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Abstract—Real-time virtualization is an emerging technology
for embedded systems integration and latency-sensitive cloud
applications. Earlier real-time virtualization platforms require
offline configuration of the scheduling parameters of virtual
machines (VMs) based on their worst-case workloads, but this
static approach results in pessimistic resource allocation when
the workloads in the VMs change dynamically. Here, we present
Multi-Mode-Xen (M2-Xen), a real-time virtualization platform for
dynamic real-time systems where VMs can operate in modes
with different CPU resource requirements at run-time. M2-Xen
has three salient capabilities: (1) dynamic allocation of CPU
resources among VMs in response to their mode changes, (2)
overload avoidance at both the VM and host levels during
mode transitions, and (3) fast mode transitions between different
modes. M2-Xen has been implemented within Xen 4.8 using
the real-time deferrable server (RTDS) scheduler. Experimental
results show that M2-Xen maintains real-time performance in
different modes, avoids overload during mode changes, and
performs fast mode transitions.

I. INTRODUCTION

Consolidating multiple systems into a multi-core host can
reduce the cost of real-time systems while enhancing their
flexibility. Virtualization is gaining traction as a platform
for integrating real-time systems [1]. Virtualization maintains
the modularity of systems as virtual machines (VMs), while
allowing multiple subsystems to share the hardware resources
of a single physical machine. Each VM contains both the guest
OS and the application tasks of the subsystem. Compositional
analysis then allows a subsystem vendor to abstract the appli-
cation timing requirements as a resource interface of the VM
[2–4]. Real-time schedulers [5–7] have been developed and
adopted in hypervisors to satisfy the resource interfaces of
VMs, thereby allowing application tasks to meet their timing
constraints. This real-time virtualization approach benefits
both subsystem vendors and system integrators. It does not
require the system vendors to expose the details of their
subsystem implementations, while still allowing the system
integrator to meet the real-time performance of each VM based
on its resource interface.

For example, an in-vehicle infotainment (IVI) system may
include traffic information, cellphone interfaces, and vehicle
self-diagnostics, and auxiliary hands-free functions for drivers.
These systems may be provided by different vendors and then
integrated by the vehicle manufacturer. Virtualization tech-
nology offers a promising solution for IVI systems: multiple
systems can be virtualized and consolidated in a multicore
host. Each system can be implemented as a VM, which reduces
hardware components and simplifies the design. The Nautilus
Platform [8], Renesas R-Car [9], and INTEGRITY Multivi-
sor [10] are examples of automotive virtualization solutions.
Specifically, the Nautilus Platform, which collaborates with

the Xen Automotive Project, leverages the Xen hypervisor and
RTDS scheduler to host VMs running infotainment software
on different operating systems [11].

Traditionally, computational resources for each VM are
statically allocated through the hypervisor, in a configuration
that is based on the worst-case CPU requirment of the VM.
However, this static configuration approach may underutilize
hardware resources when VMs may operate in different modes
each involving a different task set. Supporting multi-mode
VMs becomes increasingly important as real-time systems
operate in dynamic settings. Representative examples include
IVI systems that need to adapt to driver behavior, and edge
clouds that need to be reconfigured for agile manufacturing.

To support dynamic soft real-time systems, we develope
Multi-Mode-Xen (M2-Xen), a real-time virtualization platform
that adapts to mode changes of VMs. A VM may operate in
different modes, each comprising a task set and its correspond-
ing resource interface. To maintain real-time performance of
dynamic systems, M2-Xen provides three novel capabilities:
(1) dynamic reallocation of CPU resources among VMs in
response to their mode changes, (2) overload avoidance at
both the VM and host levels during a mode transition, and (3)
fast mode transitions. M2-Xen has been implemented in Xen
4.8 using the real-time deferrable server (RTDS) scheduler. 1

Experimental results show that M2-Xen: (1) maintains real-
time performance in different modes, (2) avoids overload
despite mode changes, and (3) significantly reduces mode
switching latency when compared to standard approaches.

This paper is structured as follows. Section II introduces
background information. Section III identifies system require-
ments. Section IV describes the design and implementation
of M2-Xen. Section V focuses on design choices to achieve
fast mode transition. Section VI presents the evaluation of
M2-Xen. Section VII discusses other relevant research, and
Section VIII summarizes the contributions of this work.

II. BACKGROUND

M2-Xen is built on top of RT-Xen [5, 13], a real-time
scheduling framework for the Xen hypervisor [14]. This sec-
tion introduces Xen and RT-Xen as background. We provide
a broader review of related work in Section VII.

A. Xen

Xen [14] is a widely used open-source hypervisor. A Xen-
based virtualization system includes a privileged administra-
tion VM (i.e., Domain 0) and multiple unprivileged VMs

1Although other hypervisors (with certification capability, e.g. [10, 12]) are
more frequently adopted in industrial applications, they are often proprietary
and inaccessible to us. Xen is an open-source hypervisor that allows us to
experiment with new designs that may be extended to industrial hypervisors.
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(i.e., guest domains). The privileged VM is used by system
operators to manage the unprivileged VMs. Each VM has its
own operating system that schedules its tasks. We use the
terms domain and VM interchangeably in the rest of this paper.

A two-level hierarchical scheduling framework is used in
a virtualized host based on Xen, as in most virtualization
systems. A VM runs on multiple virtual CPUs (VCPUs),
which are scheduled on multiple physical CPUs (PCPUs) by
the hypervisor. Tasks in a VM are scheduled on VCPUs by
the guest OS of the VM.

