ABSTRACT

PANCHAMUKHI, SHRINIVAS ANAND. Providing Task Isolation via TLB Coloring. (Under
the direction of Dr. Frank Mueller.)

The translation look aside buffer (TLB) improves the performance of the system by caching
the virtual page to physical frame mapping. But TLBs present a source of unpredictability for
real time systems. Standard heap allocated regions do not provide guarantees on the TLB set
that will hold a particular page translation. This unpredictability can lead to TLB misses with a
penalty of thousands of cycles and consequently intertask interference resulting in loose bounds
on the worst case execution time (WCET).

In this paper, we design and implement a new heap allocator that guarantees the TLB
set that will hold a particular page translation. The allocator is based on the concept of page
coloring. Virtual pages are colored such that two pages of different color cannot map to the
same TLB set.

Our experimental evaluations confirm the unpredictability associated with the standard
heap allocation. Using a set of synthetic and standard benchmarks, we show that our allocator
provides task isolation for real time tasks. To the best of our knowledge, such TLB isolation is

unprecedented, increases TLB predictability and can facilitate WCET analysis.



©) Copyright 2014 by Shrinivas Anand Panchamukhi

All Rights Reserved



Providing Task Isolation via TLB Coloring

by
Shrinivas Anand Panchamukhi

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

Dr. William Enck Dr. Alexander Dean

Dr. Frank Mueller
Chair of Advisory Committee



DEDICATION

To my parents and my sister Archana.

i



BIOGRAPHY

Shrinivas Anand Panchamukhi was born in Dharwad, a small town in the state of Karnataka
in India. His family is settled in the state of Goa, India. He did his schooling in Goa and went
to National Institute of Technology (NIT), Rourkela, Orissa, India for his B.Tech in Computer
Science. He joined Sapient Consulting as an associate technology and worked there for two
years. He came to NC State in Fall 2012 as a Master’s student in the department of Computer
Science. He has been working under Dr. Frank Mueller as a Research Assistant since January
2013.

iii



ACKNOWLEDGEMENTS

This work would not have been possible without the collective effort of a lot of people. First
and foremost, I would like to thank my advisor Dr. Frank Mueller for showing confidence in me
and giving me the opportunity to work on this project. His guidance and feedback put me on
the right track from time to time. I am thankful to Dr. William Enck and Dr. Alexander Dean
to serve on my committee. Lastly, I would like to thank my labmates in the System Research

Lab, Payal Godhani, my family and friends for their support.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . s e vi
LIST OF FIGURES . . . . . . . s e e vii
Chapter 1 Introduction . . . . . . .. . ... .. ... .. ... ... 1
Chapter 2 Motivation, Hypothesis and Contribution . ... ... ... .. .. .. 3
2.1 Motivation . . . . . . .. e e e e e 3
2.2 Hypothesis . . . . . . . . e 4
2.3 Contributions . . . . . . . ... 4
Chapter 3 Design . . . . . . . . . . . 5
Chapter 4 Implementation . . . . . . .. .. ... ... ... ... .. ... 8
4.0.1 Notations . . . . . . . . . . e 8

4.0.2 Datastructures . . . . . . . ... 9

4.0.3 Generic algorithms . . . . . . . ... Lo 9

4.0.4 Intel Xeon E-2650 . . . . . . . . .. ... 11
Chapter 5 Experimental framework . . . . ... ... ... ... ........... 13
Chapter 6 Results . . . . . . . .. . 15
6.0.5 Predictability . . . . . . ... 15

6.0.6 Identifying noisy DTLBsets. . . . . . . . .. .. ... ... ... 16

6.0.7 L1/L2 DTLB miss penalty . . . . . . . . . ... .. 17

6.0.8 Synthetic benchmarks . . . . . . .. ... ... ... .. .. .. .. ..., 17

6.0.9 Malardalen benchmarks . . . . . ... .. ... ... ... ... ... ... 23

6.0.10 Mi benchmarks . . . . . . . . . . ... ... 26
Chapter 7 Related Work . . . . . . . . . . . . . 28
Chapter 8 Future Work and Conclusion . . . .. ... ... ... .......... 30
References . . . . . . . . . . e 31
Appendix . . . ... e e 34
.1 Introduction . . . . . . .. 35
Appendix A Detailed Experimental Results . . . . . .. .. ... ... ... ..... 36
A.1 malloc vs. tlb_malloc experiment . . . . ... .. .. ... .......... 36

A2 Timing results . . . . . . . . . 38



Table 6.1 Task characteristics

LIST OF TABLES

vi



LIST OF FIGURES

Figure 1.1 Virtual page to physical page translation using TLB . . . . . . .. .. .. .. 1
Figure 3.1 TLB coloring - max contiguous allocation = page_size . . . . . . ... .. .. 5)
Figure 3.2 TLB coloring - max contiguous allocation = page_sizex R . . . . . . ... .. 6
Figure 4.1 tlb_malloc internals . . . . . . . . . . ... 8
Figure 4.2 tlb_free internals . . . . . . . . . .. L 9
Figure 4.3 Data structures . . . . . . . . . .. 10
Figure 6.1 DTLB set utilization . . . . . . . . . .. ... ... . 16
Figure 6.2 Same set vs. diff set using tlb_malloc . . . . . . ... .. ..o 18
Figure 6.3 Jobs vs. execution cycles for T1. . . . . . ... ... ... ... ... ... 19
Figure 6.4 Malloc: Jobs vs DTLB misses for T1 . . . . . . ... .. ... ... .. .... 20
Figure 6.5 tlb_malloc: Jobs vs DTLB misses for T1 . . . . .. ... ... ... ...... 20
Figure 6.6 Malloc: Jobs vs DTLB misses for T2 . . . . . .. ... ... ... ... .... 21
Figure 6.7 tlb_malloc: Jobs vs DTLB misses for T2 . . . . . ... ... ... ... ... 21
Figure 6.8 Jobs vs execution cycles for T1 . . . . . . .. .. .. Lo oL, 22
Figure 6.9 T1 . . . . . o o 24
Figure 6.10 T2 . . . . . . . L e 24
Figure 6.11 T3 . . . . . . . o L e 25
Figure 6.12 T4 . . . . . . o e 25
Figure 6.13 T1 and T2 use fft and adpcm benchmarks, respectively . . . . .. .. .. .. 26
Figure 6.14 Combination of Malardalen and Mi benchmarks . . . . .. ... .. ... .. 26
Figure A.1 Malloc: Jobs vs. DTLB misses for T1 . . . .. .. ... ... ... ...... 37
Figure A.2 tlb_malloc: Jobs vs DTLB misses for T1 . . . . . . ... ... ... ...... 37
Figure A.4 tlb_malloc: Jobs vs DTLB misses for T2 . . . . ... .. ... ... ... ... 37
Figure A.3 Malloc: Jobs vs. DTLB misses for T2 . . . . ... ... ... ... ...... 38
Figure A.5 Jobs vs. execution cycles for T1. . . . . . ... ... .. ... ... 38
Figure A.6 Jobs vs. execution cycles for T2 . . . . . . . .. .. ... ... ... 39
Figure A.7 Jobs vs. execution cycles T1 . . . . . . . ... ... ... ... ... 40
Figure A.8 Jobs vs. execution cycles for T2 . . . . . . . . . . . ... ... ... ... .. 40
Figure A.9 Jobs vs. execution cycles for T1. . . . . . . . . ... ... ... .. ...... 41
Figure A.10 Jobs vs. execution cycles T2 . . . . . . . ... ... o 41
Figure A.11 Jobs vs. execution cycles for T1. . . . . . . . . . ... .. ... .. ...... 42
Figure A.12 Jobs vs. execution cycles for T2 . . . . . . .. ... ... ... ... 42

