This is the peer reviewd version of the followng article:

Deterministic memory hierarchy and virtualization for modern multi-core embedded systems / Kloda,
Tomasz; Solieri, M.; Mancuso, R.; Capodieci, N.; Valente, P.; Bertogna, M.. - 2019-:(2019), pp. 1-14.
(Intervento presentato al convegno 25th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS 2019 tenutosi a can nel 2019) [10.1109/RTAS.2019.00009].

Institute of Electrical and Electronics Engineers Inc.
Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

26/04/2024 17:41

(Article begins on next page)

Deterministic Memory Hierarchy and Virtualization
for Modern Multi-Core Embedded Systems

Tomasz Kloda*, Marco Solieri*, Renato Mancuso’, Nicola Capodieci*, Paolo Valente*, and Marko Bertogna*
*Universita di Modena e Reggio Emilia, Italy
{name.surname} @unimore.it
TBoston University, USA
rmancuso @bu.edu

Abstract—One of the main predictability bottlenecks of mod-
ern multi-core embedded systems is contention for access to
shared memory resources. Partitioning and software-driven al-
location of memory resources is an effective strategy to mitigate
contention in the memory hierarchy. Unfortunately, however,
many of the strategies adopted so far can have unforeseen
side-effects when practically implemented latest-generation, high-
performance embedded platforms. Predictability is further jeop-
ardized by cache eviction policies based on random replacement,
targeting average performance instead of timing determinism.

In this paper, we present a framework of software-based
techniques to restore memory access determinism in high-
performance embedded systems. Our approach leverages OS-
transparent and DMA-friendly cache coloring, in combination
with an invalidation-driven allocation (IDA) technique. The
proposed method allows protecting important cache blocks from
(i) external eviction by tasks concurrently executing on different
cores, and (ii) internal eviction by tasks running on the same
core. A working implementation obtained by extending the
Jailhouse partitioning hypervisor is presented and evaluated with
a combination of synthetic and real benchmarks.

I. INTRODUCTION

New high-end embedded platforms are paving the way
towards the execution of workload intensive applications in
the cyber-physical domain. Autonomous vehicles, smart man-
ufacturing systems and advanced embedded controllers are
required to couple, onto the same computing platform, a
variety of control tasks with vision and machine learning
routines. The increasing request for computing power within
tight real-time constraints calls for techniques for predictably
mastering the impressive computing power made available by
next-generation embedded multi-core architectures. Unfortu-
nately, such a higher computing power is obtained at the
expense of predictability. Modern architectures are based on
host clusters where multiple cores are tightly coupled with
the shared memory hierarchy, leading to contention problems
that are detrimental to the worst-case performance of real-time
activities. Architectural trends favour design decisions aiming
at improving average performance, while exposing to partic-
ularly harmful corner cases that may significantly increase
worst-case response times. Such features include: out-of-order
execution, speculative branching, hardware prefetching, and
dynamic code optimization (DCO) [4].

While a number of these features can be disabled, others
need to be analyzed and accounted for when computing the
worst-case execution time (WCET) of applications. An effec-
tive meet-in-the-middle approach consists in using software
(e.g. the OS) to manage the behavior of the hardware. In

this way, it is possible to avoid by construction particularly
pessimistic scenarios, enabling tighter WCET calculation.

There is a large consensus that architectural features intro-
ducing non-determinism in the memory hierarchy represent a
major source of unpredictability. The main performance and
predictability bottlenecks are arguably represented by shared
memory (and I/O) resources. Producing tight WCET bounds
for applications that compete for access to shared memory
resources is particularly problematic. In fact, the temporal
behavior of a task under analysis is severely influenced by
logically unrelated applications executing in parallel on dif-
ferent cores, as they compete with each other for access to
memory resources.

An effective approach towards mitigating the unpredictabil-
ity arising from a shared memory hierarchy is partitioning.
While being a step in the right direction, partitioning alone
is not sufficient to guarantee strict temporal determinism.
Consider for instance a shared cache where the controller
implements a pseudo-random replacement policy. Even with-
out the effect of inter-core contention, WCET analysis has to
pessimistically assume that every access to a new cache line
will result in a miss.

Comparatively less work has explored leveraging platform-
specific support to override the cache replacement policy
so to deterministically allocate cache blocks to real-time
applications. Unfortunately, however, vendors of modern em-
bedded Systems-on-Chip (SoCs) are increasingly phasing out
primitives for explicit cache content management (e.g. cache
locking, cache stashing), making such techniques not directly
applicable on latest-generation SoCs. On top of that, while
some partitioning techniques (e.g. memory coloring) can still
be applied in modern SoCs, their practical implementation has
deep implications that have been only marginally explored.

In this paper, we consider the current trend in multi-
core embedded platforms and assess what is the “common
denominator” in terms of architectural features across different
vendors. With this in mind, the purpose of this work is twofold.
On the one hand, we discuss indirect effects of traditional
memory partitioning, and propose mitigation strategies when
strict partitioning is required. On the other hand, we propose
a novel technique to perform deterministic cache content
allocation by relying on a previously overlooked invariant of
a generic cache controller.

In summary, this work makes the following contribution:

1) We describe an efficient implementation of memory col-
oring to perform both cache and DRAM bank partitioning
by leveraging virtualization extensions in modern embed-

ded systems platforms;

2) We detail how coloring can be dynamically performed.
This allows us to support systems where a main “parti-
tion” is booted without coloring (legacy mode), and color-
ing is later activated/deactivated if the system undergoes
a mode change;

3) We discuss a number of overlooked side-effects of col-
oring and propose solutions to mitigate the issues. These
include: reduction on the available memory space; use of
DMAs and DMA-capable I/O devices; undesired parti-
tioning of other cache levels; increased latency for page
table walk;

4) We detail a technique to deterministically control the
content of a cache with no support for locking and generic
replacement policy — including random.

The remainder of the paper is organized as follows. Sec-
tion II contains a brief survey of related work. Section III
summarizes key architectural features of the considered SoCs.
Section IV discusses the proposed approach for strict memory
partitioning. A deterministic cache allocation strategy is then
proposed in Section V, and evaluation considerations are made
in Section VI. The paper concludes in Section VII.

II. RELATED WORK

Unregulated space contention at the shared levels of cache
in a multi-core environment represents a major source of
temporal unpredictability for real-time tasks. This problem has
been extensively studied in the literature. With specific focus
on multi-core systems, two main approaches have emerged:
cache partitioning and cache locking.

Cache partitioning strategies restrict cache line allocation
from system entities, i.e., tasks or cores, to a subset of
the available cache space. This can be achieved using spe-
cialized hardware platform support, or via careful software-
level management of physical memory. Both approaches have
advantages and disadvantages. On the one hand, cache par-
titioning performed using platform-specific support can be
easily enforced at boot-time and requires limited changes
at the Operating System (OS) level. A number of works
has investigated the use of commercially available hardware
support for cache partitioning [41], [25], [15]. A considerably
larger body of works has proposed hardware modifications
to partition the cache space [18], [7], [42], [22]. Compared
to these works, we focus on commercially available platforms
that do not provide any specific support for cache management.
This is the case for the NVIDIA Tegra SoM used in our
experiments.

Software approaches to perform partitioning have also been
studied in the literature. These are usually implemented at
compiler-level [29], [30], [6], with changes to the appli-
cation [5], [32], or at the OS level [20], [47], [8], [44],
[23]. These solutions limit the portability for cache parti-
tioning mechanisms, because they require modifications to
the toolchain, the OS, or both. Cache partitioning via page
coloring [21], [45], [35], [25], [44], [34], [37], [23], [43] can
be considered as a special case of software-enforced cache
partitioning, typically implemented by modifying the behavior
of the physical memory allocator in the OS.