B. RT-Xen and Its Limitations

The RT-Xen project [5, 13] developed a suite of real-
time schedulers for the Xen hypervisor, including the RTDS
scheduler [13] that was adopted in Xen in 2015. Industry
has shown increasing interest in RTDS. For example, the
Xen Automotive project [11] is using the RTDS scheduler to
achieve real-time performance for automotive applications.

When the RTDS scheduler is used in the Xen hypervisor,
the user must specify the resource interface of each VM. A
resource interface ω = (N,B, P ) specifies that the VM has
N VCPUs, and that each VCPU should be executed no more
than Bµs (budget) every Pµs (period).

To guarantee the budget and period assigned to each VCPU,
RTDS treats each VCPU as a deferrable server, where the
budget of the VCPU is consumed only when a task is running
on the VCPU. RTDS schedules all VCPUs based on the global
Earliest Deadline First (gEDF) policy.

To meet the desired real-time performance of the tasks in
a VM, we may calculate its resource interface ω based on
Compositional Scheduling Analysis (CSA) [15, 16]. Given (1)
the periods and the worst-case execution times (WCET) of a set
of periodic tasks and (2) the real-time scheduling policy of the
guest OS, we can compute the resource interface ω of the VM
using CSA (e.g., the Multi-processor Periodic Model [17]).
If the underlying hypervisor scheduler (RTDS) satisfies the
resource interface of the VM at run time, the tasks in this
VM are expected to meet their deadlines [18]. If a host does
not have enough CPU capacity to accommodate the resource
interfaces of all VMs, it cannot guarantee the schedulability
of the tasks based on CSA.

It is important to note that RT-Xen supports a static resource
interface per VM, which must be configured when the VM
is initialized. If the VM may change its workloads or real-
time requirements at run time, the designer has to calculate
the resource interfaces based on the worst-case scenarios.

Such a static configuration can result in significant resource
underutilization at run time except when all VMs experience
their worst-case scenarios at the same time. In contrast, M2-
Xen supports dynamic VMs through on-line reallocation of
CPU resources based on multi-mode resource interfaces.

III. PROBLEM STATEMENT

A multi-mode virtualization system may operate in different
modes at run-time. Each VM can have different sets of soft
real-time tasks in different modes. The task set of Vk in mode
m is Sk,m = {τk,m,i}. A dynamic real-time system may
switch its mode (e.g., triggered by a user command or external
events) at run time. When the system changes from mode m
to mode m′, each VM will switch from its task set in mode m
to that in mode m′. Each periodic task τk,m,i is characterized
by (Ck,m,i, Tk,m,i), where C and T are WCET and period,
respectively. The utilization of a task set Sk,m is defined as
Uk,m =

∑
i
Ck,m,i

Tk,m,i
.

For each VM, M2-Xen allows a user to specify multi-
ple resource interfaces corresponding to its different modes.
Specifically, Vk runs on Nk VCPUs; each VCPU of Vk
has a budget Bk,m and a period Pk,m in mode m. The
resource interfaces of Vk in mode m is specified as ωk,m =
(Nk, Bk,m, Pk,m). The bandwidth of resource interface ωk,m

is defined as Wk,m = Nk × Bk,m

Pk,m
. Given a task set Sk,m in

mode m, VM Vk, and the real-time scheduling policy of the
guest OS, we can use CSA to calculate the resource interface
ωk,m.

A multi-mode virtualization system must meet the following
requirements in response to a mode change.

• Dynamic resource reallocation: The system should
dynamically change the resource interface and task set
of each VM. When the system’s mode changes from m
to m′, for each VM Vk, the system should change the
resource interface and task set, from ωk,m and Sk,m,
to ωk,m′ and Sk,m′ , respectively. The change in the
resource interface consequently causes the underlying
RTDS scheduler to reallocate CPU resources among the
VMs.

• Overload avoidance in VMs: The system must avoid
overloading a VM, i.e., the utilization of the task set and
the mode management system in a VM cannot exceed the
bandwidth of its resource interface. An overload in a VM
can lead to deadline misses and even a kernel panic in
the guest OS, when it runs out of CPU cycles allocated
by the hypervisor.

• Overload avoidance in the physical host: The total
bandwidth of all the VMs should not exceed the total
number of PCPUs. If the total bandwidth exceeds the
CPU capacity of a host, some VMs will not receive their
required CPU bandwidth, which may lead to deadline
misses and even a kernel panic.

• Fast mode switching: The system needs to complete
the mode switch quickly so that applications can start
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Fig. 2: Architecture of M2-XEN

operating in the new mode without significant delays 2.

IV. M2-XEN ARCHITECTURE

In this section we first describe the main components of M2-
Xen. We then explain the mode switching process, followed
by our design and implementation choices.

A. System Architecture

Fig. 2 illustrates the system architecture of M2-Xen. M2-
Xen comprises multiple VMs running on the Xen hypervisor
in a multi-core host. The administrative VM, Domain 0, is
pinned on a dedicated PCPU, PCPU 0. Each VM comprises
soft real-time tasks running on a guest OS and a set of VCPUs.

The system administrator specifies a multi-mode system in a
Global Mode Table. A global mode specifies a local mode for
each VM, where each local mode is associated with a task set
and the corresponding resource interface for the VM. Given a
global mode m, we can find the task set Sk,m and the resource
interface ωk,m of the VM k.

M2-Xen manages mode switching through a centralized
Host Mode Manager (HMM) in Domain 0 and a Domain
Mode Manager (DMM) in each VM. The HMM schedules
and coordinates the local mode changes of the VMs based on
the Global Mode Table. During mode switch, the HMM sends
commands to the DMMs of VMs, requesting them to change
the task sets to those of the new mode. The HMM is also
responsible for changing the resource interfaces of VMs (via
the libxenctrl library provided by the Xen hypervisor).