vil



Chapter 1

Introduction

The translation look aside buffer (TLB) is a hardware cache that sits close to the processor and
caches the wvirtual page to physical frame mappings. Today’s computer architectures support
multiple levels of TLBs. Most processors from Intel [9], AMD [2] and ARM [3] feature a separate
instruction TLB (ITLB) and a data TLB (DTLB) at the first level. In some processors [9], the
second level of the TLB is shared between data and instructions while in others [2], the DTLB is
shared between different cores. Typically, a virtual address is translated to the physical address
using a hierarchy of translation tables known as paging structures. Figure 1.1 shows a simple
example of how a virtual page is translated to a physical frame using a TLB. In this example, on
a TLB miss, the page table is consulted directly. In general, the highest-level paging structure

will be consulted.
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Figure 1.1: Virtual page to physical page translation using TLB



Static timing analysis tools [19] analyze the source code of a task and compute the worst
case execution time (WCET) of the task. Mueller [13] (among others) has proposed abstract
cache states to analyze instruction caches to achieve tight bounds on WCET. White et al. [1§],
Ramaprasad et al. [15] [16] and Ferdinand et al. [7] have proposed bounding the WCET for
systems with data caches. To the best of our knowledge, TLBs have not been considered in the
context of achieving tight bounds on the WCET of a task.

In this thesis, we describe the design and implementation of a new heap allocator that we
refer to as tlb_malloc. This allocator utilizes the concept of page coloring. We assign colors to
virtual pages in such a way that virtual pages with different color will not map to the same
DTLB set. When tasks dynamically allocate memory using tlb_malloc, in addition to specifying
the size of the allocation, they will also specify the color of the memory region. By ensuring that
each task allocates memory regions of a unique color, we can provide isolation between tasks
and also enable static timing analysis to potentially calculate significantly tighter bound on
the WCET. Our experimental evaluations reveal the unpredictability associated with standard
heap allocation. Using a set of synthetic and standard benchmarks, we show that tasks can be
isolated from each other, i.e., no inter-task DTLB misses are incurred.

Past research has utilized page coloring to guarantee task isolation with respect to caches
and DRAMs. Ward et al. [17] have proposed coloring physical frames such that two frames
with different colors will not cause last level cache conflicts. Yun et al. [20] have proposed a
DRAM bank aware memory allocation. This ensures that concurrently running applications on
different cores do not access memory that maps to the same DRAM bank.

The rest of the thesis is organized as follows: Chapter 2 describes the motivation, hypothe-
sis and our contributions. A generic design of our allocator is presented Chapter 3. Chapter 4
describes the implementation details of tlb_malloc. Chapter 5 discusses the experimental frame-
work. Chapter 6 presents the results for both synthetic and standard benchmarks. Chapter 7
discusses the related work. Chapter 8 summarizes the contributions and discusses open prob-

lems.



Chapter 2

Motivation, Hypothesis and

Contribution

2.1 Motivation

TLBs improve the performance of the system in terms of speeding up the page translations,
but they are also a source of unpredictability for real time systems. Heap allocation is generally
avoided in real time systems due to the following unpredictability issues. First, the WCET
of the standard heap allocation API is too high or is unbounded [12]. Second, standard heap
allocation APIs do not guarantee the DTLB set in which the virtual page to physical frame
mapping will be placed. Our focus in this paper is on the latter point. This unpredictability
poses three problems.

First, it makes it difficult for static timing analysis to determine whether a memory access
will hit or miss in the DTLB. Hence, for calculating the WCET of a task, static timing analysis
would take a pessimistic approach and calculate the WCET assuming all memory references to
be a miss. This pessimistic WCET leads to inefficient processor utilization.

Second, heap allocation may utilize the DTLB sets in a non-uniform manner. For example,
consider two tasks, T1 and T2, and a system with a 2-way set associative DTLB. We further
assume that the DTLB is empty. Then let each task requests two virtual pages from the standard
heap allocator. The heap allocator may allocate virtual pages in such a way that all four pages
map to the same DTLB set. Note that the DTLB was initially empty and had sufficient space
to accommodate all four mappings without conflicts.

Third, since T1 and T2 conflict in the DTLB, they might evict each other’s mapping in the
DTLB repeatedly. If tasks T1 and T2 are hard real time (HRT) and soft real time (SRT) tasks,
respectively, the HRT task will suffer interference from the SRT task. This interference could
result in the HRT task missing its deadline unless the DTLB were explicitly modelled. But even



if the DTLB were modelled, it might result in a loose WCET bound due to overestimations of
DTLB misses.

2.2 Hypothesis

We hypothesize that the allocation of memory can be controlled in software so that real-time

tasks will not interfere with one another in terms of DTLB conflicts.

2.3 Contributions

Our contributions in this paper are:

1. We design and implement a new heap allocator that provides guarantees on the DTLB

sets that hold a particular virtual page to physical frame mapping.

2. We devise experiments to assess which bits of the virtual address determine the DTLB

set.

3. We conduct experimental evaluations of the heap allocator to demonstrate task isolation.



Chapter 3

Design

To describe our heap allocator, we start with a basic design and then incrementally add complex-

ities and design details. Consider an N-way set associative DTLB supporting N x M entries
and a virtual address space with N x M pages as shown in Figure 3.1. The DTLB handles

translations for virtual pages of size page_size.
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Figure 3.1: TLB coloring - max contiguous allocation = page_size

Let us assume that page 0 will map to set 0 as shown in Figure 3.1. The translation for

page 0 could be stored in any one of the N ways. For simplicity, let us assume that the DTLB
is initially empty. We fill the entries from left to right in each set. Further, assume that page 1
will map to set 1, page 2 will map to set 2 and so on until page M — 1. Pages M to 2M — 1 will

wrap around, i.e., page M will map to set 0, page M + 1 will map to set 1 etc.



