Abstract:
Summary form only given. With the increasing complexity of real-time embedded applications and the availability of Commercial-Off-The-Shelf (COTS) multi-cores, time-predi...Show MoreMetadata
Abstract:
Summary form only given. With the increasing complexity of real-time embedded applications and the availability of Commercial-Off-The-Shelf (COTS) multi-cores, time-predictable execution on these platforms has become a necessity. However, there are several challenges to achieving this predictability, primarily arising due to hardware resources shared between the cores (memory controllers, caches and shared interconnect). In this demo, we present a novel System-on-Chip (SoC) architecture based on COTS multi-cores that address some of these challenges. Specifically, we develop an architecture that enables COTS multi-cores to predictably access external memory. This SoC is designed using hybrid hardware platforms comprising a COTS multi-core and closely coupled Field Programmable Gate Array (FPGA), e.g., Xilinx Zynq ZC706. In our design, the COTS multi-core (ARM Cortex-A9 dual-core) is integrated using a high-speed interconnect with an arbiter module and the Memory Interface Generator (MIG) Xilinx memory controller on the FPGA. Through experiments we show that the proposed architecture has a precisely predictable worst-case memory access latency when compared to a COTS-only design.
Date of Conference: 11-14 April 2016
Date Added to IEEE Xplore: 28 April 2016
ISBN Information: