – see Table I. Substituting the values for task Aτ into
(7) & (8), we have  5.3725.0)(* += wwI UB

A

 which
results in an upper bound for the response time of task Bτ of

409=BR . We note that in this case, this linear upper bound
on interference gives a less pessimistic response time than
using the ILP schedulability test. As it is trivial to construct
tasksets that are deemed schedulable using the ILP test, but
not when using the linear upper bound, then these two
schedulability tests are incomparable.

Using the simple linear upper bound given by (6) & (8),
we have  5025.0)(* += wwI UB

A

 which results in an
upper bound response time of 426=BR . The schedulability
test based on the upper bound given in (7) dominates the test
using the simpler upper bound given in (6), this is because
(7) always provides a value that is no larger than that given
by (6).

IV. IMPROVED SCHEDULABILITY ANALYSIS
In this section, we revisit the physical system that

motivates our scheduling problem. We make use of
limitations on the maximum rate of acceleration and
deceleration of the engine to constrain the possible
transitions between execution modes, and hence provide a

refined analysis. We note that this refined analysis is
applicable to VRB tasks that are driven from the same
angular source (e.g. engine speed). Further, we also deal with
a problem caused by lag in the measurement of engine speed
and hence the selection of execution mode.

Instananeous
Engine Speed

Max
rpm

timet0

Initial
rpm

sj,3

sj,4

sj,2

Sj,1

Execution
Mode
1

2

3

4

δ

5sj,5

ta tb

lag
Figure 5: Engine speed envelope.

For production car engines, the maximum rate of
acceleration in engine speed 1 is around 10,000rpm / sec.
Note this is when the transmission is decoupled (out-of-gear)
and the engine is only accelerating its own internal masses
e.g. during a gear change, or ‘blipping’ the throttle. Hence in
time intervals of interest, which are typically in the range of
10ms to 100ms, the change in rpm is limited to approx. ±
100rpm to ± 1000rpm which is significantly less than the
full operating range of the engine (for a petrol engine this is
typically around 700rpm to 7000rpm). Figure 5 illustrates
this, showing the possible progression in engine speed
against time, starting at some arbitrary initial rpm. Only the
rpm envelope (shaded area) is feasible within a time t.
(Figure 5 is used to illustrate a number of aspects of the
analysis developed in this section. The annotations ‘lag’, at ,

bt , δ and the red dashed lines are explained in the later
subsections that refer to them)..
A. Engine speed measurement and lag

Recall that VRB tasks are typically released and have
deadlines corresponding to specific angular positions of the
engine. Further, the execution mode of a job is determined
by its inter-arrival time. In practice, this is given by the
average engine speed (effectively the time interval) between
the previous release and the current one. This means that
under acceleration, the speed measured by taking the elapsed
time between releases lags behind the instantaneous speed,
and this needs to be accounted for. This issue is illustrated in
Figure 6. Here, job J executes in mode m in the second time
interval, since the average engine speed between the
previous and the current release corresponds to that mode.
However, due to acceleration, the interval that job J actually

1 The V10 engine in the Lexus LFA is able to go from idle to its redline
(9000rpm) in 0.6 sec which is claimed to be too fast for an analogue
tachometer to track accurately [30]. This equates to acceleration in engine
speed of around 13,000rpm/sec.

executes in, and hence the time to the next release, can be
shorter than the minimum period mjT , associated with mode
m. In this case the subsequent job does not execute in mode
m.

J

T*
j,m

Time since previous release (average speed)
determines execution mode m for current release

Tj,m

Interval may be < Tj,m
due to acceleration

Not mode m
as T*

j,m < Tj,m

Figure 6: Lag in determining the execution mode

Let mjS , be the engine speed corresponding to the
shortest period mjT , for execution mode m. We assume a
direct mapping from mjS , to mjT , of the form

mjjmj ST ,, /β= where jβ is a scaling factor reflecting the
task period in terms of angle of rotation divided by 360°,
hence jβ = 1/2 if the task period is 180°. For convenience,
we assume that S is measured in revolutions per second, T in
seconds, and engine acceleration in revolutions per second
per second and thus avoid the need for any unit conversions.

Consider the scenario where the engine is accelerating at
its maximum rate over two intervals corresponding to mode
m execution, as depicted in Figure 7. The average speed in
the first interval is mjS , (as the interval is of length mjT ,)
and so the execution mode in the second interval is m.
However, the average speed in the second interval is some
higher value mjmj SS ,

*
, > (equivalent to an interval of length

*
,mjT).

time0

Instantaneous
Engine Speed

Sj,m

S*j,m

Tj,m T*j,m

revolutions

revolutions

Smin(Sj,m, βj)

Smax(Sj,m, βj)

 revolutionsj∂

D*j,m

jβ

jβ

Figure 7: Changes in engine speed over two invocations.