We color pages 0, M, 2M +1 ... M (N —1) with the same color (red in this example) because
all of them map to the same DTLB set. Similarly, pages 1, M +1,2M +1 ... M(N — 1)+ 1 are
colored blue and so on. We can see that no two virtual pages with different color can map to
the same DTLB set. Each DTLB entry holds a translation for a virtual page of size page_size.
Since each DTLB set is given one color, the maximum contiguous virtual address space one can
allocate of a particular color is given by the page_size.

Let us now consider that a task needs to allocate more than page_size bytes of contiguous
memory in the virtual address space. This typically results in allocating arrays that span across
multiple pages. In our basic design, such an allocation would span across two pages of different
color assuming that the allocation is aligned to a page boundary. In order for the tasks to be
able to allocate contiguous virtual memory of size greater than page_size of a particular color,
we reserve a certain number of DTLB sets for contiguous memory allocation. Consider the same
example as in Figure 3.1 but with R sets reserved for contiguous memory allocation. Figure
3.2 shows an example of DTLB coloring that supports greater than page_size allocations for a

particular color.
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Figure 3.2: TLB coloring - max contiguous allocation = page_size x R

Since we have R sets reserved for contiguous allocations, the maximum amount of contiguous
memory than can be allocated of a particular color is R X page_size. Pages 0 to R — 1 are
colored red. Starting from page R until page M — 1, the coloring is performed in a similar way
as described for the basic design. But pages M to M + (R —1) are colored blue, again to support
contiguous memory allocation. All the other virtual pages are colored in a similar manner.

Contemporary operating systems support the concept of huge pages whose size varies from



2 MB to 1 GB depending on the configuration and the system in place. Computer architectures
have a different DTLB structure to support huge page translations. Our heap allocator handles
huge page allocation in a similar manner as described above.

We now generalize the methods for DTLB coloring described so far. Let M be the total
number of DTLB sets, R be the number of sets reserved for contiguous allocations and N be
the associativity of the DTLB. Let page_size denote either the normal page size or huge page

size of the system.
Corollary 1. Number of colors for allocations greater than page_size is equal to N

Proof. Follows from the definition of N. O

Let maz_alloc_size refer to the maximum contiguous allocation size that can be served by our
allocator. Let num_colors_upto_page_size refer to the number of colors available for allocations

not exceeding page_size. Then,
max_alloc_size = page size x R, (3.1)

num_colors_upto_page_size = M — R. (3.2)

The number of instances of a particular color is constrained by the associativity of the DTLB.



Chapter 4
Implementation

In this section, we describe the notation and the data structures to implement our heap allocator.
We then present generic algorithms, which can be implemented on any architecture. Finally we
present a specific instance of the generic algorithm that we have implemented on Intel Xeon
E-2650.

4.0.1 Notations

We refer to the routine that initializes our heap allocator as tlb_malloc_init, the heap allocator as
tlb_malloc and the deallocator as tlb_free. These three routines are exposed as library functions to
user space applications. Compared to the standard heap allocation API, tlb_malloc and tlb_free
take an additional parameter, color. This parameter indicates the color of the memory region
to be allocated. For each DTLB to be colored, tlb_malloc_init sets aside a virtual address space
of page_size x dtlb_sets bytes. Additional memory may be needed to handle page boundary
alignment. Our heap allocator serves allocations from this virtual address space pool that is set
aside.

In this paragraph, we give a generic description of the internals of tlb_malloc and tlb_free.
It is applicable to all the DTLBs to be colored. Depending on the number of bytes requested,
tlb_malloc will call one of the functions as shown in Figure 4.1. LEN_ BYTES refers to the
number of bytes the allocator uses to store the size of the allocation. Similarly, tlb_free will call

one the functions shown in Figure 4.2 depending on the size of the allocation referenced by pir.

tlb_malloc_small() tlb_malloc_large()

(R X page_size) - LEN_BYTES

o page_size - LEN_BYTES

Size _—

Figure 4.1: tlb_malloc internals



tlb_free_smali() tlb_free_large()

(R X page_size)

o page_size

Size _—

Figure 4.2: tlb_free internals

4.0.2 Data structures

In this section, we introduce the data structures for our heap allocator. The description of the
data structures is as generic as possible and is not tied to any specific language or implemen-
tation. The following code snippet shows the structure to represent a chunk of free memory,
which we refer to as the free block.

struct mblock {
unsigned int length;

struct mblock * next;

};

In addition to the mblock structure, we need a free list per color to keep track of the available
free memory. Figure 4.3 shows a generic representation of the free list. Color 0 pointer, Color 1
pointer, ... Color n pointer are the base pointers, which point to the first available free block of
that particular color. Each free block in turn points to the next available free block of the same
color. We need two such free lists, one for small allocations and the other for large allocations,
for each DTLB to be colored.

4.0.3 Generic algorithms

Algorithm 1 shows the pseudo code for our heap allocator. Each of the functions shown in
Figure 4.1 invokes this algorithm. The parameter type is used to identify which specific function
is invoked. Line 3 sets free_list to the appropriate list depending on type and color. The function
on line 5 is responsible for walking through the free_list to find a suitable memory block and
returns the starting address of the memory block. It is also responsible for storing the allocation
size in LEN_BYTES preceding the returned starting address.

Algorithm 2 shows the pseudo code for our heap deallocator. Since we store the length of the
allocation in LEN_BYTES preceding ptr, lines 2 and 3 obtain the length of the allocation and
the base address of the block referenced by ptr. The function called in line 5 adds the memory
block back to the appropriate free_list.



Color 0 4’| Free block 1 |—-| Free block 2 |—» ..... »| Free block n |
pointer

Color 1 4’| Free block 1 |—-| Free block 2 |—’ ----- ~| Free block n |

pointer

Color2 "| Free block 1 H Free block 2 |—» ----- ~| Free block n |
pointer

Colorn "| Free block 1 |—-| Free block 2 |—~ ----- ~| Free block n |
pointer

Figure 4.3: Data structures

Algorithm 3 shows how to ascertain the bits in the virtual address that determine the DTLB
set. The algorithm relies on the performance monitoring library PAPI [6]. Let no_of_entries_-
in_dtlb be the number of entries supported by the DTLB, dtlb_assoc be the associativity of the
DTLB and page_size denote the page size on the system. The algorithm takes an array page_-
numbers as a parameter. Each element of the array indicates the page number to be accessed.
Pages are numbered starting from zero. Line 5 allocates a memory region large enough to
contain no_of _entries_in_dtlb+ 1 number of pages. In this algorithm, data is of the type integer
but any other data type could also be used. The conflict_page value (line 6) is used to index
into data. This value represents the index of the first element in the conflicting page. To explain
the main idea of the algorithm, we consider the following example. On the Intel Xeon E-2650,
the level one DTLB is 4-way set associative supporting 64 entries. This DTLB handles 4kB
translations. The conflict_page value is 64 x 1024 in this case. We keep the conflicting page
constant and vary the values in page_numbers for all possible permutations of 64 pages. Lines
9-12 access the pages as indicated by the page_numbers array. In this algorithm, we perform a
write operation, but a read operation could also be used to trigger DTLB accesses. By reading
the PAPI counters on lines 7 and 16, we determine the combination of 5 pages that result in a
DTLB miss on every memory access in the outer loop (assuming a LRU / PLRU replacement
policy). Thus, knowing the set of pages that conflict in the DTLB, we can examine the virtual
address of these five pages to determine the common bits after stripping the page offset bits

from the virtual address. After every memory access in the outer and inner loop, we need a

10



memory fence instruction to ensure that the memory references are issued in order and are

recorded by the performance monitoring registers.