Our work relies on page coloring. Differently from the
literature mentioned above, however, we rely on virtualisation
support. A lightweight hypervisor, namely Jailhouse, allocates
physical memory pages that map to non-overlapping cache

TABLE I: Features and spread of ARMVS processors

ARM A57 ARM A53
Cache Locking No No
L1 Placement Mostly PIPT Mostly VIPT
L2 Placement Mostly PIPT Mostly PIPT
L2 Replacement policy =~ Pseudo-random Pseudo-random
L2 Size (per cluster) 512 KiB - 2 MiB 128 KiB - 2 MiB
L2 Associativity 16 ways 16 ways
L2 is LLC Mostly Yes Mostly Yes
Hardware Virtualization ~ Yes Yes
NXP i.MX 8 series
Commercial NVIDIA TXI NXP BlueBox
NVIDIA TK1
platforms NVIDIA TX2 Xilinx Ultrascale+ MPSoC
and SoCs Hisilicon D02

Intel Stratix 10 SoC
Raspberry Pi 3 B+

sets to different guest OS’s. Page coloring implemented at
the hypervisor level allows us to partition the last-level cache
among different guest OS’s, while requiring no modifications
to OS-level memory allocators, and/or to the toolchain of the
guest OS’s. In this sense, our work is related to a number
of recent techniques that leverage an implementation of page
coloring at the hypervisor-level [13], [40], [28]. In comparison,
our work sets itself apart because: (i) we propose a technique
to perform deterministic allocation of cache content to lower
pessimism in estimating Worst-Case-Execution Time (WCET);
(i) we conduct an in-depth evaluation on the impact of the
additional memory translation layer introduced by virtualisa-
tion; and (iii) we investigate the benefits of cache invalidation,
software-, and hardware-driven prefetching.

Cache Locking has been traditionally studied as a way to
construct guarantees on the worst-case number of hits/misses
observed in real-time applications [25], [24], [31], [36], [3].
Cache locking inherently relies on platform-specific hardware
support that allows one to specify which cache lines should
be protected against eviction. Unfortunately, support for cache
locking is not available in modern generations of embedded
Systems on Module (SoMs). For instance, cache locking
capabilities have been removed in the transition from ARM
Cortex-A9 to ARM Cortex-A15. In this work, we demonstrate
that it is possible to exert deterministic control over cache
content regardless of the replacement policy implemented at
the cache controller, and without hardware-specific support.

Other approaches that aimed at deriving guarantees on
the content of cache lines to predict hits/misses focused on
deterministic replacement policy, such as Least Recently Used
(LRU) [46], [9]. Conversely, the work presented hereby can
be used in spite of non-deterministic eviction strategies at the
cache controller, such as pseudo-random replacement policy.
It is important to underline that pseudo-random replacement
is implemented in the vast majority of commercial high-
performance embedded SoMs, including the NVIDIA Tegra
X1 on which we base our evaluation.

III. REFERENCE ARCHITECTURE

In this section, we introduce the key architectural features
that are leveraged, and assumed available, on the considered
high-end embedded SoCs. We also provide basic background
notions required to better understand this work. Notable
examples of widely adopted commercial platforms that are
compatible with this work are provided in Table I.

A. Memory Addressing and Virtualization

We consider modern multi-core embedded SoCs that pro-
vide virtualization support in hardware. This is a common
trend for latest-generation embedded platforms intended for
high-performance applications. Memory is organized as fol-
lows. First, there exists a single physical addressing space
where main memory (e.g. DRAM) as well as I/O devices
are mapped. In other words, any memory-mapped hardware
resource is reachable under a range (aperture) of physical ad-
dresses (PA). Second, two stages of memory virtualization are
supported by the hardware. The first stage corresponds to the
typical infrastructure used to implement multi-programming.
At this stage, virtual addresses (VA) seen by user-space
processes are translated into intermediate physical addresses
(IPA) by the Memory Management Unit (MMU). The page
tables with the mapping between VA and IPA are entirely
managed by an OS.

The second stage of translation maps IPAs as seen by the
OS into PAs. This mapping in managed by a hypervisor,
which operates at a higher privilege level compared to the
OS. If second-stage translation is disabled — for instance
because no hypervisor is active in the system — then an
IPA translates directly and 1-to-1 to a PA. Conversely, if a
hypervisor is enabled, it is responsibility of the hypervisor to
setup appropriate second-stage page tables to allow translation
of IPA to PA. The same circuitry — i.e. the MMU - that
handles first-stage translations is used to perform second-stage
translation for memory accesses originated by the CPUs.

In summary, support for two-stage memory address trans-
lation provides a hypervisor (if enabled) the “last word”
on which physical addresses (and hence devices) will be
effectively accessible from applications and virtualized OS’s.
In the vast majority of platforms, the finest granularity at which
VA, IPA and PA can be managed is 4 KiB.

B. Multi-level Caches

Modern embedded SoCs may feature multiple levels of
caches with complex hierarchies. A widely adopted model,
however, is the following. Each core features a first, private
cache level (L1) which is kept coherent with other core’s
private caches. Additionally, all the cores share a second
level of cache, namely L2. The L2 cache is typically much
larger in space compared to private L1 caches. We consider
platforms where L2 is also the last-level cache (LLC), but
our considerations may be easily extended to next-generation
embedded platforms where a third cache level is available (e.g.
Nvidia Orin, Xilinx Versal, etc.). A miss in LLC causes an
access to main memory.

1) Cache Structure: Caching at any level (L1 or L2)
follows a set-associative scheme. A set-associative cache with
associativity W features W ways. Each way has an identical
structure. It follows that if the cache has size Cg, it will be
structured in W ways of size Wg = Cs/W each. The generic
structure of a set-associative cache is depicted in Figure 1.

For efficiency reasons, caches do not store individual bytes.
Instead they store multiple consecutive bytes at a time, which
form a cache line (or cache block). We use Lg to indicate the
number of bytes in each cache line. Typical sizes are 32 bytes
or 64 bytes. The number of lines in a way is S = Wg/Lg,
also called the number of sets of a cache. Each set contains
W lines, one per way.

physical address (PA)

tagbits | indexbits | offsetbits
offset
TAG
\ — \
[[[\
T 1 \
index line
S
Qx l
way

Fig. 1: Structure of a 4-way, 4-sets set-associative cache.

When a cacheable memory location is accessed by a CPU,
the value of its address determines which cache location to
look-up or allocate in case of cache miss. The least-significant
bits of the address encode the specific byte inside the cache
line, and thus do not affect where the line will be allocated.
For instance, in systems where Lg = 64 bytes, these are the
last logy Ls = 6 bits (bits [5:0]) of a memory address. This
group of bits is called offset. A second group of bits in the
memory address encodes the specific cache set in which the
memory content can be cached. Since we have S possible
sets, the next log, S bits after the offset bits select one of the
possible sets. These are called index bits. Finally, a memory
address has more bits than the ones used as offset and index
bits. The remaining bits, namely fag bits, are stored alongside
with cached content to detect cache hits after look-up — see
Figure 1.

Addresses used for cache look-ups can be PAs or a VAs.
In the vast majority of embedded multi-core systems, tag
bits are always PA bits — physically-tagged caches. In shared
caches (e.g. L2/LLC), index bits are also from PAs. For this
reason, they are said to be physically-indexed, physically-
tagged (PIPT) caches. It is however not uncommon for private
cache levels (e.g. L1) to operate with index bits from VAs. In
this case, they are virtually-indexed, physically-tagged (VIPT).
This often overlooked distinction is fundamental when jointly
partitioning cache space and DRAM banks.