Let),(,max jmjSS β be the maximum instantaneous speed
in an interval of jβ revolutions which has an average speed
of mjS , (the maximum for mode m execution), and similarly,

),(,min jmjSS β be the minimum speed in such an interval.
Applying the simple physics equation linking (angular)
acceleration, speed, distance, and time, the time period mjT ,
for jβ revolutions under maximum acceleration α , starting
at speed),(,min jmjSS β is given by the solution to:

mjjmjmjj TSST ,,min
2
,).,(2/ βαβ += (9)

hence:

α

αβββ jjmjjmj
mj

SSSS
T

2)),((),(2
,min,min

,
++−

= (10)

Re-arranging (9) to make),(,min jmjSS β the subject of the
equation, and using mjjmj TS ,, /β= as the average speed, we
have:

mj

j
mj

mj

mj

j
jmj S

S
T

T
SS

,
,

,

,
,min 22

),(
αβαβ

β −=−= (11)

Noting that mjjmjjmj TSSSS ,,min,max),(),(αββ += :

mj

j
mj

mj

mj

j
jmj S

S
T

T
SS

,
,

,

,
,max 22

),(
αβαβ

β +=+= (12)

From (11) and (12) we observe that
αβββ 2)),(()),((2

,min
2

,max =− jmjjmj SSSS .
As the maximum (final) speed for one interval is also

the minimum (initial) speed for the next interval, we may
compute *

,mjT from),(,max jmjSS β by substituting the latter
into (10) in place of),(,min jmjSS β , thus obtaining:

α

αβββ jjmjjmj
mj

SSSS
T

2)),((),(2
,max,max*

,

++−
= (13)

If the deadline is implicit (equal to the angular period), then
*
,mjT determines the minimum effective deadline for mode m

execution which is *
,

*
, mimi TD = . If the deadline is a smaller

angular interval j∂ than the angular period, then (13) may
be used to compute *

,miD by substituting j∂ in place of jβ
in the jαβ2 term – i.e. computing the deadline assuming
maximum acceleration for an angular rotation of j∂ starting
from an engine speed of),(,max jmjSS β .

We note that to account for the lag in determining the
actual execution mode, the analysis given in Section III can
simply utilise *

,miD in place of miD , . We do not; however,
need to substitute *

,mjT in place of mjT , as the period for
jobs in execution mode m, since the next job that follows an
interval of length *

,mjT must necessarily be in a different
execution mode (e.g. mode m – 1).
B. Constraints from the maximum rate of acceleration
For a given initial instantaneous engine speed S we can use
the maximum rate of acceleration to calculate a set of
constraints on the maximum number of jobs of each
execution mode of task jτ that can feasibly occur in a time
interval of length t.

Instantaneous Engine Speed

Sj,m+1

Smax(Sj,m+1, βj) Releases in these
speed ranges

execute in mode m

Smin(Sj,m, βj)

Smin(Sj,m+1, βj)

Sj,m

Smax(Sj,m, βj)

Acc
ele

ra
tio

n

Deceleration

Figure 8: Engine speed range for mode m execution

Recall that a job of task jτ executes in mode m
provided that the average engine speed between the previous
and the current release (jβ revolutions) is in the range

],(,1, mjmj SS + . Thus the instantaneous engine speed S at the
release of a job can be in the range

)],(),,((,max1,min jmjjmj SSSS ββ+ and still correspond to
mode m execution, since the average speed over the previous

jβ revolutions can be in the appropriate range. For values of
S outside of this range, then the engine speed needs to either
accelerate or decelerate into the range for mode m execution
first, and so under maximum acceleration, must reach

),(1,max jmjSS β+ from below or),(,min jmjSS β from above
before mode m execution can begin (see Figure 8). Hence,
the maximum time),(, tSmjδ spent in mode m, in an
interval of length t, starting at an instantaneous engine speed
S, with a maximum rate of acceleration or deceleration of α
is given by:

=),(, tSmjδ
















≤






 −
−

>






 −
−

≤

<

+
+

+

),(
),(

,0max

),(
),(

,0max

),(

),(

1,min
1,max

,max
,min

,max

1,min

jmj
jmj

jmj
jmj

jmj

jmj

SSS
SSS

t

SSS
SSS

t

SS

SSS
t

β
α

β

β
α

β
β

β

(14)
This is illustrated in Figure 5, starting at the initial speed

S, and considering an interval of length t, no time can be
spent in mode 5, at most time δ can be spent in mode 3
(notice the small lag in actually entering mode 3), and at
most time t in mode 2.

From (14), we obtain the following simple constraint
(upper bound) on the maximum number of jobs of mode m
that can be released in an interval of length t starting at
engine speed S.












=

mj

mj
mj T

tS
tSA

,

,
,

),(
),(

δ
 (15)

In the case that),(,max jmjSSS β≤ then a more precise
bound is possible via a consideration of the maximum
number of engine revolutions in time),(, tSmjδ . We upper
bound the number of revolutions by considering a time
interval assuming the maximum acceleration from the entry
speed eS into mode m where:





>
≤

=
+

++

),(
),(),(

1,min

1,min1,max

jmj

jmjjmje
SSSS
SSSSS

S
β
ββ

 (16)

up to speed),(,max jmjSS β , which is the maximum
instantaneous speed for a release in mode m; with any
remaining time spent at the maximum average speed mjS , for
execution in mode m.

bmja
ea

mj tStSttS ..
2

),(,

2

, ++=
α

ρ (17)

where)/)),((),,(min(,max, αβδ e
jmjmja SSStSt −= is the

time spent accelerating up to speed),(,max jmjSS β from the
entry speed eS , and amjb ttSt −=),(,δ is the remaining
time spent at the maximum average speed mjS , .

An upper bound on the number of mode m jobs released
in),(, tSmjρ revolutions of the engine is then given by:












=

j

mj
mj

tS
tSA

β
ρ),(

),(,
, (18)

We may also obtain an additional constraint),(max tSAj on
the total number of jobs of task jτ of all execution modes
released in an interval of length t, starting at an instantaneous
speed S, based on the maximum number of engine
revolutions),(tSρ in that interval.












=

j

tStS
β

ρ),(),(Amax
j (19)

where

ba
a tVtSttS ..

2
),(max

2
++=

α
ρ (20)

Here,)/)(,min(max αSVtta −= is the part of the interval t
during which the engine speed is accelerating at its
maximum rate from speed S to the maximum permitted
engine speed maxV , and ab ttt −= is the remaining time
during which speed maxV is sustained. (Note maxV
corresponds to the maximum engine speed permitted by the
rev limiter used to prevent damage to the engine).

Finally, we note that it is typically not possible for jobs to
be released in non-adjacent modes without some time being
spent in the intervening mode. For example, in Figure 5 it is
not possible for jobs to be released in both mode 2 and mode
4, without crossing the range of engine speeds corresponding
to mode 3.

When crossing the range of mode m speeds under
maximum acceleration, job releases at instantaneous speeds
exceeding),(1,max jmjSSx β+= must necessarily be in mode
m, until an instantaneous speed of),(,max jmjSSy β= is
reached. The minimum time taken between these two speeds
is α/)(xytc −= and hence the minimum number of engine
revolutions mj,ρ required is given by:

α
α

ρ
2

)(.
2

222

,
xytxt

c
c

mj
−

=+= (21)

Alternatively, crossing the range of mode m speeds under
deceleration, job releases at instantaneous speeds below

),(,min jmjSSy β= must necessarily be in mode m, until an
instantaneous speed of),(1,min jmjSSx β+= is reached. The
minimum number of engine revolutions mj,ρ required
between these two speeds is given by substituting these
values for x and y into (21). We note that the minimum
number of engine revolutions obtained for acceleration and
deceleration are the same, since

=− ++
2

1,min
2

1,max)),(()),((jmjjmj SSSS ββ
αβββ 2)),(()),((2

,min
2

,max =− jmjjmj SSSS .
Recall that mjk , is used to denote the number of jobs of

task jτ . Hence if there are jobs released in modes 1−m ,

and 1+m , then there must also be a minimum number of
jobs released in mode m:

)0()0(1,1, >∧> +− mjmj kk ⇒











≥

j

mj
mjk

β
ρ ,

, (22)

This minimum may be zero if the speed range of the mode
is sufficiently small to be skipped over entirely between job
releases.

We can limit the maximum interference),(tSI j , from
jobs of task jτ , released in an interval of length t, starting at
speed S by constraining (i) the maximum number of jobs of
mode m released in the interval via (15) and (18), (ii) the
total number of jobs of any mode released in the interval via
(19), and (iii) the minimum number of jobs of a mode where
there are jobs released in adjacent modes via (22). We use
these constraints in an ILP formulation.
ILP Problem: Maximise:

∑
∀

=
x

xjxjj CktSI ,,),((23)

Subject to the constraints that:
),(0 ,, tSAkx xjxj ≤≤∀

),(Amax
j, tSk

x
xj ≤∑

∀


























≥∨≤∨≤<< +−

j

xj
xjxjxjj kkkMx

β
ρ ,

,1,1,)0()0(1

1. ,,, −+≤∑
∀

Zj
x

xjxj TtTk (24)

Where Z is the mode with the largest execution time of
any mode with 0, >xjk , and ZjT , is the minimum period
for execution in that mode Z.

Note IBM CPLEX, the ILP solver we used, handles the
logical OR operations in (24).
C. Schedulability analysis

We now make use of (23) and (24) to determine the
schedulability of a set of VRB tasks. We do this by
effectively checking schedulability for all possible values of
the initial engine speed and the subsequent envelope of
feasible engine speed trajectories over time.