Algorithm 1 Heap allocator

1: function ALLOCATE_MEMORY (type,size,color)
2 mem_ptr = NULL

3 free_list = get_free_list(type,color)

4 if size !I= 0 & & free list |= NULL then
5: mem_ptr = get_free_block(free_list,size)
6 end if

7 return mem_ptr

8: end function

Algorithm 2 Heap deallocator

1: function FREE_MEMORY (type,ptr,color)

2 length = get_allocation_length(ptr)

3 base_ptr = get_base_ptr(ptr);

4: free_list = get_free_list(type,color)

5 add_block_to_free_list(length,free_list,base_ptr)
6: end function

4.0.4 Intel Xeon E-2650

The Xeon E-2650 has a 4-way set associative DTLB supporting 64 entries at level one. From
Corollary 1, we know that the value of N is 4. The parameter R is configurable and is passed
as an input to tlb_malloc_init. The values for Equations 3.1 and 3.2 and are determined at run
time. In our implementation, the mblock structure is the same as described above. For the free
list per color, we maintain an array of pointers. Each index in the array refers to a particular
color and the value at that index points to the first available block of free memory of that

particular color.

11



Algorithm 3 Find address bits which determine DTLB set

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

function FIND_BITS(page_numbers|dtlb_assoc])

n = 1000;
no_of_entries_in_dtlb = no_of _dtlb_sets x dtlb_assoc
int_elements = page_size/sizeof (int);
int *data = malloc((no_of _entries_in_dtlb + 1) X page_size);
conflict_page = (no_of _entries_in_dtlb) X int_elements;
PAPI read();
for i =0ton do
for j = 0 to dtlb_assoc do
data[ (pages[j]) x int_elements] = 2;
asm(”memory fence instruction;”);
end for
data[ (conflict_page) x int_elements] = 2;
asm(”memory fence instruction;”);
end for
PAPI read();

17: end function

12



Chapter 5
Experimental framework

In this section, we describe the experimental framework used to evaluate our new heap allocator.
Algorithm 4 shows the pseudo code for our experimental setup. It implements periodic releases
of a task set without any special support from the operating system or the hardware. start_time
is a per task variable. It represents the time instant at which a task is first released. Function
t1_code represents the main body of a task. We use this experimental setup to evaluate both

synthetic and standard benchmarks.

Algorithm 4 Pseudo code for our experimental setup

1: struct timeval start_time_t1
2: function MAIN
3: gettimeofday(&start_time_t1)

4 plustime(&start_time_t1,1) > add one second
5 pthread_create(&t1, t1_code....)

6: ...

T

8: end function

9: function T1_CODE

10: struct timeval wait, now, release

11: release = start_time_t1

12: t1init()

13: loop

14: gettimeofday (&now)

15: minustime(&wait,&release,&now) > wait = release - now
16: nanosleep(&wait,&wait)

17: t1_job()

18: plus_time(&release,&period)

19: end loop

20: end function

13



We conducted experiments on an Intel Xeon E5-2650 processor running Linux 2.6.32. The
system has 16 cores, each of which can run at 2 Ghz. The level one DTLB is 4-way set associative
suporting 64 entries. The level two TLB supports 512 entries and is 4-way set associative. The
level two TLB is shared between instruction and data. Both these TLBs handle 4kB sized page
translations. For all experiments, we use rate monotonic scheduling of a set of tasks. On Linux,
this can be achieved by setting the task priority while creating them. We use the SCHED_FIFO

real-time scheduling policy and bind all tasks to a particular core to avoid task migration.

14



Chapter 6

Results

In this section, we first assess the predictability of malloc and tlb_malloc. Then, we present our
approach to identifying the DTLB sets which are subject to OS noise. Further, we estimate the
L1 DTLB miss penalty and L2 DTLB miss penalty. We then evaluate the performance of our

allocator with a set of synthetic benchmarks and standard benchmarks.

6.0.5 Predictability

In this experiment, we create two tasks, T1 and T2. Each task allocates 32 pages. From the
pool of 64 pages, the number of mappings to each DTLB set is recorded. We then compute
the maximum and average mappings per DTLB set over 5 runs. Figure 6.1 shows the graph of
the DTLB set versus the number of mappings. malloc_mazx represents the maximum number
of mappings that was observed when both tasks used malloc to allocate their pages. Similarly,
malloc_avg represents the average number of mappings. tlb_malloc_maz_avg represents both the
maximum and average number of mappings when both tasks used tlb_malloc to allocate their
pages. Since the values are identical, we just use one line to represent both the cases.

The level one DTLB is 4-way set associative and supports 64 entries. The best possible
DTLB set utilization would be the one in which each DTLB set has four mappings. In Figure
6.1, malloc_maz shows that DTLB sets 0-5, 12, 14 and 15 have four mappings. While DTLB
sets 6-11 and 13 have five mappings. malloc_avg shows that the average mappings per DTLB
set varies from 3.7 to 4.5. On the other hand, tlb_malloc.max_avg shows each DTLB set to
have exactly four mappings. From Figure 6.1, we can conclude that tlb_malloc gives us more
predictability compared to malloc. Our allocator is predictable in the sense that it guarantees
the DTLB set that will hold a particular page translation. Thus, if tasks T1 and T2 use malloc
to allocate pages, they might interfere with each other in the DTLB. If, in contrast, T1 and T2

use tlb_malloc, such inter task interference can be avoided.