2) Cache Colors: Recall that an OS/hypervisor can manage
VA/IPA/PA addresses at the granularity of 4 KiB pages. It
follows that a page spans through multiple cache lines. For
instance, each 4 KiB page will contain 128 cache lines if
Ls = 32 bytes. Moreover, if the way size Wy is larger
than 4 KiB, then multiple pages with consecutive PAs can
be simultaneously stored in the same cache way. If C is the
number of pages that can fit in a way, then any page in physical
memory can be assigned a color from 0 to C — 1. If a page
with color A is cached, its lines can never evict cache lines
that belong to a page with color B, as long as B # A. This is
the principle behind color-based cache partitioning that has
been largely explored in the literature [28], [25], [34].

3) Cache Replacement: The value of the index bits in the
VA/PA determines the set in which a line will be cached.
Since there are W ways, any of these could be selected to
store a new line after a miss. Allocating a line after a miss
is done in two steps. If any of the lines in the selected set
is invalid — i.e. it does not contain cached content — then it

will be selected for allocation (line-fill). Otherwise, a cache
replacement policy will be used to select which content should
be evicted to make room for the new line-fill. The cache
replacement policy is implemented in hardware and not con-
trolled by software. There is wide consensus that deterministic
replacement policies like Least-Recently-Used (LRU) or First-
Come-First-Served (FIFO) are to be preferred in the context
of real-time systems. Nonetheless, increasingly more vendors
implement random replacement policies to favour applications
targeting average performance.

C. DRAM Memory Structure

If a memory access results in a cache miss in LLC,
then the request is forwarded to (off-chip) main memory.
The vast majority of commercial platforms use DRAM to
implement inexpensive, large-capacity main memory storage.
DRAM storage is organized in multiple channels, ranks, chips,
banks, rows, and columns. A number of works have covered
this organization, and how it affects predictability in great
detail [34], [44], [10]. For the purpose of this work, it is
important to recall that different banks can process memory
requests in parallel. At the same time, throughput optimization
strategies implemented at the DRAM memory controller can
typically reorder requests targeting the same bank. It follows
that allocating physical memory in different banks for appli-
cations on different cores is crucial to prevent undesired bank-
level contention [44].

A group of bits in the PA determines the channel, rank,
chip, and bank where a given PA maps to. Clearly, a different
bank is selected as long as two PAs differ in any of these
bits. As such, we collectively call these bits as bank-bits. The
exact position of bank-bits in the PA is strictly vendor-specific.
Moreover, bank-bits may be arbitrarily distributed in the PA.

D. Illustrative Example

In order to have a global understanding of the interplay
between addressing spaces, caches, and DRAM mapping, let
us construct an illustrative example. For this example, we use
parameters from one of our evaluation platforms: the NVIDIA
Tegra TX1 SoC. More details about this system are provided
in Section VI

Let Ls = 64 bytes and a 34-bits addressing space'.
Consider a 32 KiB 2-way set-associative PIPT L1 cache. In
this case, we have 4 colors in L1, encoded by PA bits [13:12].
The L2 (and LLC) is a 2 MiB 16-way set-associative PIPT
cache. As such, we have 32 colors encoded by bits [16:12].
Finally, the system has 4 GB of DRAM memory with a total
of 16 banks across 2 chips. The bank bits are [31, 12:10].

Figure 2 shows how the same PA is interpreted from 4
different points of view. At the top (Figure 2, OS), the bits
of a PA are seen from the perspective of an OS/Hypervisor as
divided into Page Frame Number (PFN) and Page Offset (PO)
bits. For the typical page size of 4 KiB, PO bits are [11:0].
Via one- or two-stage memory virtualization, it is possible to
directly control only the PFN bits to which a given VA/IPA
maps. Figure 2 (L1) depicts the structure of the same PA from
the point of view of the L1 cache, highlighting its color bits.
Similarly, Figure 2 (L2) reports the PA structure from the point
of view of the L2 cache. Finally, Figure 2 (DRAM) highlights

'In modern 64-bit systems, it is never the case that all 64 bits are truly
implemented. Typical systems use between 33 and 40 bits.

physical address (PA)

oS | PEN | offset |

L1 | tag | index | offset |

L2 | tag | index | offset |

DRAM | | | row/col |bank| row/col/offset |

“bie (CLLLLILIEE e AR ETE el
|:| color bit

|:| bit not controlled by paging

|:| bit does not affect cache set or bank allocation

Fig. 2: Role of bits in a 34-bits PA address from the point of
view of an OS/hypervisor, L1 and L2/LLC (PIPT) caches, and
DRAM controller.

the bank bits used by the DRAM memory controller. It follows
that the color bits for a page are bits [31, 16:12], and that the
system has 64 colors in total.

IV. COLORING-BASED PARTITIONING

By carefully performing allocation of PAs to user-space
applications, it is possible to partition access to resources
in the shared memory hierarchy. This technique is called
page coloring and it represents a powerful tool to achieve
temporal isolation between memory-intensive applications on
different cores. In this section, we provide an overview of
the practical challenges and the often overlooked side effects
of cache/DRAM bank partitioning via coloring. For each we
propose a possible solution and/or mitigation.

A. Coloring Strategy for Strict Partitioning

In this work, we focus on strict partitioning. Under strict
partitioning, each core is assigned a set of colors and all
the applications activated on a core inherit the same color
assignment. Changes in colors-to-core assignment can be
made, as discussed in Section IV-D, but this is considered
a rare operation performed at the boundaries of major system
mode changes.

While the intuition behind coloring is straightforward, its
practical implementation can be tricky. For systems with
one-stage address translation, an OS should be modified to
ensure that applications are allocated physical memory from
a different pool of pages depending on the core on which
they will be executed. This has been successfully implemented
in a number of works [34], [43], but the approach is less
than ideal. In fact, intrusive and non-trivial modifications are
required in the OS to maintain multiple colored page pools.
Additionally, applications still cross the boundaries of their
colors when interacting with the OS itself. Finally, special care
must be taken for applications that share dynamically linked
libraries [14].

A cleaner approach consists in leveraging virtualization
extensions [28], [12]. In this case, a hypervisor and hence
a two-stage translation regime for VAs is activated. The
hypervisor activates separate OS’s. Each OS is unmodified and
sees a contiguous space of IPAs. The hypervisor however maps
IPAs of different OS’s to PAs with non-overlapping colors.

A major drawback of this approach is that hypervisor code
is rather platform-specific, with only a limited number of
supported SoCs. The majority of a hypervisor’s code-base

is used to perform SoC-specific bootstrapping and virtual
CPU (VCPU) scheduling. If the goal is strict partitioning and
strong temporal isolation between partitions, however, VCPU
scheduling is not strictly required. Instead, a static CPU-to-
partition assignment is to be preferred. Similarly, booting the
system into hypervisor mode is not the best approach since
a traditional OS contains already all the logic to perform
bootstrapping.

This paper proposes an alternative approach, called Boot-
first, Virtualize-later: we boot the system via an unmodified
OS, called the root partition (e.g. a standard Linux kernel).
Next, if needed, we activate a hypervisor that dynamically
virtualizes the root partition, activates two-stage VA transla-
tion, and provides an interface to define and activate additional
partitions. Our hypervisor is also kept to the bare minimum
and does not perform any VCPU scheduling. As such, we
refer to it as the partitioning hypervisor (PH). The resulting
simplification of PH’s code-base enables quicker porting to
newer SoCs and enhances system maintainability. In this work,
we have extended Jailhouse [16]: a lightweight PH that already
implements the boot-first, virtualize-later principle.

In the rest of the paper we use the term “partition” to refer
to a specific OS being virtualized by our PH.

B. Expressive Color Representation

As discussed and illustrated in Section III-D, color bits are
multiple and potentially non-contiguous in the PA. This raises
the question of how to express the color selection in a way
that is compact and yet general enough to capture all possible
hardware configurations.