Our overall approach is summarised by the pseudo code
in Figure 9 which provides a schedulability test for all m
execution modes of task iτ . The worst-case response time

)(, SR mi of a job of task iτ in execution mode m for a
starting engine speed S, can be computed via the following
fixed point iteration. On each iteration, (23) and (24) are
used to maximise the interference from higher priority tasks.

∑
∈∀

+ ++=
)(

,,,
1

,),()(
ihpj

q
mijmimi

q
mi wSICBSw (25)

Iteration starts with an initial value 0
,miw , typically

mimi Cw ,
0
, = , and ends when either)()(,

1
, SwSw q

mi
q
mi =+ in

which case)(, SR mi , is given by)(1
, Swq
mi
+ , or when

*
,

1
,)(mi
q
mi DSw >+ in which case the task is unschedulable.

Recall that *
,miD corresponds to the shortest possible

deadline for execution in mode m.
for all modes of task iτ initialise 0, =miR

for each instantaneous engine speed S {

 for each mode m corresponding to S {
 Compute the worst-case response time

)(, SR mi of a mode m job of task iτ starting
 at an initial engine speed S.

)),(max(,,, mimimi RSRR =
 if(*

,, mimi DR >) {
 return unschedulable
 }
 }

}
return schedulable

Figure 9: Response time calculation for a single task

As engine speed is a continuous variable we need to
address the issue of a potentially infinite number of initial
engine speeds. This is achieved by considering quantised
values of S (e.g. every Q = 100rpm) taken to represent a
range of values from 2/QSS −=− to 2/QSS +=+ . To
accommodate this approximation, we use both +S and −S
to determine the constraints (in (15), (18) and (19)) and then
utilise the more relaxed constraint of each pair. Further, we
consider a speed S to corresponds to a particular mode m if a
job could be released in the mode within the speed range

],[+− SS , i.e. if +
+ < SSS jmj),(1,min β and

−≥ SSS jmj),(,max β . In this way, the envelope of possible
modes is increased as shown by the dashed lines in Figure 5.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of five
sufficient schedulability tests for VRB tasks:
o RTA-SP: obtained by reducing each VRB task to the

sporadic task model by assuming the maximum
execution time max

iC , minimum period min
iT and

deadline min
iD across all modes.

o VRB-L1 and VRB-L2: using the linear upper bounds
given by (6) & (8) and (7) & (8) respectively.

o VRB-ILP: using the ILP formulation to compute the
maximum interference via (3) and (4) when arbitrary
sequences of execution modes are permitted.

o VRB-ILP-CON: using the ILP formulation with
additional constraints from the physical system to
compute the maximum interference via (23) and (24).

In addition, we also evaluate two necessary upper bounds
on taskset schedulability.
o UB-N: forms an upper bound on exact schedulability

when arbitrary sequences of execution modes are
permitted. It considers the interference from each
higher priority VRB task as being entirely due to one
mode or another, whichever mode results in the most
interference when modelled as a simple periodic
behaviour.

o UB-NX: forms an upper bound on exact schedulability
taking account of constraints from the physical system.
It is computed in a similar way to UB-N. UB-NX
considers the interference from each higher priority
VRB task as being entirely due to one mode or another,
whichever mode results in the most interference when
modelled as a simple periodic behaviour. However, the
number of jobs that may be released in a specific
execution mode is constrained using (15) and (18).

Both UB-N and UB-NX are necessary, but not sufficient
test for schedulability (assuming no dependency between
the modes of different VRB tasks). UB-N upper bounds
schedulability according to RTA-SP, VRB-L1, VRB-L2,
and VRB-ILP, while UB-NX upper bounds schedulability
according to VRB-ILP-CON.
A. Parameter generation
The parameters for the sporadic tasks used in our
experiments were randomly generated as follows:
o The UUniFast algorithm [10] was used to generate a set

of n utilisation values iU , with a total utilisation of U .
o Task periods were generated according to a log-uniform

distribution2. Here the ratio between the maximum and
the minimum permissible task period was given by r10 .
By default, this range was 100, i.e. r = 2.

o Task execution times were set based on the utilisation
and period selected: iii TUC = . o Task deadlines were either implicit, and so equal to their
periods, or constrained and chosen at random according
to a uniform distribution in the range

]),([iiii TCTxC −+ , with x = 0.5 as the default.
o The default taskset cardinality was 10.
A fixed proportion p (default p = 50%) of the sporadic tasks
were then converted to VRB tasks as follows:
o There were 5 execution modes.
o The existing sporadic task triplet),,(iii DTC was

assigned as the mode 1 parameters.
o A scaling factor (default f=1.5) was used to determine

the parameters of the other modes, via: mimi fCC ,1, =+ ,
mimi fTT ,1, =+ ,. (Note, with 5 modes, f=1.5 equates to a

ratio of 7.6 between the largest period and the smallest
period for jobs of the same mode; equivalent to a range
of engine speeds from say 1000rpm to 7600rpm).

o A mode was randomly chosen to have the largest
utilisation. The execution times of the remaining modes
were adjusted by multiplying them by uniform random
values in the range [1-e, 1], default e = 0.25.

o The deadline for each mode was based on *
,miT . In the

rare cases that mimi CT ,
*
, < the taskset was discarded as

invalid, otherwise the deadline was given by *
,

*
, mimi TD =

(implicit deadline), or chosen at random in the range
]),([*

,,
*
,, mimimimi TCTxC −+ (constrained deadline).

o The factor jβ was chosen to be 1,1, / ji TT where 1,jT is
the longest period of the first mode of any VRB task.