The DMM in each VM has a local mode table, which maps
each local mode to a set of tasks. The DMM uses a task engine
to change the task set in response to a mode change.

The HMM and DMMs communicate through TCP sockets
to coordinate the mode switching process. The HMM contains
a TCP server to which DMMs connect. When initialized, each
DMM establishes a long-lived TCP connection to the HMM.

2While M2-Xen can meet the real-time performance requirements in differ-
ent modes in steady state, it does not guarantee system schedulability during
a mode change. M2-Xen is suitable for applications that can tolerate potential
deadline misses during the transient mode switching process. However, for
hard real-time systems, we plan to explore using mode switching proto-
cols [19–25] in the future to avoid deadline misses during mode switching.

As DMM consumes CPU cycles to change task sets and to
communicate with HMM, we need to account for the overhead
when we compute the resource interface of a VM. Specifically,
we can model the DMM as a periodic task whose period
is the minimum inter-arrival time of mode switch requests.
The WCET of a local mode switch is 100 µs in our current
implementation. In practice, the mode switch frequency is
usually not high and a VM can account for its DMM overhead
in its resource interface, which allows M2-Xen to avoid CPU
overload at both the VM and host levels despite the DMM
overhead.

M2-Xen currently provide the mechanisms to change the
modes of individual VMs at run-time. To support dynamic
mode changes of individual VMs, M2-Xen may employ an
online admission controller to perform compositional schedu-
lability analysis and schedule VM mode changes on demand.
A potential challenge in online admission control is that its
schedulability analysis needs to be efficient in comparison
to the required mode switching latency. The current M2-Xen
avoided this issue by supporting a known set of global modes
that are schedulable based on offline compositional analysis.
This approach is applicable if the set of (global) system modes
are well defined at design time or when the number of VMs
and modes are limited.

B. Mode Switching Procedure

The mode switching procedure works as follows:
Step 1. Mode changes may be triggered by a predefined set of
events from an unprivileged VM. The DMM of the VM then
sends a predefined request to the HMM to trigger a mode
change. This request contains a new global mode identifier.
Based on the Global Mode Table, the HMM identifies the
VMs whose local modes need to be changed.
Step 2. The HMM schedules the mode changes of the VMs
. The mode changes of different VMs may be scheduled
to occur sequentially or in parallel. Importantly, to prevent
PCPU overload the HMM must enforce the PCPU capacity
constraint when scheduling the mode changes. That is, the total
bandwidth of all the VCPUs should always remain below the
total PCPU capacity throughout the mode switching process.
Step 3. To change the mode of a VM, if the bandwidth of
the VM increases in the new mode, the HMM first changes
the VM’s resource interface before sending the mode change
command to the VM. Otherwise, the HMM sends the mode
change command to the DMM, waits for the completion
acknowledgement from the VM, and changes the resource
interface of the VM. Note that this policy prevents VM
overload by ensuring that the bandwidth of the VM remains
larger than the total utilization of its tasks during the mode
change process.
Step 4. When a DMM receives a mode change command,
the DMM uses the task engine to switch the old task set
to that in the new mode. The DMM sends a completion
acknowledgement to the HMM once it finishes changing the
task set.
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Step 5. The HMM continues to schedule mode changes of the
remaining VMs until all the VMs have completed their mode
changes.

In the current implementation, M2-Xen accepts a new mode
change request only after finishing the current mode change.
In the future, we can explore other policies, e.g., (1) queuing
mode change requests and serve them in order, or (2) allowing
a new mode change request to preempt the ongoing mode
change.

C. Implementation Issues

Configuration of Domain 0. In current implementation, M2-
Xen allocates a full-capacity VCPU to Domain 0 and pins
the VCPU onto a dedicated PCPU0. Domain 0 hosts both the
HMM, which manages the mode changes for all VMs, and the
inter-VM virtual network. Dedicating a PCPU to Domain 0
mitigates interference between Domain 0 and the applications
running in the guest VMs.
Changing the task set. Each DMM uses a task engine to
change its local task sets. Our current implementation employs
the signal mechanism in Linux. Given a task set identifier, the
task engine sends SIGSTOP signals and SIGCONT signals
to the tasks to be stopped and started, respectively. However,
M2-Xen is not limited to a specific implementation of the task
engine, and different VMs may adopt different approaches to
change their task sets.
Inter-VM communication. We choose to use TCP connec-
tions for message exchanges between the HMM and the
DMMs. Using TCP makes our implementation portable ac-
cross different operating systems and extensible to support
mode switching in distributed systems in the future. As dis-
cussed in the next section, a challenge of TCP-based inter-VM
communication is that its latency depends on VCPU schedul-
ing. We present solutions to reduce inter-VM communication
latency in the next section.

V. REDUCING MODE SWITCHING LATENCY

A key challenge to M2-Xen is to reduce the mode switch
latency. Fast mode switch not only allows the system to
enter the new node quickly, but also shortens the transient
states in which tasks may potentially miss deadlines: the
mode switching latency is largely attributed to communication
latency between Domain 0 and the VMs, which can be
heavily influenced by VCPU scheduling. When the VCPU of
a VM runs out of budget and when a mode switch request
arrives, the DMM received the request will not run until the
VCPU’s budget is replenished, a delay referred to as the budget
replenishment delay, as shown in Fig. 3(a).

In this section, we frist analyse the delay experienced in a
mode switching process, and then introduce approaches to re-
duce the delay through (1) user-level mode switch schedulings
or (2) VM scheduling in the hypervisor.