Recall that each partition needs to access a number of
PA apertures. Some of these correspond to normal memory
(DRAM), others correspond to memory mapped devices.
When (re-)configuring a partition, the PH needs to distinguish
between regular memory to be colored and device apertures
that should not be colored?.

Each partition in Jailhouse is associated a set of memory
region descriptors, defining how PA memory apertures will
need to be mapped to IPAs. In our extension, we added a
color specification to each of such descriptors.

A color specification is really a restriction on the PAs that
can be assigned when performing the IPA-to-PA mapping. We
express coloring requirements in the most generic way via two
additional fields in a memory region descriptor: (1) a color-
bits mask; and (2) a color-bits value. Simply put, the color-bit
mask defines which bits in a PA correspond to color bits.
Which exact value should be enforced for those bits is then
specified in the second field, the color-bit value.

Example: if all the color-bits for the setup consid-
ered in Section III-D were considered, the mask will be
0x0_8001_F000, selecting bits [31, 16:12]. Let us assume
that we have two partitions to be colored so that they occupy
two different DRAM banks, do not overlap in L2, but where
each can fully use its own L1. Since bit 12 and 13 would
result in unwanted L1 partitioning, these need to be cleared
from the mask. To partition the L2 in two parts, we can
assert any one bit among bits 14, 15, or 16 in the mask.
Finally, asserting bit 31 is necessary to enforce DRAM bank

2In fact, coloring a device aperture would not result in partitioning access
to the I/0 device, but only in making a portion of the device’s configuration
space inaccessible.

partitioning. A possible color-bit mask for both partitions will
be 0x0_8000_8000. In terms of color-bit values, the first
partition can be assigned 0x0_0000_0000, placing any PA
mapped to this partition in the first half of L2, and on the first
group of banks. The second partition can be assigned color-
bit value 0x0_8000_8000, placing it in the second group
of banks and in the bottom half of L2.

C. Efficient Selection of Color-compliant PAs

When a partition is bootstrapped, it is responsibility of the
PH to map that partition’s IPAs only to PAs that satisfy the
color requirements.

Expressing color requirements in the generic way detailed
above, however, has a major problem: there could be a large
gap between two PAs that satisfy the color requirement. This
gap is also not constant. Example: consider the color-bit mask
0x0_8000_8000 and color-bit value 0x0_0000_8000.
The PA address 0x0_7FFE_EQ0O0O0 clearly satisfies the re-
quirement. The next page whose PA satisfies the requirement
is at 0x0_7FFE_F000, so only 1 page away. But the next
page after that is at 0x0__7FFF_8000, so 9 pages away. Also,
once we reach 0x0_7FFF_FO000, the next useful page is
0x1_0000_8000, so 524,297 pages away.

It follows that just linearly scanning the range of PAs
looking for the next color-compliant address can be extremely
inefficient. To solve this issue, we have devised an efficient
algorithm to directly generate, given a PA, the closest color-
compliant address. The algorithm can be used to compute the
next color-compliant address in O(1) and uses only a series
of bit-wise operations. The full algorithm is reported in the
appendix (see Listing 2).

D. Dynamic Re-Coloring

As previously mentioned, offloading the duty of booting
the SoC to the OS, and then activating the PH has multiple
advantages. First and foremost, it allows keeping the PH code-
base at a bare minimum. Additionally, it allows supporting
mode-changes from a PH-less configuration with a single SMP
OS, to a multi-partition configuration, and back.

Recall that when the SoC boots without a hypervisor,
the OS in the root partition has direct access to physi-
cal memory. It will map itself and all its applications into
contiguous PA pages. Consider now what happens when
the PH is activated. The set of PAs that the root par-
tition has been using from boot to PH activation is not
colored. Albeit not color-compliant, these pages may con-
tain important state/data required by OS and applications
to correctly execute. It follows that before creating a color-
compliant IPA-to-PA mapping for the root partition, the con-
tent of these pages needs to be moved to the new set of
colored PAs. Example: assume that the root partition used
three pages with PA 0x0_0000_0000, 0x0_0000_1000,
and 0x0_0000_2000. Assume that the color require-
ment for the root partition after PH activation selects odd
pages only (i.e. color-bits value = 0x0_0000_1000). The
following will be the IPA-to-PA mapping for the three
pages: (1) IPA 0x0_0000_0000 — 0x0_0000_1000; (2)
IPA 0x0_0000_1000 — 0x0_0000_3000; and (3) IPA
0x0_0002_0000 — 0x0_0000_5000.

In general, after activation of the PH, a PA A,y will
be remapped to a different color-compliant PA A,.,,. The
following steps need to be performed. (1) Suspend execution

of the root partition; (2) compute the value of A,,c.,; (3) copy
data from A,;q to Anew; (4) update second-stage page tables
so to map IPA A4 to PA A,cyw; (5) flush caches and TLBs
as needed. When the root partition is resumed, any attempt
to access A,q will result in accesses to (colored) A, in
physical memory.

This technique goes under the name of dynamic re-coloring.
We have successfully implemented dynamic recoloring in our
extension of the Jailhouse PH. To the best of our knowledge,
this is the first work to propose a working implementation
of dynamic re-coloring for a running OS/partition. Albeit
simple in principle, the practical implementation of dynamic
re-coloring presents a number of technical challenges. We
discuss two of these more in detail.

1) Efficiency: A first challenge is how to copy data for an
entire partition. Consider the example above. After coloring,
IPA 0x0_0000_0000 should map to PA 0x0_0000_1000.
But the content that was previously in PA 0x0_0000_1000
should be copied to 0x0_0000_3000. In other words, if
pages are greedily copied to their new colored location, one
ends up overwriting the content of pages that themselves need
to be copied. A naive solution consists in first copying the
entire partition in a temporary swap space, and then copying
back all the pages in their final colored location. Apart from
requiring twice the number of memory transfers, this solution
is not practical as the DRAM space may not be sufficient to
accommodate the required swap space.

An efficient solution consists instead in copying pages
backwards. With this solution we keep the number of copy
operations to their minimum and do not require an additional
swap space. The only catch is that an algorithm to calculate
the previous address of a color-compliant page is required.
This can be implemented in a way that is very similar to what
presented in Listing 2 and omitted due to space limitations.

Note that following a similar approach, it is possible to
un-color a partition when the PH needs to be unloaded, or
the system undergoes a mode change that requires a different
partitioning scheme (e.g. a new partition is enabled).

2) Coherence: The second practical challenge for dynamic
re-coloring — and PH-based coloring in general — is that
normally CPUs are not the only entities that access physical
memory. In fact, a typical OS/partition interfaces with a
number of I/O devices. We discuss the implications and our
solution to this problem in Section IV-F.

E. Interplay-aware Color Selection

While coloring is a powerful technique to enforce memory
resource partitioning, it also presents many pitfalls. Consider
once again the example in Section III-D. Here, note that bit 12
is an index bit for L2, and also a DRAM bank bit. One could
then attempt a setup where two partitions map to pages with
different bit 12 value, to partition memory resources in DRAM
and L2. Unfortunately, however, bit 12 is also an index bit for
L1. This implies that if such a configuration is selected, each
partition will only use half of the already constrained L1. In
this case, the performance hit is almost certainly higher than
allowing free contention on L2 and DRAM banks.

Additionally, note that given the example presented in
Section III-D, it would be impossible to setup 4 partitions
such that: (1) each accesses a different portion of L2, (2) each
is assigned a different set of DRAM banks, and (3) each uses
the entire private L1 space.

A solution in this case consists in selecting a SoC where
the L1 is VIPT, instead of PIPT (see Section III-B). The
current trend in commercial platforms is an almost uniform
coexistence of SoCs with PIPT vs. VIPT L1 caches. For
instance, ARM Cortex AS57 processors use PIPT L1 caches,
but ARM Cortex A53 processors use VIPT L1 caches.