2 The log-uniform distribution of a variable x is such that ln (x) has a
uniform distribution.

This ensures that all VRB tasks share the same
maximum engine speed.

o The maximum acceleration α was chosen so that 36
revolutions were required when crossing the whole
range of possible speeds from 0 to 1,max / ii TV β= .

)36*2/()0(22
max −= Vα . (Note, an engine with

maximum acceleration of 10,000 rpm per second does
approx. 36 revolutions in going from 1000 rpm to 6700
rpm. The Lexus LFA V10 engine does 50 revolutions
when going from idle, around 1000 rpm, to its redline,
9000 rpm, in 0.6 sec [33]).

For schedulability test VRB-ILP-CON the analysis was
performed for a series of 10 instantaneous speeds.

In each experiment, the taskset utilisation was varied from
0.05 to 0.95 in steps of 0.05. For each utilisation value,
synthetic tasksets were generated and their schedulability
determined according to the various schedulability tests.
Priority assignment was according to Audsley’s Optimal
Priority Assignment (OPA) algorithm [1], [2], since the
schedulability tests given for VRB tasks in Section III (VRB-
L1, VRB-L2, VRB-ILP) comply with the three conditions
required for OPA-compatibility [15], [16], as does the
constrained ILP schedulability test given in Section IV
(VRB-ILP-CON) when blocking is not considered.
B. Success Ratio

In our first experiment, we compared the performance of
the schedulability tests via a metric referred to as the success
ratio; the proportion of randomly generated tasksets that are
schedulable in each case. In this experiment, 1000 taskset
were used for each utilisation level.

Figure 10: Success ratio for n = 10, D = T

Figure 10 shows that the linear upper bounds (VRB-L1
& VRB-L2) and the ILP formulation (VRB-ILP) introduced
in Section III significantly improve upon the default
approach (RTA-SP) of treating VRB tasks as if they were
sporadic tasks and assuming worst-case parameters. Further,
using the physical constraints of the system to limit the
interference considered (VRB-ILP-CON) results in

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

S
uc

es
s

R
at

io

Utilisation

UB-NX
VRB-ILP-CON
UB-N
VRB-ILP
VRB-L2
VRB-L1
RTA-SP

substantial further improvements in schedulability, obtaining
results close to the upper bound (UB-NX).
C. Weighted Schedulability Measure

In our second set of experiments we compared how the
overall performance of each of the schedulability tests varies
with respect to changes in various parameters via the
weighted schedulability measure [8].

We examined four different parameters: (i) the taskset
size, (ii) the scaling factor f between VRB modes, (iii) the
variability in the utilisation of execution time modes e, and
(iv) the proportion of VRB tasks. Due to constraints on
space, these results are presented in the appendix of [17].

D. Runtime
The experiments were run on a compute server with two
Intel Xeon E5649 CPUs (each with 6 cores and 2x hyper-
threading3) max clock speed 2.53Ghz. The elapsed times for
the complete experiments (all schedulability tests) are given
in Table IV. The UB-NX necessary test and a sufficient test
based on VRB-L1 (using information about reachable
modes) where used to avoid running the IBM CPLEX ILP
solver for tasksets that could be proven schedulable or
unschedulable by simpler tests.

TABLE IV: RUNTIME

Experiment Elapsed
time Tasksets Time per

task set
Success ratio 53s 19000 2.8ms

WS: taskset size 6m58s 38000 11ms
WS: VRB scaling factor 38s 19000 2.0ms
WS: WCET variability 7m14s 188100 2.3ms

WS: proportion VRB tasks 1m13s 19000 3.8ms

We observe that the average elapsed time per taskset for the
default configuration was less than 3ms, which increased
with larger tasksets (to 11ms) and a higher proportion of
VRB tasks (to 3.8ms). These runtimes show that the methods
are entirely viable for realistic problems, since typical
automotive systems have a relatively small number of
periodic tasks and just a few VRB tasks.

VI. SUMMARY AND CONCLUSIONS
In this paper, we addressed an interesting scheduling
problem posed by the keynote speaker at ECRTS 2012 [12].
We introduced effective schedulability analysis for tasks
that are periodic in relation to engine revolutions rather than
time, and thus execute with Variable Rate-dependent
Behaviour (VRB). To avoid such tasks overloading the
processor, system designers manipulate their functionality
so that more complex algorithms are employed at low
engine speeds where long WCETs are acceptable, and
simpler, faster algorithms are used and functionality is shed
at high rpm to avoid missing deadlines.