The latency of changing a VM’s mode comprises four
parts: (1) the time required to send a local mode change
request from the HMM to a DMM in a VM, (2) the overhead
of changing the resource interface of a VM, (3) the latency
of changing the task set of a VM, and (4) the latency of
receiving a completion acknowledgement from the DMM.
Note the above steps are ordered for the case when the
bandwidth of a VM needs to be increased in order to avoid
overload a VM. When the bandwidth of a VM needs to be
reduced, the task set needs to be changed before the resource
interface is reduced, as discussed in Section IV.

(1) The HMM sending a mode change request to a DMM.
When a mode change starts, the HMM sends a mode change
request message to each affected VM. The message includes
a new resource interface and the local mode identifier. The
latency of an inter-VM socket communication can be as small
as several microseconds if the VCPU hosting the DMM,
is running on a PCPU when the request message arrives.
However, as shown in Fig. 3(a), if the DMM-VCPU has
exhausted its budget and hence is not eligible to run, the
DMM will not be able to receive a message from the HMM
immediately. As a result, the message has to wait until the the
DMM-VCPU’s budget is replenished, as shown in Fig. 3(a).
The budget replenishment delay significantly increase the
latency of a mode change 3.

(2) Changing resource interface of the VM. The HMM
uses xl, an administration tool, to change resource interfaces.
Internally, the xl invokes a hypercall Hypercall DOMCTL.
The hypercall is wrapped into the IOCTL system call in
Domain 0’s kernel. Invoking such a hypercall will cause
a context switch in the Linux Kernel and a VM-exit in
Xen, which introduces overheads at the order of tens of
microseconds.

(3) Changing task sets in VMs. Changing the task set to
3The communication delay induced by budget replenishment was also

observed in Quest-V [26].



the one corresponding to the new mode can be implemented
a domain-specific way. Our current implementation based on
Linux SIGNAL takes no more than 100 µs to change a task
set, as shown in Section VI.

(4) Receiving an acknowledgement from the DMM. As a
PCPU is dedicated to Domain 0, there is no budget replenish-
ment delay before the HMM receives the acknowledgement
from the DMM.

As analyzed above, the mode switch latency can be domi-
nated by the budget replenish delay of the VM. In the rest of
this section, we first introduce three user-level mode switch
scheduling methods to mitigate the mode switching delay and
then present a technique to significantly reduce the budget
replenish delay by modifying the hypervisor scheduler.

A. User-level Mode Switch Scheduling

To mitigate the impact of inter-VM communication delays,
we propose three policies to schedule the mode change re-
quests to different VMs.
Sequential. To avoid overloading the host during a mode
transition, the HMM first sorts the mode change requests in
increasing order of the difference between the new bandwidth
and the old bandwidth of the VM. Then the HMM will change
the mode of each VM one by one, starting from the VM that
will incur the largest bandwidth decrease. The HMM does not
send the next local mode change request until it has received
the acknowledgement message from the previous VM.
Batch. The batch approach shortens the mode transition by
allowing the HMM to issue mode switch requests to multiple
VMs in parallel through non-blocking send over the TCP
sockets. After collecting all the completion acknowledgements
from those VMs, we then issue another batch of messages to
VMs on the “increase” sublist. To avoid overloading in the
physical host, the VMs in first batch that the HMM sends
mode change requests are the ones whose bandwidthes are to
be reduced.
Greedy. Like the batch approach, the Greedy approach also
exploits concurrent requests to speed up the mode transition,
but in a more aggresive manner. Rather than wait for all the
acknowledgements from the “decrease” sublist, we can issue
mode change requests to some of VMs on the “increase”
sublist as soon as it can be performed without overloading
the host. In order to avoid overloading the host, the HMM
performs a bandwidth check every time we receive an com-
pletion acknowledgement from any VM whose bandwidth is
decreased, and issue an increase message as soon as enough
bandwidth becomes available.

B. Reduce Mode Switching Delay through VCPU Boost

While the user-level approaches described above can mit-
igate the impact of inter-VM communication delay through
concurrent requests, they do not fundamentally reduce the
inter-VM communication delay caused by the underlying VM
scheduler. To this end, we introduce a VCPU-boost mechanism
in the hpyervisor scheduler. The key idea of achieving fast

message delivery is to temporarily boost the priority of the
VCPU hosting the DMM of the receiving VM, when the
HMM sends a mode switch request; and then return the
DMM to its normal priority after the HMM receives the
acknowledgement from the DMM. Following this insight, we
propose and implement VCPU Boost feature based on the
RTDS scheduler in Xen hypervisor.
RTDS architecture. The RTDS scheduler in Xen 4.8 is event-
driven. The scheduler is triggered by the following events:
(1) the VCPU budget replenishment event, when a VCPU
replenishes its budget; (2) the VCPU budget exhaustion event,
when a VCPU runs out of its current budget; (3) the VCPU
sleep event, when a VCPU has no task running; and (4) the
VCPU wake-up event, when a task starts to run on a VCPU.

Whenever the RTDS scheduler is triggered, it applies the
global EDF algorithm to schedule VCPUs: A VCPU with an
earlier deadline has higher priority; at any scheduling point,
the scheduler picks the highest priority VCPU to run on a
feasible PCPU. A PCPU is feasible for a VCPU if the PCPU
is idle or has a lower-priority VCPU running on it.

The RTDS scheduler uses two global queues to keep track
of all VCPUs’ runtime information. The first is a run queue,
which has all runnable VCPUs sorted in increasing order of
their priorities. A VCPU is runnable if the VCPU still has
budget in the current period. The second is a depleted queue,
which keeps all VCPUs that run out of budget in their current
periods. The VCPUs in the depleted queue are sorted based
on their release time, i.e., the next budget replenish time.
Design of the VCPU boost feature. We introduce the boost
priority level to the RTDS scheduler. A VCPU with boost
priority always has a higher priority than non-boosted VCPUs.
All boosted VCPUs have the same priority and are scheduled
based on the First Come First Served (FCFS) policy. The
number of boosted VCPUs is no larger than the number of
PCPUs, so that the boosted VCPUs can always be scheduled
immediately.