15
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Figure 6.1: DTLB set utilization

6.0.6 Identifying noisy DTLB sets

So far, we have assumed that the entire DTLB is available for a set of tasks. But when the
tasks run, they might invoke certain library functions. These library calls and OS activities,
such as scheduling, interrupts, multi-level page tables etc., make use of the DTLB. We call this
”0OS noise”. Hence, only certain number of ways of a DTLB set can be used by the tasks. The
following describes our methodology to identify the number of ways that can be used by tasks
beyond those already occupied due to OS noise.

tlb_malloc gives us control over the DTLB set that will hold a particular page translation.
Hence, we use tlb_malloc to identify the number of ways of a DTLB set that are available for
our experiments. We turn off heap randomization so that the stacks of the tasks always have
the same base address across multiple runs. We start with two tasks, where each task allocates
one page of a particular color. Fach task has a warm up phase and a repeated access phase.
When the tasks run, we should not observe any misses apart from the warm up phase. However,
if one of the two tasks or both tasks incur misses, then we change the color of the allocation
until both the tasks do not incur any misses. Further, the number of pages accessed by each
task can be increased. Using this methodology, we can systematically distinguish those DTLB
sets subject to OS noise from clean ones available for a task set. We use this methodology for
experiments with tlb_malloc to ensure that we do not use any noisy DTLB sets. For experiments
using malloc, we cannot perform such identification because malloc does not give us control over

the DTLB set that will hold a particular mapping.
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6.0.7 L1/L2 DTLB miss penalty

In this experiment, we determine the DTLB miss penalty for the Intel Xeon E-2650. We measure
the execution cycles using the time stamp counter register. To calculate the L1 DTLB miss
penalty, we map five pages to the same DTLB set using our allocator. We perform a warm
up by accessing the pages once. We then access these five pages in a cyclic manner similar to
the one shown in Lines 8-14 of Algorithm 3. This results in a L1 DTLB miss on every access.
The average latency is computed by dividing the execution cycles by the number of L1 DTLB
misses. This latency also factors in the cycles required for memory fence instructions and the
overhead of the memory reference itself. To factor out this overhead via dual loop timing [1], we
run another loop in which we access elements of an array in the similar manner as we access the
five pages. Subtracting this overhead from the average latency calculated closely approximates
the L1 DTLB miss penalty. Averaging over 10 runs, we determined the L1 DTLB miss penalty
to be about 7.5 cycles. The standard deviation of the results was about 0.04.

To determine the L2 DTLB miss penalty, we use the same idea as mentioned above but
map pages to different DTLB sets. We measure the latency of the warm up loop and compute
the L2 DTLB miss penalty in a similar manner described above. By averaging over 10 runs, we
found the L2 DTLB miss penalty to be about 1731 cycles with a standard deviation of 231.

6.0.8 Synthetic benchmarks

In the synthetic benchmarks, each task allocates and accesses a certain number of pages. During
initialization (line 12 of algorithm 4), each task accesses its set of pages for the first time. We
refer to this as the warm up phase. When a job of either task is released, the job accesses its set
of pages repeatedly. We refer to this as the repeated access phase. The Intel Xeon has a 4-way
set associative level one DTLB. The worst case scenario occurs when the combined accesses
of both tasks are greater than 4 pages and these pages map to the same DTLB set. The best
case scenario occurs when the pages of each task map to different DTLB sets. We discuss two

variants for this experiment:

Same set vs. different set-using tlb_malloc

We use the following task set, where each task is denoted as (phase, period, execution): T1
(Ims, 2ms, 0.392ms), T2 (Oms, 16ms, 7.88ms). This task set ensures that the lower priority
task suffers more than one preemption. In this experiment, we compare the number of DTLB
misses that each task incurs in the best and the worst case scenario. For the worst case, both
the tasks request four pages each from tlb_malloc such that all pages are of the same color. This
scenario is termed as same set. Conversely, for the best case, T1 allocates four pages of color 1

and T2 allocates four pages of color 2. This scenario is termed as different set.

17



Figure 6.2 depicts the results for this experiment over two hyperperiods. The x axis rep-
resents the time in milliseconds and the y axis represents the number of DTLB misses. The
graphs for T1 and T2 are shown in the top half and bottom half of the figure, respectively. Each
data point represents a job. The x axis shows the time at which the job is released and the y
axis shows the number of DTLB misses for that job. The time instant before Oms represents
the warm up phase. The corresponding value on y axis gives the number of DTLB misses for

the warm up phase. We refer to this as the Oth job of a task.
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Figure 6.2: Same set vs. diff set using tlb_malloc

The misses for the worst case scenario are depicted as T'1 same set and T2 same set. Jobs
1-5 (released at times 1ms, 3ms, 5ms, 7ms, 9ms) of T1 incur four misses because all these jobs
preempt T2 and will need to reload its pages into DTLB. Job 6 of T1 incurs four misses because
this job is released after T2, completes its execution and will also need to reload its pages into
the DTLB. Jobs 7 and 8 of T1 have zero misses because when these jobs are released, T2
has finished its execution and, hence, these jobs do not have any interference. This behaviour
repeats for each hyperperiod.

Every job of T2 is preempted five times. Hence, each job will incur 20 misses. The job
in hyperperiod 1 has 20 misses while the jobs in other hyperperiods have 24 misses. This is
because the job in hyperperiod 1 begins execution right away after the warm up. Jobs in other
hyperperiods will need to load the pages into the DTLB first because the last job of T1 in the
previous hyperperiod would have replaced T2’s mappings in DTLB.

The misses for the best case are represented by 71 diff set and T2 diff set. In the first
hyperperiod, even though jobs 1-5 of T1 preempt T2, neither T1 nor T2 incur any misses
because both map to different DTLB sets. The misses observed are due to the warm up phase.

From Figure 6.2, we can conclude that if tasks use different DTLB sets then they can be isolated
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from each other and will not be subject to inter task interference.

Figure 6.3 depicts the number of cycles needed by each job of T1 over five hyperperiods.
same set represents the experiment when both tasks share a DTLB set. diff set represents the
experiment when the two tasks do not share DTLB sets. For both runs, the jobs in hyperperiod
one seem to require a larger number of cycles to execute as compared to the jobs in other
hyperperiods. We attribute this to the warm ups happening in the architecture like the instruc-
tion caches, data caches, branch prediction etc. The execution cycles for jobs in the second
hyperperiod for the same set experiment varies depending upon the interference from T2. Jobs
9,10,11,12,13 preempt T2. Since these jobs of T1 have to reload their pages, they will incur
an extra cost in terms of L1 DTLB miss penalty. Job 14 executes just after T2 completes its
execution and will also need to reload its pages and, hence, incurs additional execution cycles.
Jobs 15 and 16 are not subject to any interference from T2 and, hence, require lower cycles
to complete their execution. diff set shows the execution cycles for jobs of T1 in the second
hyperperiod to be consistent at about 782566 cycles. On average, the difference between the ex-
ecution cycles of jobs 9,10,11,12,13 in same set and diff set is about 30 cycles, which is roughly
the L1 DTLB miss penalty for 4 pages. This behaviour is repeated for subsequent hyperperiods.
From Figure 6.3, we further confirm that the tasks can be isolated from each other if they use
different DTLB sets.

The execution cycles for jobs of T2 also include the cost of preemption along with cycles
needed by the OS scheduler. Since we do not use a real time OS, the scheduling activities are
not bounded and may take a variable amount of time. Since the measurements of execution
cycles for jobs of T2 are subject to noise, it is difficult to attribute the variation in the execution

cycles directly to the DTLB interference. Hence, we do not discuss the execution cycles for T2.
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Figure 6.3: Jobs vs. execution cycles for T1
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malloc vs. tlb_malloc

We use the following task set : T1 (1ms, 2ms, 0.385ms), T2 (Oms, 16ms, 7.38ms). In this
experiment, each task initially allocates 32 pages. Each task then randomly chooses 14 pages
from the pool of 32 pages. The tasks then perform a write operation on these 14 pages. Each
task has the warm up phase and repeated access phase as described previously. For both tasks,
we compare the number of DTLB misses when the tasks use malloc versus tlb_malloc to allocate
its pages. For Figures 6.4-6.7, the axes and data points have the same meaning as described for

Figure 6.2.
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Figure 6.4: Malloc: Jobs vs DTLB misses for T1
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Figure 6.5: tlb_malloc: Jobs vs DTLB misses for T1
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Figure 6.4 shows the misses incurred by T1 when it uses malloc. The graph shows the misses
over 10 runs and also the average of them. The number of DTLB misses varies with each run
depending upon the interference to T1. In hyperperiod one, on average, we observe that jobs 1
and 2 of T1 have about 5 misses, jobs 3-5 of T1 have about 2 misses, jobs 6 and 8 have about
3.5 misses and job 7 has about 6 misses. Similar values are observed for hyperperiod two. Figure
6.5 shows the misses incurred by T1 when it uses tlb_malloc. The number of misses for all 10
runs are identical and, hence, we use a single line to represent all 10 runs and the average. In
Figure 6.5, the observed misses are due to the warm up phase. Subsequent jobs of T1 do not

incur any DTLB misses at all.

run ] —— rmn 4 —s— mn7 —e— run 10 ——
un 2 —=— run 5 —s— run 8 ——  avg —v—
un 3 —— run 6 —— run 9 ——

Number of DTLB misses
oY

time (ms)

Figure 6.6: Malloc: Jobs vs DTLB misses for T2
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Figure 6.7: tlb_malloc: Jobs vs DTLB misses for T2
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Figures 6.6 and 6.7 show the results for T2 when it uses malloc and tlb_malloc, respectively.
The results are similar to T1. In Figure 6.6, the number of misses for malloc vary with each run.
The average number of misses is about 15. In Figure 6.7, we again use a single line to represent
the misses for all 10 runs and the average for tlb_malloc, since the values are identical. The
number of misses observed are due to the warm up phase while subsequent jobs do not incur
any misses. From Figures 6.4-6.7, we can conclude that tlb_malloc does provide task isolation
with respect to the DTLB. These figures also show that the DTLB misses are predictable when
the tasks use tlb_malloc.

Figure 6.8 depicts the execution cycles for each job of T1 over five hyperperiods. We slightly
modify the experiment described above. Instead of accessing the first four bytes of each page,
we access bytes such that the memory accessed maps to different L1 data cache sets. By this

modification, we ensure that we do not have conflicts in the L1 data cache.
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Figure 6.8: Jobs vs execution cycles for T1

In Figure 6.8, malloc cycles and tlb_malloc cycles represent the number of cycles needed by
each job of T1 when the tasks use malloc and tlb_malloc, respectively. malloc_misses represents
the number of misses incurred by each job of T1 when the tasks use malloc. The number of
misses is zero when the tasks use tlb_malloc. The x axis represents the jobs of T1, the primary
y axis on the left represents the cycles and the secondary y axis on the right represents the
number of DTLB misses. When the tasks use malloc, each job executes for a varying number of
cycles depending on the DTLB interference caused. But if the tasks use tlb_malloc, we observe
that the execution cycles for each job is almost constant. For both malloc and tlb_malloc, the
first job seems to take larger execution cycles than the other jobs. This is mostly likely due
to a warm up in the architecture like the instruction caches, branch prediction etc. Figure 6.8

further confirms that our allocator does provide task isolation. For similar reasons mentioned
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in Section 6.0.8, we do not measure the execution cycles for T2.

6.0.9 Malardalen benchmarks

For the experiments described in this section, we use benchmarks from Malardalen suite to
show task isolation. The experimental setup is similar to that described in Section 6.0.8. We
modified the benchmarks so that they use heap allocated regions instead of statically allocated
ones.

Table 6.1 shows the characteristics of tasks for various experiments. Phase, period and
execution time are in milliseconds. Column 1 shows the number of tasks in an experiment.
The tasks are depicted in decreasing order of priority. In an experiment of j tasks, each task
allocates [6]—,4—‘ pages. The number of pages accessed by each task is shown in column 6 of Table
6.1. The loop bounds of the repeated access phase is varied to select an appropriate execution
time for a task. We use the bubble sort, insertion sort, nth largest and statistics benchmarks
for our experiments. We believe that these benchmarks represent basic functionalities of a real
time task. Furthermore, we are constrained to small benchmarks since we only control DTLB

entries that are not subject to OS noise under Linux.

Table 6.1: Task characteristics

# tasks | Task | Phase | Period | Execution | Pages

9 T1 1 2 0.4 16
T2 0 54 27 16
T1 3 2 0.4 4

3 T2 2 3 0.9 7
T3 0 15 3.2 2
T1 3 2 0.2 2

4 T2 2 3 0.6 2
T3 1 5 1.1 1
T4 0 15 3.2 2

The experiments are designed in a way to show that our technique is applicable to a wide
variety of scenarios. For two tasks, the periods are harmonic and the execution times are a
combination of long and short runs. The number of pages accessed by each task are equal.
The lower priority task T2 has more than one preemption. For three tasks, the periods are
non-harmonic and have simultaneous releases of tasks. The number of pages accessed by each
task differs.

Figures 6.9-6.12 show the average number of misses for each task across all jobs except
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the Oth (warm up) job. The x-axis denotes the total number of tasks in an experiment and
the y-axis represents the average number of DTLB misses. malloc_avg and tlb_malloc_avg are
the average results over 5 hyperperiods computed over 5 runs when the tasks use malloc and
tlb_malloc, respectively, to allocate their pages. For all the following graphs, tlb_malloc_avg has
a value of zero. The graphs start at a negative value to make the value of tlb_malloc_avg visible.

The start of DTLB misses for malloc_avg are indicated by the positive value on the y-axis.
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Figure 6.10: T2

In the experiment with 2 tasks (Figures 6.9-6.10), if the tasks use malloc, we observe the
number of DTLB misses to be about 13 and 130 for T1 and T2, respectively. If the tasks use
tlb_malloc, both T1 and T2 incur no misses at all. The standard deviation of measurements

for T1 and T2 are about 1.47 and 2.7, respectively, when the tasks use malloc. The standard
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deviation is zero for the two tasks when they use tlb_malloc.