3 To get the average runtime for analysing a single taskset on its own one
needs to multiply the average times shown in the last column of Table IV
by a factor of approx. 20 to account for the parallel execution in the
compute server.

The major contribution of this paper is the introduction
of simple schedulability tests for variable rate tasks
scheduled under fixed priorities (as implemented in OSEK
and AUTOSAR operating systems), and the refinement of
these techniques using information about the physical
constraints and limitations on the system, such as maximum
rpm and maximum rate of acceleration and deceleration.

Our evaluation shows that even simple linear bounds
specifically derived for VRB tasks significantly improve
upon the default approach of modelling each VRB task as a
sporadic task and taking the pessimistic approach of
combining the minimum possible period with the maximum
possible WCET. Further, utilising the physical constraints
on the system to constrain the amount of interference
considered provides a schedulability test that is substantially
better still. This work provides industry with an effective
means of analysing systems that contain tasks whose
behaviour is dependent on angular stimuli such as inputs
from crankshaft or camshaft sensors.

In practice, it is important not only to have effective and
efficient schedulability tests able to determine if a system is
schedulable, but also a means of determining when a system
is unschedulable, what the reasons are for that (i.e. the
scenario that leads to a potential deadline miss), and also an
understanding of what design changes or optimisations will
be needed to obtain a schedulable system.

The analyses developed in this paper address all of these
requirements. When a system is deemed unschedulable, it is
possible to obtain from the analysis, the scenario which lead
to a response time that exceeds the relevant deadline
(including information about the execution mode of the task
under study, the number of interfering jobs of higher priority
tasks and their modes, and in the case of the refined analysis
(Section IV), the initial engine speed for the scenario.
Further, our evaluation of the runtime of the analysis
techniques, on tasksets of representative complexity, shows
that the techniques are viable for use in a design-time
analysis tool. Such a tool could be used to explore the
sensitivity of system schedulability to changes in the
execution times of the different modes of each task, the inter-
arrival times denoting the different modes, and the processor
speed.

We framed our analysis in terms of engine speed;
however, it applies equally well to any cyber-physical
system where VRB tasks are released periodically with
respect to angular rotation. The simple forms of analysis
presented in Section III are applicable to systems with VRB
tasks driven from multiple independent angular sources (e.g.
engine speed, wheel speed, gear speed etc.). By contrast, the
more sophisticated analysis given in Section IV accounts for
physical limitations on the rate of angular acceleration, but
assumes that VRB tasks are driven from the same angular
source (e.g. engine speed). It remains an open issue, how to
adapt such sophisticated analysis to systems with multiple
angular sources each driving multiple VRB tasks.

Although the schedulability analysis described in this
paper is effective, there is an argument that as the deadline of
a VRB task changes, then so should its priority, otherwise
the system will necessarily suffer from priority inversion.
This issue could be addressed either via the use of EDF
scheduling, or by having a different priority for each mode of
a VRB task. The latter approach is in keeping with the RTOS
support for fixed priority scheduling available in automotive
systems, and merits further investigation.

ACKNOWLEDGEMENTS
This work was partially funded by the UK EPSRC

funded MCC project (EP/K011626/1). The authors would
like to thank Darren Buttle of ETAS GmbH for proposing
the open scheduling problem in his keynote talk at ECRTS
2012 that led to this work.

REFERENCES
[1] N.C. Audsley, "Optimal priority assignment and feasibility of static

priority tasks with arbitrary start times", Technical Report YCS 164,
Dept. Computer Science, University of York, UK, 1991.

[2] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.

[3] N.C. Audsley, A. Burns., M. Richardson, A.J. Wellings, “Applying
new Scheduling Theory to Static Priority Pre-emptive Scheduling”.
Software Engineering Journal, 8(5) pp. 284-292, 1993.

[4] T.P. Baker, “Stack-based Scheduling of Real-Time Processes.” Real-
Time Systems Journal (3)1, pages 67-100. 1991.

[5] S. Baruah, D. Chen, S. Gorinsky, A. Mok. Generalized multiframe
tasks. Real-Time Systems: The International Journal of Time-Critical
Computing, 17(1):5–22, July 1999.

[6] S. K. Baruah. “Dynamic- and static-priority scheduling of recurring
real-time tasks”. Real-Time Systems: The International Journal of
Time-Critical Computing, 24(1):99–128, 2003.

[7] S.K. Baruah. The non-cyclic recurring real-time task model. In
proceedings of the Real-Time Systems Symposium (RTSS), pp 173-
182, 2010.

[8] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability," in Proceedings of OSPERT, pp. 33-44,
Brussels, Belgium, 2010.