We introduce two hypercalls for the administrative VM
(Domain 0), to change a VCPU’s boost status: (1) a boost
hypercall, which promotes a VCPU’s priority to boost prior-
ity, and (2) a de-boost hypercall, which degrades a boosted
VCPU’s priority back to non-boost priority. We allow only
Domain 0 to issue these two commands by installing rules in
the Xen Security Model (XSM). Note that it is important to
restrict the boost hypercall to Domain 0 to prevent VMs from
abusing the boost feature. As the boost mechanism effectively
grants the boosted VCPU additional CPU time beyond its
resource interface, it is important for Domain 0 to minimize
the boost duration. As shown in our experimental results, the
time needed for a mode change of a single VM is limited to
within 200 µs. The impact of boost on the resource allocation
is therefore negligible for many applications. Nevertheless,
the boost feature limits M2-Xen to soft real-time applications
because it affects the accuracy of CPU allocation to VCPUs.

The RTDS scheduler with the VCPU boost feature has
two new scheduling events: (1) a VCPU boost event, when a
VCPU’s priority is promoted to the boost priority by Domain



0; (2) a VCPU de-boost event, when a boosted VCPU’s priority
is degraded to that of a non-boosted VCPU.

The scheduler is triggered by these two boost-related events:
(1) At the VCPU boost event, the scheduler will find the PCPU
the lowest priority, remove the boosted VCPU from the global
queue (which can be the run queue or the depleted queue), and
schedule the boosted VCPU on the PCPU. A PCPU’s priority
is equal to the current running VCPU’s priority on the PCPU.
A PCPU without any VCPU running on it always has lower
priority than a PCPU with a VCPU running on it; (2) At the
VCPU de-boost event, the scheduler will update the de-boosted
VCPU’s deadline and its budget. The scheduler will insert the
de-boosted VCPU back into the run queue if the de-boosted
VCPU still has budget in the new period, or into the depleted
queue otherwise.
Boost. We leverage the proposed VCPU boost feature to
further reduce mode change latency. The HMM first sorts the
mode change requests in ascending order of the difference
between the new bandwidth and the old bandwidth of the
VMs. Then the HMM changes the mode of each VM one
by one, based on the sorted list of the mode change requests.
After sending the mode switch request to a VM’s DMM, the
HMM immediately boosts the DMM-VCPU. Once the HMM
receives the acknowledgement from the DMM, the HMM de-
boosts the DMM-VCPU as illustrated in Fig. 3(b).

As a boosted VCPU receives extra CPU cycles, it is there-
fore necessary to reserve CPU bandwidth to accommondate
the worst-case boost time in order to avoid host overload, i.e.,
the total bandwidth of all VCPUs should be no larger than
the total number of PCPUs (as defined in Section III). We can
account for the additional bandwidth consumed by a boosted
VCPU as a hypothetical VCPU. Based on the minimum inter-
arrival time of mode switch request (the period) and the worst-
case mode switch times of the VMs (the budget). To avoid host
overload, we reserve the total bandwidth of the hypothetical
VCPU of all the VMs. Furthermore, the HMM can use a
timeout mechanism, to avoid a malfunctioning DMM from
occupying a PCPU for an excessive amount of time. If the
DMM fails to send an acknowledgement before the timeout,
and hence enforcies an upper bound of the boost time of each
VM.

C. Comparison of Different Approaches

As an example, Fig. 4 presents the mode switch timelines
under different policies in real experiment. We used 6 VMs
(exclude Dom 0) to share a 15-PCPU host. Each VM got 3
VCPUs. The timelines are plotted based on real experiment
trace files. In this mode switch, Dom 1, 3, 4, and 5 decrease
their bandwidth, while Dom 2 and 6 increase theirs. When
decreasing a VM’s bandwidth, the HMM sends a mode switch
request to each DMM, receives the acknowledgement, then
changes the resource interface. When increasing bandwidth,
the resource interface should be changed before sending the
request to the DMM. The Sequential approach changes VMs
modes one by one, which introduces extra delay and is
also vulnerable to budget replenishment delays. The Batch
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approach exploits parallelism to mitigate the budget replenish
issue: “decreasing” requests are sent in a batch, followed by
the “increasing” sublist. The Greedy approach opportunisti-
cally increases resource interfaces of VMs as soon as possible,
and thus yields a better result than Sequential or Batch.
The Boost approach avoids budget replenishment delays by
boosting VCPUs on demand. Boost consistently outperforms
the others by providing a lower overall mode switch latency.
Boost also reduces the variability of mode switch delays.

Compared to the user-level approaches, VCPU boost can
drastically reduce mode switch latency, but it requires patching
the hypervisor. The choice between the user-level approaches
and the Boost approach therefore involve a trade-off between
performance and hypervisor modifications.

VI. EVALUATION

To evaluate M2-Xen, we conducted an extensive set of
experiments, using randomly generated real-time workloads
and micro-benchmarks. We had three main objectives: (1)
evaluate the real-time performance improvement (in terms of
missed deadlines) of M2-Xen over vanilla Xen, which is Xen
with static configuration, for multi-mode systems; (2) evaluate
the latency overhead incurred by mode-switch operations with
micro-benchmarks; and (3) compare the overall mode-switch
latencies of four fast mode switch policies.