Last but not least, it is necessary to understand the impact
of coloring on the behavior of I/O devices, as we discuss in
Section IV-F.

FE. Coloring and I/O Devices

A truly practical implementation of coloring should consider
I/O devices. Reasoning on coloring from the point of view of
the CPUs alone is sufficient only for low-performance systems
with extremely simple polling-based device I/O. The current
mainstream trend is towards interrupt-based I/O, where DMAs
and DMA-capable devices (we will just refer to these as
DMAs, for short) are largely widespread.

In a nutshell, a DMA behaves like a master on the memory
bus, and thus it can initiate transfers of I/O data from/to main
memory. Unfortunately, however, memory accesses originated
by DMAs do not undergo VA/IPA translation at the MMU,
because the MMU represents CPU-specific hardware circuitry.
In other words, DMAs by default can access directly PAs,
which breaks coloring.

Note however that the activity of a DMA cannot trigger
allocation (and hence eviction) in a CPU cache. As such,
the DMA alone cannot break L2 partitioning. Conversely, the
activity of a DMA can cause interference on DRAM banks.
It follows that a simple solution if DRAM bank partitioning
is not required, is to locate DMA buffers is contiguous
(non-colored) PAs that are marked non-cacheable. Disabling
cacheability for these buffers is necessary. Otherwise, a CPU
retrieving/preparing data after/before an 1/O operation may
cause L2 evictions outside of its assigned partition.

Simply setting DMA buffers as non-cacheable has a number
of disadvantages. First, as previously mentioned, it does not
prevent DMAs from violating DRAM bank partitioning. Sec-
ond, it is not suitable for high-performance systems. In high-
performance systems, in fact, it is very common for DMAs to
be coherent with CPU caches. Cache-coherent DMAs provide
a boost in performance for I/O intensive applications. In fact,
they allow applications to perform in-place processing of fresh
I/O data, i.e. without requiring additional memory copies.
Clearly, setting a DMA buffer as non-cacheable does not
allow exploiting this important architectural feature. Third, in
modern SoCs, it is possible for DMA engines to allocate cache
lines®. This is useful to warm-up the cache with I/O data. The
mechanism cannot operate if DMA buffers are non-cacheable.

Modern SoC vendors have become aware of the problems
that arise from DMAs being able to direct access PAs. As a
result, modern SoCs include so called System MMU (SMMU)
circuitry*. By leveraging SMMU support, it is possible to
control the mapping between IPAs and PAs as seen by DMAs
and DMA-capable devices. Hence, it is possible to restrict
DMAs to access only colored PAs. Ultimately, an SMMU

3The technology goes under the name of Direct Cache Access (DCA) in
Intel platforms [11].

4The term SMMU is widely used in ARM-based SoCs, but it is frequent
for the same component to be called IOMMU - see Intel VI-d and AMD
IOV extensions.

enables the use of cache-coherent DM As while enforcing strict
partitioning of LLC and DRAM banks.

In our extended Jailhouse-based PH, we have added sup-
port for SMMU. The SMMU is configured as follows. If a
partition activated by the PH is configured to have access
to a DMA-capable device, then SMMU support is enabled
for the device. Additionally, a set of SMMU-specific page
tables are initialized to create an IPA-to-PA mapping, for the
considered device, that is consistent with the partition’s [PA-to-
PA mapping. It follows that as long as coloring is appropriately
configured for a partition, then all the devices mapped to the
same partition will only access colored physical memory.

G. Two-Stage Translation Overhead

One more important aspect needs to be considered when
leveraging coloring: its side-effects on the TLB.

In a platform where the MMU has been disabled’, an
address referenced by a CPU is directly a PA. As such, no
translation is required and an immediate lookup in a PIPT
cache can be performed. If the MMU is enabled by the OS to
setup a multi-programming environment, user-space applica-
tions will reference VAs. A VA needs to go through first-stage
translation to determine the corresponding PA. Depending on
the type of mapping between VAs and PAs, the lookup itself
may require one, two, or three additional memory accesses to
complete a page-table walk. In a PIPT cache, this has to be
done before cache lookup can even be performed.

The impact of implementing coloring at a hypervisor-level
is twofold. On the one hand, VAs translate at the first stage
only into IPAs, that need to go through a second translation
stage before the corresponding PAs can be determined and
accessed. This drawback is well-known and affects any system
that leverages hardware virtualization.

In order to reduce the performance hit of a two-stage
translation process, a hypervisor typically maps IPAs so that
large contiguous blocks of IPAs (e.g. a 1 GB aperture) map
to large contiguous blocks of PAs. In this way, second-stage
translation can be limited to use only one level of page tables
— and thus incur only one extra memory reference for a VA
translation. Unfortunately, however, the granularity required
for a colored mapping rules out this possibility. In other words,
implementing coloring by leveraging virtualization means that
the hardware has to perform a total of seven memory accesses
whenever a VA is referenced by a user-space application.

In this sense, the TLB plays a crucial role. In fact, the TLB
caches translation results for VA-to-PA addresses. This way,
the price for a full two-stage page table walk is only paid
in case of a TLB miss. As we discuss in Section VI-B, the
cost of a TLB miss can become significant and requires being
appropriately bounded when timing analysis of applications is
carried out.

V. DETERMINISTIC CACHE CONTENT MANAGEMENT

As mentioned in Section III-B, caches in modern SoCs do
not support locking and often implement a random replace-
ment policy. In this section, we present a novel technique,

SUsing a modern SoC with MMU disabled is a terrible idea. First, it is
often the case (e.g., all ARMv7 chip families and ahead) that cacheability
attributes are encoded in page table descriptors. When MMU is disabled, all
memory is treated as non-cacheable. Second, VIPT caches, that are common
in embedded space and the norm in desktop- and server-grade CPUs, are
rendered useless when virtual memory is disabled.

1F —
0o Measure
0.8 H o Model |
D [Measure, on invalid lines
0.6 - i
2
&
0.4 5

T T T T T T
345678 910111213141516
No. of successfully prefetched lines

—
12

Fig. 3: Success rate and probability for 16 prefetches. Cache
set lines before the prefetch are assumed to be valid and clean.

namely invalidation-driven allocation (IDA) to deterministi-
cally control the content of a random replacement policy for
applications with small footprint. We also provide insights on
how the technique can be extended to applications with larger
footprint.

A. Motivation

Randomness in the cache replacement policy exposes a
fill sequence of useful data to self-eviction that will later
cause additional miss, and this anomaly is exacerbated by the
presence of page coloring, which increases the chances of high
utilisation of the same set.

We shall introduce this issue with a concrete example,
referring the reader to the (involved) probabilistic analyses that
can be found in the previous literature [2], [1], [17], [19], or
to a brief (and gentle) introductory description in Appendix A.
In an experiment detailed in Appendix B1, 16 congruent
addresses are loaded in a pseudo-random-replacement 16-way
cache. The blue bars in Figure 3 plot the distribution of the
number of addresses that are correctly cached. The average
is around 10.16, therefore accesses to 35.6% of the lines
will afterwards miss the next first access. In the following,
we shall introduce a technique to significantly improve this
result, obtaining the performance shown in the rightmost
bar, allowing to obtain 16 successfully prefetched lines at
probability close to 1.

B. Basic Principle

Recall from Section III-B that in a typical CPU cache,
the cache replacement policy is invoked to select a line to
evict only if none of the lines in the selected set is invalid.
Conversely, if an invalid line exists, it will be deterministically
selected without evicting any other valid line. Our technique
leverages this principle. More specifically, when a task begins
or resumes execution, it suffices to make room in the cache
by cleaning—i.e., writing back any dirty cache line to main
memory—and invalidating a number of lines that are expected
to be used by the task. This technique, called invalidation-
driven allocation (IDA), ensures that new lines accessed by
the task will not overwrite one with another.