[9] V. Berten, J. Goossens. Sufficient FTP Schedulability Test for the
Non-Cyclic Generalized Multiframe Task Model. In proceedings of
the RTSS WiP Session. 2011

[10] E. Bini, G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Syst., 30(1-2):129–154, 2005.

[11] G. Buttazzo, E. Bini, D. Buttle, "Rate-Adaptive Tasks: Model,
Analysis, and Design Issues", In proceedings of the International
Conference on Design, Automation and Test in Europe (DATE
2014), March 2014.

[12] D. Buttle, “Real-Time in the Prime Time” Keynote talk at the
Euromicro Conference on Real-Time Systems (ECRTS 2012).
Presentation available from http://ecrts.eit.uni-kl.de/index.php?id=69.

[13] R.I. Davis, A. Zabos, A. Burns, "Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems”. IEEE Transactions on
Computers, (Vol. 57, No. 9) pp. 1261-1276, September 2008.

[14] R.I. Davis, A. Burns, "Response Time Upper Bounds for Fixed
Priority Real-Time Systems". In proceedings of the Real-Time
Systems Symposium (RTSS), 2008.

[15] R.I. Davis, A. Burns “"Priority Assignment for Global Fixed Priority
Pre-emptive Scheduling in Multiprocessor Real-Time Systems”. In
proceedings of the Real-Time Systems Symposium (RTSS), pp. 398-
409, 2009.

[16] R.I. Davis, A. Burns, "Improved Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems”. Real-Time Systems, Volume 47, Issue 1, pp. 1-40, 2010.

[17] R.I. Davis, T. Feld, V. Pollex, F. Slomka, "Schedulability Tests for
Tasks with Variable Rate-Dependent Behaviour under Fixed Priority
Scheduling”. University of York, Department of Computer Science
Technical Report YCS-2014-488, Jan 2014.

[18] M. Garey, D. Johnson. “Computers and Intractability: A Guide to the
Theory of NP-Completeness”. W. H. Freeman & Co., NY, 1979.

[19] C.L. Liu, J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of the
ACM, 20(1) pp. 46-61, 1973.

[20] J.Y.-T. Leung, J. Whitehead, "On the complexity of fixed-priority
scheduling of periodic real-time tasks". Performance Evaluation, 2(4),
pp. 237-250, 1982.

[21] J. Kim, K. Lakshmanan, R. Rajkumar. “ Rhythmic Tasks: A New
Task Model with Continually Varying Periods for Cyber-Physical
Systems”. In Proceedings of the International Conference on Cyber-
Physical Systems (ICCPS), pp. 55-64, 2012.

[22] A. Mok. Fundamental Design Problems of Distributed Systems for
the Hard Real-Time Environment. PhD thesis, MIT Laboratory for
Computer Science, May 1983.

[23] A.K. Mok, D. Chen D, “A multiframe model for real-time tasks”.
IEEE Trans Softw Eng 23(10):635–645, 1997.

[24] N. T. Moyo, E. Nicollet, F. Lafaye, and C. Moy. “On schedulability
analysis of non-cyclic generalized multiframe tasks”. In Proceedings
EuroMicro Conference on Real-Time Systems (ECRTS), 2010.

[25] V. Pollex, T. Feld, F. Slomka,U. Margull, R. Mader, G. Wirrer,
"Sufficient real-time analysis for an engine control unit " In
proccedings of Real-Time Networks and Systems (RTNS), pp.247-
254, 16-18 Oct 2013.

[26] V. Pollex, T. Feld, F. Slomka,U. Margull, R. Mader, G. Wirrer,
"Sufficient real-time analysis for an engine control unit with constant
angular velocities" In proccedings of Design, Automation & Test in
Europe (DATE), pp.1335,1338, 18-22 March 2013

[27] J. Palencia, M. G. Harbour, “Schedulability analysis for tasks with
static and dynamic offsets”, In Proceedings of the Real-Time Systems
Symposium, RTSS, pp. 26–37, 1998.

[28] M. Stigge,P. Ekberg, N. Guan; W. Yi; , "The Digraph Real-Time
Task Model," Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2011 17th IEEE , vol., no., pp.71-
80, 11-14 April 2011

[29] M. Stigge, P. Ekberg, N. Guan, W. Yi, "On the Tractability of
Digraph-Based Task Models," In proceedings of the Euromicro
Conference on Real-Time Systems pp.162,171, 5-8 July 2011

[30] M. Stigge , W.Yi, “Hardness Results for Static Priority Real-Time
Scheduling”. In proceedings of the Euromicro Conference on Real-
Time Systems ECRTS 2012.

[31] M. Stigge, W. Yi, “Combinatorial Abstraction Refinement for
Feasibility Analysis”, In procedings of the Real-Time Systems
Symposium (RTSS) pp 340-349, 2013.

[32] K.W. Tindell, A. Burns, A. Wellings, "Mode Changes in Priority Pre-
emptively Scheduled Systems," In proceedings of the Real Time
Systems Symposium, pp. 100-109, 1992.