For the experiment with 3 tasks (Figures 6.9-6.11), we can see that if the tasks use malloc,
the number of DTLB misses for T1, T2 and T3 are about 6, 32 and 20, respectively. But if the
tasks use tlb_malloc, then all three tasks incur zero misses. The standard deviation of results
for T1, T2 and T3 are about 1.1, 5.5 and 2.5, respectively, when the three tasks use malloc.
When the three tasks use tlb_malloc, the standard deviation is zero.

For the experiment with 4 tasks (Figures6.9-6.12), the trend is similar. If the tasks use
malloc, the number of misses incurred are around 1.7, 6.8, 2.5 and 6.7 on average for T1, T2,
T3 and T4, respectively. If the four tasks use tlb_malloc, then each task incurs zero misses. The
standard deviation of results for T1, T2, T3 and T4 are about 0.5, 0.8, 1 and 4.8, respectively,
when the tasks use malloc. The standard deviation is zero when the tasks use tlb_malloc. When
the number of tasks is increased beyond four, the task set could not be isolated from OS noise
resulting in DTLB misses even for tlb_malloc. This is because we use a stock Linux system
instead of a real time kernel and lack control for page allocation for code, stack and global
variables.

The adpem and fft benchmarks represent larger and more realistic task work loads. We
create two tasks with the following characteristics: T1 (1 ms, 4 ms, 2 ms) and T2 (0 ms, 20 ms,
4.6 ms) representing the fft and the adpcm benchmarks, respectively. The sum of the number
of pages accessed by both the tasks is twenty. Figure 6.13 shows the results of this experiment.
The description of the graph is identical to the ones described above except that the x-axis
represents tasks in this figure.

In Figure 6.13, T1 and T2 incur about 10 and 34 DTLB misses, respectively, when the
tasks use malloc. If the tasks use tlb_malloc, then each task incurs zero misses. The standard
deviation of the results for T1 and T2 are about 3.1 and 1.8, respectively, when the tasks use
malloc. The standard deviation of the results is zero when the tasks use tlb_malloc.

From Figures 6.9-6.13, we can conclude that a set of tasks can be isolated from each other

with respect to the DTLB if they use tlb_malloc to allocate their memory.
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6.0.10 Mi benchmarks

In this section, we describe the experiments that we conducted using Mi benchmarks. We
create two tasks, T1 (1 ms, 7 ms, 2.5 ms) and T2 (0 ms, 14 ms, 5.3 ms). T1 represents the
FIR benchmark from Malardalen suite, while T2 represents the adpcm benchmark. T1 and T2
operate on input data of 16 kB and 450 kB, respectively. The adpcm benchmark from the Mi
suite operates on actual audio files and performs file 1O, while the adpcm benchmark from the
Malardalen suite described in the previous experiment operates on randomly generated data.
Figure 6.14 depicts the results for this experiment. The description of the graphs is identical to
that of Figure 6.13.
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Figure 6.14: Combination of Malardalen and Mi benchmarks

In Figure 6.14, T1 and T2 incur about 9 and 3 misses, respectively, when the tasks use

malloc. If the tasks use tlb_malloc they do not incur any misses. The standard deviation of the
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results for T1 and T2 are about 2.03 and 0.5, respectively, when the two tasks use malloc. The

standard deviation is zero when the tasks use tlb_malloc.
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Chapter 7

Related Work

Providing a virtual address space for safety critical systems with different integrity levels has
been explored by Bennett and Audsley [4]. The main goal of their work was to provision
virtual memory for safety critical systems without complicating timing analysis for tasks with
hard deadlines. To support the concept of a real time address space, kernel modifications are
imperative. Their paper, however, neither considered tasks that use dynamic memory allocation
nor the interference due to TLB sets shared by tasks. Our approach is different in the sense
that no kernel modifications are needed and real time tasks can use dynamic memory allocation
with bounded or even without TLB interference.

Puaut et al. [14] have proposed a compiler approach to make paging more predictable. The
main idea of the paper is to identify page in and page out points of virtual pages at compile
time. This method relies on the static knowledge of the possible references to virtual pages.
However, the focus of their paper is to make demand paging more predictable while ours is on
task isolation with respect to TLB.

Compiler-directed page coloring proposed by Bugnion et al. [5] involves three key phases.
First, a compiler creates a summary of array references and communicates this information to
the run time system. The run time system then uses machine-specific parameters like the cache
size to generate a preferred color for the physical frame. The operating system then uses this
color as a hint and does a best effort to honor them. This technique is applicable to physically
indexed caches while our focus is on TLBs. In addition, our technique does not need profiling
or modifications to the compiler and the operating system.

Software cache partitioning is related to our idea. This is commonly known as cache coloring.
The main idea of this technique is to color physical frames such that two frames of different
color will not map to the same cache set. Liedtke at al. [10] propose OS-controlled cache
partitioning. Mancuso et al. [11] use memory profiling to identity hot pages in virtual memory.

Then, the kernel subsequently allocates physical frames to these pages, such that there are no
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cache conflicts. Ward et al. [17] proposed cache locking and cache scheduling for the last level
caches. Their scheme treats cache ways as resources that must be acquired by tasks before
beginning their execution. These techniques alleviate interference with respect to physically
indexed caches but do not consider the interference in the TLB.

TLSF [12] is an approach to support dynamic memory allocation in real time systems. The
main idea is to have constant time dynamic memory allocation and deallocation. CAMA [8]
builds upon TLSF to incorporate cache awareness. CAMA can allocate dynamic memory in
constant time and can also guarantee the cache set that will hold this allocated memory. PAL-
LOC [20] is a DRAM bank aware memory allocator. It ensures that tasks running concurrently
on different cores do not access physical memory that maps to the same DRAM bank. Thus,
PALLOC reduces DRAM bank level interference between tasks. Though these techniques en-
able real time tasks to use dynamic memory, they do not consider the interference they may
cause in the TLB. In contrast, our allocator focuses on providing isolation between tasks with
respect to the TLB. Our TLB allocator operating on virtual pages can be complemented by
the techniques of TLSF, CAMA and PALLOC, which operate on physical frames.
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Chapter 8

Future Work and Conclusion

We presented the concept of TLB coloring in which virtual pages are colored such that pages
of different color do not map to the same TLB set. Using this concept, we designed and imple-
mented a heap allocator, tb_malloc, that guarantees the DTLB set that will hold a particular
page translation.

We conducted experiments on the X86_64 architecture using a set of synthetic and standard
benchmarks. Our finding is that tlb_malloc provides task isolation for real time tasks. Further,
the number of DTLB misses are predictable using our allocator. This predictability potentially
enables static timing analysis tools to compute significantly tighter bounds on the WCET.