A. Experimental Setup

Hardware. We conducted the experiment on a machine with
an Intel E5-2683v4 16-core chip and 64GB memory. We
disabled hyper-threading and power saving features and fixed
the CPU frequency at 2.1 GHz to reduce the system’s unpre-
dictability as in [13, 27, 28].
Hypervisor and VMs. We used Xen 4.8.0 with the RTDS
scheduler as the baseline hypervisor. We used our modified



Xen with the VCPU boost feature for the overall latency
evaluation. We used Linux 4.4.19 for all VMs. We configured
Domain 0 with one full-capacity VCPU pinned to one dedi-
cated core, i.e., PCPU 0. For each VM, We set the irq-affinity
of the network interface (eth0-q0) to the VM’s VCPU 0 and
disabled irqbalance. In the deadline miss experiment, we used
12 VMs, each of which had 3 VCPUs. In other experiments,
we used 6 - 12 VMs, each of which had multiple VCPUs. In
each experiment, we randomly generated test cases, each of
which had different numbers of VCPUs and different resource
interfaces for the VMs.
Mode change manager. The HMM and the mode request
generator were deployed in Domain 0. The HMM and the
DMM processes were scheduled by the Linux SCHED FIFO
scheduler with a priority of 98. The mode request generator
randomly generated mode switch requests that were sent to the
HMM through a socket. The DMM in each VM was pinned
onto the VCPU 0 of the VM.
Real-time workload. Each real-time workload was an inde-
pendent process. We set real-time workloads’ priorities to 1
- 95 under the Linux SCHED FIFO scheduler so that the
scheduler becomes the Rate Monotonic scheduler to schedule
the real-time workloads. The WCET and the period of each
task were determined by test cases.
Test case generation. We randomly generated test cases each
comprising a set of VMs hosted by a multicore host. Each test
case has two system modes. Each VM has different task sets
and resource interfaces in different modes. The task sets in
both modes are schedulable based on CSA performed using
the CARTS tool [29].

The test case generator guaranteed that each generated test
case had the following properties: (1) the total bandwidth of
both modes are the same; (2) the number of tasks generated for
a VM Vk with Nk VCPUs was no smaller than the number
of VCPUs Nk; (3) the system was claimed schedulable in
each mode by CARTS [29]; (4) the resource interfaces and
task sets of a VM are different in different modes. In case a
randomly generated test case violated these properties, the test
case generator discarded the test case and regenerated one.

B. Real-Time Performance in Multiple Modes

We compared M2-Xen against Xen in term of real-time
performance of multi-mode systems. As baselines for compar-
ison, we considered two representative approaches to configure
resource interfaces of VMs on Xen: (1) based on the initial
mode, or (2) based on the worst-case mode. When the resource
interfaces were configured based on the initial mode, the
system may suffer deadline misses after a mode switch if
a VM requires larger bandwidth in the new mode. On the
other hand, Xen can avoid no deadline miss in any mode if
the resource interface of each VM is configured based on the
largest bandwidth in any mode. However, the system would be
forced to over-provision resources unless all VMs experience
their respective worst-case workloads in the same mode.

We first compared the empirical performance of M2-Xen
against Xen when the latter was configured based on its initial
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Fig. 5: Number of PCPU required for different test cases

mode. In this set of experiments, we randomly generated 40
test cases each has two modes. In each mode, each test case
has 12 3-VCPU VMs running on 15 PCPUs, and each VM
contained a set of randomly generated tasks whose periods
was uniformly distributed in [100, 1000]ms. The total VCPU
bandwidth of all VMs was 8.0 in each mode, but the required
bandwidth of each individual varied between modes. The
period of each VMs resource interface is 5ms. Under M2-Xen
each VM had a resource interface for each mode. In contrast,
under Xen each VM had a fixed resource interface computed
based on the initial system mode (Mode 0).

We ran each test case for 200s. The system started in Mode
0 and switched to Mode 1 at 100s. The system recorded
deadline misses during the experiments. As expected M2-
Xen consistently met deadlines in both system modes, while
Xen suffered deadline misses after mode changes. Specifically,
the system experienced deadline misses in 6 out of 40 test
cases under Xen. In contrast, no test case witnessed any
deadline miss under M2-Xen because it dynamically changed
the resource interfaces in response to the mode switches.

We then assessed the cost of over-provisioning resources
in Xen based on each VM’s worst-case bandwidth need in
comparison to the multi-mode interfaces supported by M2-
Xen. In this analysis, each VM was assigned the resource
interface with the largest bandwidth in both system modes.
As a result, tasks in each VM are schedulable in all modes,
but this approach led to resource over-provisioning assuming
all VMs experience their respective worst-case workloads at
the same time, a rare situation in practice. To guarantee the
schedulability of the entire system, we used CARTS [29] to
compute the required number of PCPUs for these resource
interfaces. If the required number of PCPUs was no larger than
the available number of PCPUs (i.e., 15 PCPUs in our setting),
the system was schedulable. In contrast, M2-Xen provisions
different resource interfaces for each VM in different modes.
The system is schedulable as long as the required number of
PCPUs are smaller than the number of available PCPUs in
each mode.

For the same 40 test cases used in the last set of experiments,
we computed the required number of PCPUs for each test case
(denoted Static Worst-case in Fig. 5). Notably, none of the
40 test cases was schedulable on the 15 PCPUs available on



TABLE I: Global Mode Setting for Micro Benchmark

Global Mode Dom 0 (B,P ) Dom 1 (B,P )

0 (10ms, 10ms) (10ms, 10ms)

1 (10ms, 10ms) (4ms, 10ms)

our experimental platform. In contrast, all 40 test cases were
schedulable in both Mode 0 and 1, which means that they
were schedulable under M2-Xen that can dynamically switch
to the resource interfaces corresponding to the current mode.

In summary, this set of experiments and analyses have
shown that M2-Xen can significantly maintain real-time per-
formance by adapting to mode changes while avoiding re-
source over-provisioning.