[33] D. Vivien, “Lexus LFA Instruments” in Evo magazine, issue 190,
page 202, 2013.

[34] A. Zuhily and A. Burns, Exact Scheduling Analysis of Non-
Accumulatively Monotonic Multiframe Tasks, Real-Time Systems
Journal, Vol 43, pp119-146, 2009.

APPENDIX: EXPERIMENTAL RESULTS: WEIGHTED
SCHEDULABILITY

In this set of experiments we compared how the overall
performance of each of the schedulability tests varies with
respect to changes in a specific parameter via the weighted
schedulability measure [8]. In these experiments, we used
100 tasksets per utilisation level, with utilisation levels
varied from 0.05 to 0.95 in steps of 0.05, as before.

The first parameter examined was taskset size. Figure 11
shows how the weighted schedulability measure for each of
the schedulability tests varies with increasing taskset size.
With very small numbers of tasks, there is a significant
probability that none of the tasks are VRB tasks or that there
is just one VRB task and it has the lowest priority. Thus the
schedulability tests all give similar results. As the number of
tasks increases, the clear distinctions between schedulability
test performance evident in the first experiment (Figure 10)
are again apparent, and are largely unaffected by cardinality.

Figure 11: Weighted schedulability v. taskset size, D ≤ T

The second parameter examined was the scaling factor f
representing the relationship between the parameters of
adjacent VRB modes. Figure 12 shows how the weighted
schedulability measure for each of the schedulability tests
varies as this scaling factor is increased from 1.1 to 2. Here,
all of the schedulability tests show a decrease in performance
due to the increase priority inversion brought about by an
increased range of deadlines for the VRB tasks. In addition,
when interference is assumed to be possible from any
arbitrary mode, then increases in the scaling factor rapidly
increase interference. This is because the interference is at
least the sum of the longest WCETs of any mode of each
higher priority VRB task. This accounts for the rapid decline
in performance of all the schedulability tests with the
exception of VRB-ILP-CON.

Figure 12: Weighted schedulability v. VRB scaling factor, D ≤ T

The third parameter examined was the variability in the
utilisation of the execution modes of each VRB task. Figure
13 shows how the weighted schedulability measure for each
of the schedulability tests varies as the value of e is varied
from 0.05 to 0.95. With increasing values of e, WCETs
decrease, hence the interference caused by higher priority
tasks decreases, improving schedulability.

Figure 13: Weighted schedulability v. VRB task WCET variability, D ≤ T

The fourth parameter examined was the proportion of
tasks that were VRB tasks. Figure 14 shows how the
weighted schedulability measure for each of the
schedulability tests varies as this proportion is increased
from 10% to 100%. Here, schedulability decreases with an
increasing number of VRB tasks. By replacing a sporadic
task with a VRB task with several different modes, then
assuming interference is possible from any arbitrary mode,
then the interference in any given interval cannot decrease.
Further a VRB task is itself less likely to be schedulable than
the original sporadic task which decreases overall
schedulability. It is notable that the more sophisticated VRB-

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

W
ei

gh
te

d
S

ch
ed

ul
ab

ilit
y

Taskset Cardinality

UB-NX VRB-ILP-CON
UB-N VRB-ILP
VRB-L2 VRB-L1
RTA-SP

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

W
ei

gh
te

d
S

ch
ed

ul
ab

ilit
y

Scaling Factor

UB-NX VRB-ILP-CON
UB-N VRB-ILP
VRB-L2 VRB-L1
RTA-SP

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
ei

gh
te

d
S

ch
ed

ul
ab

ilit
y

WCET Scaling Factor

RTA-SP VRB-L1
VRB-L2 VRB-ILP
UB-N VRB-ILP-CON
UB-NX

ILP-CON test is much less affected by the increasing
proportion of VRB tasks.

Figure 14: Weighted schedulability v. proportion of VRB tasks, D ≤ T

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

W
ei

gh
te

d
S

ch
ed

ul
ab

ilit
y

Proportion of VRB tasks

UB-NX VRB-ILP-CON
UB-N VRB-ILP
VRB-L2 VRB-L1
RTA-SP

	I. Introduction
	A. Related Work
	B. Organisation

	II. System model, Terminology and Notation
	III. Schedulability Analysis for VRB tasks
	A. Recapitulation of Schedulability Analysis for FPPS
	B. Maximum interference and the mode change problem
	C. Sequences maximising interference
	D. Schedulability analysis for VRB tasks
	E. Linear upper bounds on the interference

	IV. Improved Schedulability Analysis
	A. Engine speed measurement and lag
	B. Constraints from the maximum rate of acceleration
	C. Schedulability analysis

	V. Experimental Evaluation
	A. Parameter generation
	B. Success Ratio
	C. Weighted Schedulability Measure
	D. Runtime

	VI. Summary and Conclusions
	Acknowledgements
	References
	Appendix: Experimental Results: Weighted Schedulability