In this paper, we have applied the idea of TLB coloring to the level one DTLB. In the future,
we plan to extend this idea to higher level DTLBs. We also plan to incorporate techniques of
TLSF [12], CAMA [8] and PALLOC [20]. Incorporating these techniques will enable constant
time dynamic memory allocation and provide task isolation with respect to DTLB, last level
caches and DRAMs.
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.1 Introduction

In Appendix A, we first describe in detail the results of an experiment we conducted to compare
malloc and tlb_malloc. Then, we describe in detail the experiments we conducted to demonstrate

that our allocator does provide task isolation using execution cycles as a metric.
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Appendix A

Detailed Experimental Results

A.1 malloc vs. tlb_malloc experiment

In this appendix, we describe an experiment in which we compare malloc and tlb_malloc. The
experiment set up is similar to that described in Section 6.0.8. We use the following task set:
T1 (1ms, 2ms, 0.39 ms), T2 (Oms, 16ms, 7.8 ms). Each task initially allocates 32 pages and
then randomly chooses 16 pages from the pool of 32 pages.

Figure A.1 shows the misses incurred by T1 when it uses malloc. The graph shows the
misses over 10 runs and also the average of them. The number of DTLB misses varies with
each run depending upon the interference caused to T1. In hyperperiod one, on average, we
observe that jobs 1-6 of T1 have about 7 misses while jobs 7 and 8 of T1 have about 5.5 and
3.4 misses, respectively. Similar values are observed for hyperperiod two. Figure A.2 shows the
misses incurred by T1 when it uses tlb_malloc. The number of misses for all 10 runs is identical
and, hence, we use a single line to represent all 10 runs and the average. In Figure A.2, the
observed misses are due to the warm up phase. Subsequent jobs of T1 do not incur any DTLB
misses.

Figures A.3 and A.4 show the results for T2 when it uses malloc and tlb_malloc, respectively.
The results are similar to T1. In Figure A.3, the number of misses vary with each run. The
average number of misses is about 42 for malloc. In Figure A.4, we again use a single line to
represent the misses for all 10 runs and the average for tlb_malloc, since the values are identical.
The number of misses observed are due to the warm up phase while subsequent jobs do not incur
any misses. From Figures A.1-A.4, we can conclude that tlb_malloc does provide task isolation
with respect to the DTLB. These figures also show that the DTLB misses are predictable when

the tasks use tlb_malloc.
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Figure A.5: Jobs vs. execution cycles for T1

A.2 Timing results

Figure A.5 shows the number of cycles needed for each job of T1 for the experiment described
in Section 6.0.8. The x-axis denotes the job number and the y-axis denotes the number of
execution cycles.

From Figure A.5, we observe that the jobs in the first hyperperiod require higher number
of execution cycles than the later ones. We attribute this to the warm ups occurring in the
architecture like instruction and data caches, branch prediction etc. Jobs 18 and 20 of same set
runl require a high number of execution cycles. These are outliers most likely due to some OS
activities like interrupts, scheduling etc. We see two bands of execution cycles in Figure A.5.

The lower band contains some of the same set runs. diff set runs are in the top band and we
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observe that they take higher execution cycles as compared to same set runs in the lower band.
We believe that the formation of bands and the same set taking shorter execution cycles in
some runs is due to the memory hierarchy. Our allocator provides isolation only with respect
to the DTLB. There may be interference in the L1/L2 caches, DRAMs etc. which can cause
the observed behavior.

The execution time for jobs of T2 also includes the cost of preemption along with cycles
consumed by the OS scheduler. Since we do not use a real time OS, the scheduling activities
are not tightly bounded and may take a variable amount of time. Since the measurements of
execution cycles for jobs of T2 are subject to noise, it is difficult to attribute the variation in
the execution cycles directly to the DTLB interference. Though the results are not conclusive,
for the sake of completeness, we show the execution cycles of each job of T2 for the experiments
discussed in this section.

Figure A.6 depicts the execution cycles for each job of T2 for the same set and diff set
experiment. We observe that the first job tends to take longer than subsequent ones, which can
be attributed to caching at all levels (L1, L2, L3). Since T2’s response time exceeds 9.84ms and is
interrupted by five preemptions of T1, OS scheduling and timer interrupts inflict coarse-grained

noise that dominates any fine-grained TLB effects.
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Figure A.6: Jobs vs. execution cycles for T2

We set up an experiment to compare the execution cycles needed by task T1 when it uses
malloc and tlb_malloc. The experiment is similar to the one described in Section 6.0.8. Figure
A.7 depicts the execution cycles of each job of T1. The description of the graph is the same as
that of Figure A.5.

In Figure A.7, we observe that the execution time of jobs fluctuates for both malloc and
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tlb_malloc. Ideally, only malloc runs should have variations in the execution cycles across jobs
since the jobs are subject to DTLB interference. But we observe a similar behaviour for tlb_-
malloc as well. Figure A.8 depicts the execution cycles needed by each job of T2, which are

shown for completeness but remain inconclusive as OS noise dominates any TLB effects.
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Figure A.8: Jobs vs. execution cycles for T2

Our experiments were originally set up such that we always access the first four bytes of
each page. This results in L1 data cache conflicts. Hence, we slightly modify the experiments so
that we access our pages in a manner that avoids L1 data cache conflicts. We can ensure this

by issuing memory references that map to different L1 data cache sets. Figure A.9 depicts the
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results of this experiment.
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Figure A.9: Jobs vs. execution cycles for T1

From Figure A.9, observe that when the tasks use tlb_malloc, the execution cycles of each
job is almost constant. While if the tasks use malloc, the execution cycles for each job varies
depending upon the DTLB interference caused. Figure A.10 depicts the execution cycles for
each job of T2.

malloc runl —+—
malloc run2 ——
malloc run3 —w—
malloc run4 —a&—
malloc runs
tIb_malloc run1
tlb_malloc run2 —e—
tlb_malloc run3 —a—
tlb_malloc rund —a—
tIb_malloc run5 —w—

1.803e¢+007

1.802¢+007 |-

1.801e+007

Cycles

1.8¢+007

1.799¢+007

1.798e+007

1.797e+007

job number

Figure A.10: Jobs vs. execution cycles T2

We conduct a similar experiment using the Malardalen benchmarks for the following task
set: T1 (1ms, 2ms, 0.45ms), T2 (0 ms, 54ms, 20ms). Each task accesses 14 pages. T1 and T2
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represent the statistics and the bubble sort benchmarks, respectively. Figure A.11 depicts the

execution cycles for each job of T1.
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Figure A.11: Jobs vs. execution cycles for T1

In Figure A.11, we observe a similar behavior to that of Figure A.7. The execution cycles of
jobs vary for both malloc and tlb_malloc. As we already pointed out in the preceding paragraphs,
this large variation in execution cycles is due to L1 data cache conflicts. Since the Malardalen
benchmarks are going to access all bytes in a page, we cannot avoid L1 data cache conflicts.
Figure A.12 depicts the execution cycles for each job of T2, again shown for completeness only

as noise dominates TLB effects.
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Figure A.12: Jobs vs. execution cycles for T2

42