C. Latency Breakdown among Mode-Switch Operations

We measured the latency introduced by the mode-switch
procedures with micro benchmarks. We created a VM with one
VCPU and two modes. Each mode had 4 randomly generated
tasks. We had a Domain 0 to run the HMM and the mode
switch generator. The resource interface for the VM and the
Domain 0 in both modes are shown as Table I. We toggled the
system mode between Mode 0 and Mode 1 500 times with the
mode-switch interval randomly picked between 200 ms and
400 ms. We measured the delay introduced by each mode-
switch procedure at each mode switch event. We classified
the delay into two cases: (1) case 1 when the system changed
from Mode 0 to Mode 1; and (2) case 2 when the system
changed from Mode 1 to Mode 0.

Fig. 6 shows the latency of the four procedures that con-
tribute to the overall mode-switch latency: (1) Send, which
sends a mode change request from the HMM to a DMM; (2)
Signal, which uses the task engine to change the task set; (3)
Receive, which receives an acknowledgement from the VM;
and (4) Change, which uses the HMM to change the VM’s
resource interface.

We observed in Fig. 6 that the latencies of the Signal,
Receive, and Change procedures are relatively short and stable.
In both cases, the latencies stay within 100µs most of the time.
We also observed that the Send procedure did not suffer a
significant delay when system changed from Mode 0 to 1. This
is because Domain 1 had a full-capacity VCPU in Mode 0 at
the mode switch, which eliminated the budget replenishment
overhead in the Send procedure and allowed the DMM to
immediately process an inter-VM message from the HMM.

However, when the system changed from Mode 1 to 0,
Domain 1 had a partial-capacity VCPU at the mode switch.
The VCPU running the DMM may exhaust its budget and
be de-scheduled, resulting in budget replenishment delay of
up to 6 ms, which was consistent with the upper bound of
P − B = 10ms − 4ms = 6ms. This latency dominated the
overall mode change latency. The long tail of the Send latency
increased not only the worst-case latency but also the average
latency, as shown in Fig. 7.

D. Overall Mode Change Latency

This experiment aims to evaluate the budget replenishment
delay of the Send procedure for four different mode switch
policies: Sequential, Batch, Greedy, and Boost.

We had 15 PCPUs for guest VMs. Each VM had 3
VCPUs. We generated test cases by varying the total
bandwidth Wtotal and number of VMs. We had 10 test cases
for each combination of total bandwidth and number of VMs.
We had 10 test cases for each {Wtotal,#VMs} setting.
For each test case, we switched the system mode between
Mode 0 and 1 50 times. The interval between two mode
switch requests was randomly choosed [2000, 3000] ms. We
ran each test case with different mode switch policies and
measured 100 overall mode change latencies for each test
case. We had 1000 latency results in total for each test case.

Latency distribution. Fig. 8 showed the overall latency in
boxplot for the four mode switch policies in different band-
width settings. We observed that the median latency increased
monotonically with the number of VMs. This is reasonable
because the HMM was implemented as a single thread server,
and all communication and resource interface management
were handled on PCPU 0 serially. The more VMs to manage,
the longer median overall latency was expected. We observed
that the Greedy approach outperformed the other two user-
level approaches. In general, the Greedy approach had smaller
median latency than the other two approaches, because it
leveraged parallelism in an opportunistic manner. However,
all three user-level approaches witnessed large variance of
latencies.

We also observed that the Boost approach significantly
outperformed all three user-level approaches across all system
bandwidths. To be specific, the Boost approach’s overall
latencies were consistently smaller than 1.5 ms, while the best
user-level approach, i..e, the Greedy approach, had its largest
overall latency larger than 10 ms (see the results for 11 VMs
in Fig. 8 (a)). This is reasonable because the Boost approach
avoided the extra delay caused by the budget replenishment.

Fig. 9(a) showed the 99th percentile latencies of 1000
samples across different number of VMs. We observed that the
99th percentile latency under all three user-level approaches
was always larger than 5 ms, while it was less than 1.5 ms
under the Boost approach. This demonstrated that user-level
approaches suffered from long budget replenishment delays
which were significantly reduced by the Boost approach.

In order to show the distribution of the latencies of the four
mode switch policies, we picked the results for the setting
that had 12 VMs and 9.0 total bandwidth. We plotted the
CDF of the 1000 latency samples for all four policies in
Fig. 9(b). We observed that all the latency samples of the
Boost approach were distributed in a narrow range [1.09, 1.49]
ms. This demonstrated that the Boost approach could provide
very stable and small mode switch latencies. In comparison,
the Greedy approach, the best user-level approach, had the
minimal latency 2.25 ms, and had more than 10% latency
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Fig. 9: Latency Distributions for different settings

samples greater than 4 ms, which is 4/1.49 = 2.68× larger
than that of the Boost approach. This again demonstrated the
effectiveness of the Boost approach in eliminating the budget
replenishment delay.

Performance among different mode settings. Since the mode
setting affects the distribution of budget replenishment delay
during mode switch, a VCPU with higher bandwidth suffers
from less budget replenishment penalty. In this experiment,
we evaluated the stability of our mode change policies: the
mode switch latency of a stable mode switch policy should
not be seriously affected by different mode settings. We ran-
domly generated test cases that had different resource interface
settings for this experiment.

We created a boxplot to evaluate the impact of VCPU
bandwidth on the average latency among different policies.
Each data point was the average latency of 50 delay samples
at mode switches of a test case. Fig. 9(c) showed the boxplot
of four mode switch policies across different number of VMs.

We observed that the Batch and the Greedy approaches
were less sensitive to mode settings when compared to the
Sequential. This is because these two approaches leveraged
the parallelism mitigate the impact of the variable budget
replenishment delay.

We also observed that the Boost approach was the most
robust one: Fig. 9(c), showed that the latencies of the Boost
approach were aggregated in a very small range that is less



than 100 µs. This is because the Boost approach boosted
the VCPU hosting the DMM and scheduled it immediately
whenever the HMM sent a mode switch request, making the
overall mode switch latency insensitive to resource interfaces.

When the budget replenishment delay was removed, the
mode switch latency was dominated by the cost of invoking
hypercall to change resource interfaces in Domain 0. Since
changing a VM’s resource interface usually took constant time
and the HMM changed resource interfaces sequentially, the
overall latency was expected to have linear relation with the
number of VMs, which was confirmed in our empirical results
of the Boost approach.

VII. RELATED WORK

A. Real-Time Virtualzation Approaches

Real-time virtualization has received significant attention as
a promising approach for embedded system integration and
latency-sensitive cloud computing [1]. KVM [30], as type-
II hypervisor, incorporates itself within the host OS. VCPUs
are treated as processes and are scheduled together with other
tasks in the host. In KVM, it is possible to apply a real-time
scheduler [31, 32] for VCPUs, thus achieving hierarchical real-
time scheduling. The deadline-based real-time scheduler [6] in
the IRMOS project [33] is an instance of hierarchical real-time
scheduling based on KVM. Another KVM-based scheduler,
ExVM [34], adopts flattened scheduling design [35]. It exposes
scheduling information within VMs to the host scheduler.
While Flattening may potentially improve the performance
and flexibility of multi-mode scheduling, an advantage of
hierarchical scheduling approach as in M2-Xen is to avoid
exposing task-specific information within a VM, which can
be appealing to a subsystem vendor who may not want to
disclose their proprietary design and intellectual property.

Quest-V [36, 37], a separation kernel, divides physical
resources, such as cores and I/O devices, into separated sand-
boxes. Each sandbox runs its own kernel and schedules tasks
directly on the cores in this sandbox. With this architecture,
Quest-V establishes a predictable model and addresses the
communication delay due to scheduling [26].

The MARACAS scheduling framework [7] addresses
memory-aware scheduling, shared cache, and memory bus
contention, for multicore scheduling. MARACAS throttles the
execution of threads running on specific cores when memory
contention exceeds a certain threshold.

While the aforementioned work focused on developing
novel architectures and scheduling policies for real-time vir-
tualization, they largely assumed static configuration for real-
time VMs. In contrast, M2-Xen incorporates dynamic mode
switching and run-time resource allocation within a conven-
tional two-level hierarchical scheduling framework provided
by RT-Xen [5, 13].

B. Real-Time Mode Change Protocols

Burns [38] gave an overview of mode change in real-time
systems. Switching between two modes requires eliminating
some tasks in the old mode and establishing other tasks

in the new mode. For hard real-time systems, the greatest
challenge is to guarantee hard real-time requirements during
the transition, when the tasks of the old and the new modes
may be scheduled simultaneously. For uniprocessor, the Idle
Time Protocol [39], the Maximum-Period-Offset Protocol [40],
and the Minimum Single Offset Protocol [25] are existing
synchronization protocols. Research has also focused on multi-
core real-time mode change [41]. Although multi-core mode
switch protocols with task-level mode switch have been pro-
posed [19–25], no relevant study has focused on solution that
leverage mode change protocols for virtualized systems, which
can change the resource interface and task set. In M2-Xen, we
do not guarantee deadline misses are avoided entirely during
the transition, although reducing the mode switching latency
mitigates the potential for deadline misses during the mode
switch. Our current system is therefore designed for soft real-
time systems.

Timeliness guarantees for M2-Xen during mode transitions
is an interesting yet challenging future direction. To ensure
the schedulability of tasks during mode transitions, (1) the
resource interface that each VM exposes to the hypervisor
must be sufficient to account for the effects of task-level
mode changes on the tasks resource demands; and (2) the
analysis at the hypervisor level must consider the impact
of VM-level mode changes on the timing behaviors of the
VCPUs of the VMs; neither of these is supported by current
interface models and analysis. Prior work on multi-mode
interfaces and compositional analysis such as [3] can serve
as a starting point towards this direction; however, this line of
work targets uniprocessors only and assumes the same mode
change semantics at both VM and task levels, and thus it must
be substantially extended to work with M2-Xen. We intend
to build on this experimental work to develop more rigorous
mode switching protocols for Xen in the future.

VIII. CONCLUSIONS

We have designed and implemented M2-Xen, a virtual-
ization platform for dynamic real-time systems. In contrast
to existing real-time virtualization platforms supporting static
resource allocations, M2-Xen can adapt resource allocations
among real-time virtual machines in response to system
mode changes. As a result, M2-Xen can maintain real-time
performance for multi-mode real-time systems without over-
provisioning resources. Furthermore, M2-Xen avoids transient
system overloads during mode switches and employs user-
space and hypervisor scheduling techniques to reduce mode
switching latency. M2-Xen has been implemented and eval-
uated in Xen 4.8 with the RTDS scheduler. Experiments
on a 16-core host demonstrated the efficacy, efficiency, and
scalability of M2-Xen in comparison to existing static real-
time scheduling approaches in Xen.
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dad Politécnica de Madrid, Tech. Rep, 1996.

[40] C. Bailey, “Hard real-time operating system kernel. in-
vestigation of mode change,” British Aerospace Systems
Ltd, 1993.

[41] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K.
Baruah, and J. A. Scoredos, “Mixed-criticality real-time
scheduling for multicore systems,” in Computer and
Information Technology (CIT), 2010.