C. Extensions

IDA in itself only works if applications have a memory
footprint that is smaller than the assigned LLC partition. This

Sequential access

Random access

Sequential access, no HW prefetcher

600 - -
80 - 1 5000 4 80 5
S 60| | 400 |- 1 60 1
9] 300 | : |
% 40 |- _'I_ - 1 200l , | 40 *
20 |- ; -+ 100 | 120 2
L H‘HH‘\“H\‘\‘\‘\‘\H)\‘- \:Hmu\ Lol c ol 1 0 L T/\.mm\ TR T AT HH‘HM T T T
1073 1072 10=* 10° 10! 1073 1072 10=* 10° 10! 1073 1072 10~ 10° 10!
Memory Depth (MiB) Memory Depth (MiB) Memory Depth (MiB)
’ solo interference - - - solo + coloring interference + coloring L1 size L2 size colored L2 size ‘

Fig. 4: Memory Latency Benchmark with Coloring.

is because once all the cache lines have been filled as the task
execute, additional accesses will cause non-deterministic line
replacements. There are two viable ways to extend IDA when
applications with larger working set are used.

The first approach can be applied in case of applications that
undergo multiple phases, each operating on a small working-
set. In this case, it is possible to exploit compiler-time memory
analysis to appropriately insert cache invalidation operations
at the boundary of phase changes. A similar technique was
successfully applied in [33] to split a task at compile time
to progressively load its memory via a sequence of DMA
operations.

A second approach consists in leveraging memory types.
Modern SoCs provide additional bits in the page-table de-
scriptors to encode how each memory page should be handled
by the hardware. In this case, it is possible to selectively
specify that a page of main-memory should be treated as non-
cacheable memory. Given an application with large footprint,
first memory profiling is used to identify those pages that
provide the maximum benefit when allocated in cache. Next,
no more pages than the size of the assigned cache partition
are marked as cacheable, while any other page is marked as
non-cacheable.

The two approaches above can also be combined to dynam-
ically change the set of cacheable and non-cacheable pages as
the application progresses. In this way, the cache content can
be updated following working-set changes in the application.

VI. EVALUATION

We hereby evaluate the behavior of the implemented system
on a Nvidia Tegra TX1 SoC, whose main features are sum-
marized in Table I. We focus first separately on (1) coloring,
(2) virtualization, (3) IDA; and then (4) on the integrated
framework.

A. Coloring-based Partitioning

We measured the memory latency for a partition within our
PH, observing the impact of external memory interference,
and testing a coloring setting. In particular, we used Jailhouse
0.8 with the described extensions and four partitions, using
one core each, all running Linux 4.14. The fest cell runs
lat_mem_rd microbenchmark from LMBench 3 [27].

1) No Partitioning: Two interfering cells run an application
heavily polluting the shared L2 cache. We employed stress
1.0.4 [39] which repeatedly reads and writes an 8§ MiB
memory area, in sequential order, with a 64 B stride distance,
and without any reallocation. Measurements without cache
coloring for sequential and random access are respectively
plotted as solid lines in the two leftmost plots of Figure 4. Not
surprisingly, when the memory footprint fits the L2 cache but
exceeds L1 size (i.e., for sizes between 32 KiB and 2 MiB), the
presence of the two interfering cells (“interference”) makes the
memory access latency grow almost linearly with the footprint.
Moreover, in both graphs we observe that latency increase is
a little slower between 32 and 96 KiB. This is most probably
an effect of ARMvS8 cache implicit lockdown, which has been
recently studied in [26]— a cache line in L2 cannot be evicted
as long as it is cached in one of the L1 caches due to the
inclusive relationship between the two levels.

2) Coloring: We repeated the previous experiment with a
colored configuration, and assigned 16 colors to the test cell
and 8 to each interference cell (i.e., 1 MiB and 512 KiB
of L2 cache, respectively). These experiments are reported
as dashed lines in Figure 4. The results show that coloring
allows significantly decreasing the memory access time when
the application’s footprint can fit in the L2 partition. The
maximum speedup is 65.2%, or 77.4%, for sequential and
random access, respectively. Such a speedup is no longer
depth-dependent, but it stays around 26~28 ns and 37~59 ns
for sequential and random accesses, respectively. On the
other hand, there are three drawbacks which deserve to be
highlighted. The first and obvious one is that the per-partition
size of L2 is now limited to the assigned partition, i.e., 1 MiB.
Secondly, coloring is not able to completely avoid interference
on L2 cache, even if the memory footprint fits in the L2
partition. We further study this problem in the next experiment.
Finally, coloring significantly increases memory access latency
when the memory footprint is considerably larger than L2 and
memory accesses are randomly distributed. This arises from a
side-effect of virtualization-based page coloring and is further
discussed in Section VI-B.

3) Coloring and Cache Interference: When the memory
footprint fits in L2, we observe a non-negligible overhead (up
to 4.59% increase) on memory access times when comparing a
colored system with interference against an unmanaged cache

Distribution

[__1Cacheable, hyp, TLB hit, L2 hit [Non-cacheable, hyp, TLB hit
[Cacheable, hyp, TLB miss, L2 hit [] Non-cacheable, no hyp, TLB miss
[Cacheable, hyp, TLB miss, L2 miss] Non-cacheable, hyp, TLB miss

Fig. 5: Distributions of L2 and TLB access time with or
without hypervisor.

without interference. A first cause of such an effect may be
ascribed to the hardware (HW) automatic prefetcherﬁ, which
generates a number of load requests competing for a shared
cache component, such as the coherent interconnect bus or the
snoop control unit, that can be saturated by the benchmark
alone. Another possibility is that NVIDIA implementation of
the HW prefetcher, violating ARM specification to maximize
performances, is allowed to cross page boundaries, hence
loading useless lines across color boundaries. These interpreta-
tions are confirmed by disabling the HW automatic prefetcher
and repeating the memory latency benchmark for sequential
access. Results are in the righmost plot of Figure 4, where
it is easy to notice that the latency drops from about 28 to
19 ns, despite the interference of two stressing inmates. We
conjecture that the remaining 6~7 ns overhead are the effect of
contention on MSHRs, which hold the status of pending miss
accesses, and that are saturated by the interference inmates.
This effect and the measured entity of its impact is coherent
with the results shown in [38], which recently investigated this
problem.

B. Virtualization-based Coloring Overhead

In presence of external interference, and when coloring is
enforced, considerable overhead is measured in the latency of
a memory operation with random access pattern on a footprint
exceeding L2’s capacity. This is caused by the cost of a miss
in the translation look-aside buffer (TLB), as corroborated by
the following tests. Here, we compare the latency for memory
accesses (performed with the 1dr instruction) in the following
cases: (1) a cacheable or (2) non-cacheable region is being
accessed, in a system where the PH is (3) enabled or (4)
disabled, where the accessed address causes (5) a TLB miss,
or (6) a TLB hit. Figure 5 presents a histogram with the access
time distribution. Notably, accesses to cached or non-cached
data when the corresponding address translation is in the TLB
is not affected by the presence of the PH. The case without
hypervisor is thus omitted in Figure 5. Upon a TLB miss,

5This does not imply we are (yet) advocating for deactivating automatic
prefetcher—its prefetch distance is finely tunable, and the best configuration
depends on a wide spectrum of application-specific parameters.

Cycles

2 4 6 8 10 12 14 16
No. of ways (w)

IDA

IDA (coloring)
IDA (clean)
IDA+pref

IDA (auto)
IDA+pref (clean)

legacy

------- legacy (coloring)
-----legacy (clean)
pref

- - - legacy (auto)
--—-- pref (clean)

(a) Per-reference memory access time, with K = 2 rounds over the
working-set, and w number of used ways.

400 T T T T .
legacy
—— IDA

300

200

Cycles

100

5 10 15 20
Iterations over working-set (K)

(b) Execution time on 16 ways, as a function of K.
Fig. 6: Microbenchmark results.

instead, we observed that access latency grows from 550 to
800 cycles when the hypervisor is introduced. Indeed, when
the requested VA is not present in the TLB and virtualisation
is enabled, translation must undergo two stages of page table
walk. Conversely, in a setup where virtualisation is disabled,
only one stage of address translation is performed. The impact
of TLB misses is therefore higher in a virtualized environment.
Since random accesses are much more likely to incur in TLB
misses, a performance degradation for large memory footprints
is visible (only) in the middle plot of Figure 4.

C. Invalidation-Driven Allocation (IDA)

We evaluate the effectiveness of IDA use synthetic bench-
marks, as well as real benchmarks. We hereby summarize the
results of our experiments.

1) Syntetic benchmark: We designed a synthetic benchmark
so that its working-set size can fit in w L2 cache ways. The
parameter w can be adjusted from run to run. Given the geom-
etry of our LLC, we consider 1 < w < 16. The benchmark is
composed of two phases: preparation followed by execution.
During the preparation phase, the benchmark can perform the
following: (1) “legacy” — nothing; (2) “IDA” — cleaning and
invalidation of w ways; (3) “pref” — prefetch of its entire

working-set; or (4) “IDA+pref” — cleaning and invalidation of
w ways (IDA), and prefetch of its entire working-set. During
the execution phase, the benchmark performs accesses within
its working-set, accessing its entire memory K times. The time
for its entire length is measured.

Additional configurations are related to the system setup.
These are: (1) “auto” — the automatic hardware prefetcher is
enabled; (2) “coloring” — PH-based coloring is enabled and
configured so that the size of each way is reduced in half; and
(3) “clean” — the cache is initially clean, i.e. without pending
write-backs. The micro-benchmark is always executed inside
the PH, and it is executed 20 times in each configuration.

2) Results: Figure 6a shows the number of cycles needed
to run the benchmark as a function of w. All the times
are normalized by the total number of performed memory
accesses. The following conclusions can be made. First, in
the legacy/baseline case without prefetching (red lines), the
time grows with the number of used ways from around 39
to 47 cycles. Adding prefetching (blue lines) yields a visible
improvement. For more than 3 ways, the automatic prefetcher
performs better (28 to 36 cycles) than the “pref” case with
manual prefetches (33 to 46 cycles).

A key result is that with IDA alone (orange lines), instead,
access times remain near-constant and at around 41 cycles.
Hence, IDA outperforms the pure legacy cases for w > 3 if
dirty cache lines exist, and for w > 7 for a clean cache.

A second key takeaway is that by combining prefetching
and IDA, the access time further drops down to roughly 31
cycles/line. In case of both automatic and manual prefetching.
If compared with the baseline, we have a reduction on the
average execution time by more than 20% with w = 1, and
up to 30% with all w = 16. Finally, note that enabling cache
coloring does not negatively affect the performance of IDA.

Figure 6b shows the results when w = 16 and the number K
of iterations over the working-set in increased, comparing IDA
with the legacy baseline. Under IDA, the execution time slope
(blue line) is constant near 13 cycles/iteration, meaning that
the latency introduced by any additional line is determined
only by the L2 cache access time. In the legacy case, the
slope of the (red) curve is around 25 cycles/iteration during
the initial first rounds, because due to the random replacement
policy previously allocated lines may have been evicted before
the next iteration (self-eviction). The slope gradually settles
around 15 cycles/round, but the overall execution time remains
higher. Note that if the WCET was derived via static analysis
the gap between the curves would be much wider.

D. Integrated Framework Approach

To validate the whole PH solution we are proposing, we
measured the performance and predictability gain in realistic
scenarios. We ran commonly used algorithms within one or
more cells of our virtualized solution with cache coloring.

1) Description: We consider a mix of application from the
Linux kernel library and the TACLeBench benchmark suite.

Each applications was executed 1K times inside a PH-
enforced partition running on a single core. The partition
assigned to each benchmark when coloring is 64 KiB (1
color). This size is in line with their working-set size. The
cache is always initialized as dirty, hardware prefetch and
branch prediction are disabled. Beside collecting the baseline
configuration described so far, we test the following config-

e T T i I -1 20
‘E +40 |- On Interf. -
g DD Interf.+Color - 10
= lm DA 1s
'«E +20 DDInterf.+Color+IDA .
—_— o
5 40 125 8
Q
& 0 B-0-0-0- | &
o [V}
. 5 | —
Q
£l |
=
.8
=
. 1 1 1 ‘

sort et et A JO0

ea? Se and sah Qox\\lo\“‘

Fig. 7: Real benchmark results: average and maximum exe-
cution time (strong vs faint tint, respectively) relative to the
baseline average value; and L2-cache miss ratio.

urations: memory interference is induced by other cores (see
Section VI-A) without (“Interf.”) and with (“Interf.+Color”)
coloring; and using IDA on the benchmark partition without
(“IDA”) and with (“IDA+Color”) coloring.

2) Results: We summarize the results obtained with real
benchmarks in Table II. A few remarks follow. First, coloring
or IDA brings no appreciable difference to SHA-1 benchmark,
nor Convolution—the applications’ working-set easily fits in
the L2 partition and/or the L1 cache, thus hiding any effect
of the presence/absence of non-determinism and contention
at L2/DRAM. Thirdly, IDA without interference improves
the average and worst-case execution time compared to the
baseline. The improvement is particularly significant for the
“Seq. iter” and “Rand. iter” benchmarks. Furthermore, when
interference is enabled, in 2 out of 5 cases, coloring alone is
not sufficient to solve the problem of contention. Conversely,
combining IDA with coloring yields comparable results to
(first, fourth, and fifth benchmark), or outperforms coloring
alone (second and third benchmarks). Indeed, by looking at
the number of L2 cache misses, it can also be noted that IDA
is always able to keep the number of L2 cache miss per line
very near to the theoretical value of 1.

VII. CONCLUSION

In this work, we conducted an analytical and experimental
study of the ability to achieve tight real-time guarantees in
modern families of commercial multi-core embedded plat-
forms. First, we proposed an implementation of a hypervisor-
level memory coloring. Next, we investigated the impact of
a set of traditionally neglected hardware features that have a
significant impact on predictability. These include: hardware
prefetchers, two-stage address translation, and self-eviction
due to pseudo-random replacement policy. Finally, we in-
troduced a novel strategy for deterministic cache allocation,
namely (IDA).

REFERENCES

[1] Sebastian Altmeyer, Liliana Cucu-Grosjean, and Robert I. Davis. Static
probabilistic timing analysis for real-time systems using random replace-
ment caches. Real-Time Systems, 51(1):77-123, 2015.

[4

[l

[5

[6

=

[7

—

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

Sebastian Altmeyer and Robert I. Davis. On the correctness, optimality
and precision of static probabilistic timing analysis. In Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE 2014, Dresden,
Germany, March 24-28, 2014, pages 1-6, 2014.

Luis C. Aparicio, Juan Segarra, Clemente Rodriguez, and Victor Vifals.
Improving the WCET computation in the presence of a lockable instruc-
tion cache in multitasking real-time systems. J. Syst. Archit., 57:695—
706, August 2011.

D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman. Denver: Nvidia’s
first 64-bit arm processor. I[EEE Micro, 35(2):46-55, Mar 2015.
Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making pointer-
based data structures cache conscious. Computer, 33:67-74, December
2000.

Heiko Falk and Helena Kotthaus. WCET-driven cache-aware code
positioning. In Proceedings of the 14th international conference on
Compilers, architectures and synthesis for embedded systems, CASES
’11, pages 145-154, New York, NY, USA, 2011. ACM.

Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, and Heechul
Yun. The deterministic memory abstraction and supporting cache
architecture for multicore real-time systems. In 30th Euromicro Con-
ference on Real-Time Systems (ECRTS 2018), Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antdnio Au-
gusto Frohlich, and Rodolfo Pellizzoni. A survey on cache management
mechanisms for real-time embedded systems. ACM Comput. Surv.,
48(2):32:1-32:36, November 2015.

Giovani Gracioli and Antonio Augusto Frohlich. An experimental
evaluation of the cache partitioning impact on multicore real-time sched-
ulers. In Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2013 IEEE 19th International Conference on, pages 72-81.
IEEE, 2013.

D. Guo and R. Pellizzoni. A requests bundling dram controller for
mixed-criticality systems. In 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 247-258, April
2017.

R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access for high
bandwidth network i/o. In 32nd International Symposium on Computer
Architecture (ISCA’05), pages 50-59, June 2005.

H. Kim and R. Rajkumar. Real-time cache management for multi-core
virtualization. In 2016 International Conference on Embedded Software
(EMSOFT), pages 1-10, Oct 2016.

Hyoseung Kim and Ragunathan (Raj) Rajkumar. Real-time cache
management for multi-core virtualization. pages 1-10. ACM Press,
2016.

N. Kim, M. Chisholm, N. Otterness, J. H. Anderson, and F. D.
Smith. Allowing shared libraries while supporting hardware isolation
in multicore real-time systems. In 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 223-234, April
2017.

N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, J. H. Anderson, and F. D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1-12, April 2016.

Jan Kiszka, Valentine Sinitsyn, Henning Schild, and contributors. Jail-
house hypervisor. Siemens AG on GitHub, https://github.com/siemens/
jailhouse, 2018. Accessed: 2018-03-31.

B. Lesage, D. Griffin, S. Altmeyer, and R. I. Davis. Static probabilistic
timing analysis for multi-path programs. In 2015 IEEE Real-Time
Systems Symposium, pages 361-372, Dec 2015.

B. Lesage, I. Puaut, and A. Seznec. Preti: Partitioned real-time shared
cache for mixed-criticality real-time systems. In Proceedings of the 20th
International Conference on Real-Time and Network Systems, RTNS *12,
pages 171-180, New York, NY, USA, 2012. ACM.

Benjamin Lesage, David Griffin, Sebastian Altmeyer, Liliana Cucu-
Grosjean, and Robert I. Davis. On the analysis of random replacement
caches using static probabilistic timing methods for multi-path programs.
Real-Time Systems, 54(2):307-388, Apr 2018.

Jochen Liedtke, Hermann Haertig, and Michael Hohmuth. Os-controlled
cache predictability for real-time systems. In Proceedings of the 3rd
IEEE Real-Time Technology and Applications Symposium (RTAS ’97),
RTAS ’97, pages 213—, Washington, DC, USA, 1997. IEEE Computer
Society.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. Gaining insights into multicore cache partitioning:

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

Bridging the gap between simulation and real systems. In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th
International Symposium on, pages 367 —-378, feb. 2008.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. Enabling software management for multicore caches
with a lightweight hardware support. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, SC
’09, pages 14:1-14:12, New York, NY, USA, 2009. ACM.

Elena Lucherini. Design and Implementation of a Memory Allocator to
Achieve Cache Partitioning in the Linux Kernel. Master’s thesis, Scuola
Superiore Sant’Anna of Pisa, Italy, 2017.

R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo. WCET
Derivation under Single Core Equivalence with Explicit Memory Budget
Assignment. In Marko Bertogna, editor, 29th Euromicro Conference
on Real-Time Systems (ECRTS 2017), volume 76 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 3:1-3:23, Dagstuhl,
Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco
Caccamo, and Rodolfo Pellizzoni. Real-time cache management frame-
work for multi-core architectures. In Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2013 IEEE 19th, pages 45-54.
IEEE, 2013.

Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui,
Johann Heyszl, and Thomas Eisenbarth. AutoLock: Why Cache Attacks
on ARM Are Harder Than You Think. In USENIX Association,
editor, Proceedings of the Second Workshop on Real, Large Distributed
Systems: December 13, 2005, San Francisco, CA, USA.

Larry McVoy and Carl Staelin. Lmbench — tools for performance
analysis. http://www.bitmover.com/Imbench, 2009. Accessed: 2018-03-
31.

Paolo Modica, Alessandro Biondi, Giorgio Buttazzo, and Anup Patel.
Supporting temporal and spatial isolation in a hypervisor for arm mul-
ticore platforms. In Proceedings of the IEEE International Conference
on Industrial Technology (ICIT 2018), Lyon, France, Feb 2018.

Frank Mueller. Compiler support for software-based cache partitioning.
In Proceedings of the ACM SIGPLAN 1995 Workshop on Languages,
Compilers, &Amp; Tools for Real-time Systems, LCTES °95, pages 125—
133, New York, NY, USA, 1995. ACM.

Frank Mueller. Compiler support for software-based cache partitioning.
SIGPLAN Not., 30:125-133, November 1995.

I. Puaut and D. Decotigny. Low-complexity algorithms for static cache
locking in multitasking hard real-time systems. In Proceedings of
the 23rd IEEE Real-Time Systems Symposium, RTSS 02, pages 114—,
Washington, DC, USA, 2002. IEEE Computer Society.

M. Caccamo R. Mancuso, R. Dudko. Light-prem: Automated software
refactoring for predictable execution on cots embedded systems. In
2014 IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 1-10, Aug 2014.
Muhammad Refaat Soliman and Rodolfo Pellizzoni. WCET-Driven Dy-
namic Data Scratchpad Management With Compiler-Directed Prefetch-
ing. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017),
volume 76 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1-24:23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein,
and R. Rajkumar. Coordinated bank and cache coloring for temporal
protection of memory accesses. In 2013 IEEE 16th International
Conference on Computational Science and Engineering, pages 685-692,
Dec 2013.

David Tam, Reza Azimi, Livio Soares, and Michael Stumm. Managing
shared L2 caches on multicore systems in software. In Workshop on the
Interaction between Operating System and Computer Architecture, June
2007.

E. Tamura and Javeriana Cali. Towards predictable, high-performance
memory hierarchies in fixed-priority preemptive multitasking real-time
systems. I5th International Conference on Real-Time and Network
Systems (RTNS’07), pages 75-84, Mar 2007.

G. Taylor, P. Davies, and M. Farmwald. The tlb slice-a low-cost high-
speed address translation mechanism. In [1990] Proceedings. The 17th
Annual International Symposium on Computer Architecture, pages 355—
363, May 1990.

P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-Blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 1-12, April 2016.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Amos Waterland. stress. http://people.seas.harvard.edu/~apw/stress/,
2010. Accessed: 2018-03-31.

R. West, Y. Li, E. Missimer, and M. Danish. A virtualized separa-
tion kernel for mixed-criticality systems. ACM Trans. Comput. Syst.,
34(3):8:1-8:41, June 2016.

Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee.
VCAT: Dynamic Cache Management Using CAT Virtualization. pages
211-222. IEEE, April 2017.

J. Yan and W. Zhang. Time-predictable multicore cache architectures.
In 2011 3rd International Conference on Computer Research and
Development, volume 3, pages 1-5, March 2011.

Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache partition-
ing system using page coloring. In 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT), pages
381-392, Aug 2014.

H. Yun, R. Mancuso, Z.P. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 155-166, April 2014.
Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th
ACM European conference on Computer systems, EuroSys *09, pages
89-102, New York, NY, USA, 2009. ACM.

Zhenkai Zhang, Zhishan Guo, and Xenofon Koutsoukos. Handling write
backs in multi-level cache analysis for wcet estimation. In Proceedings
of the 25th International Conference on Real-Time Networks and Sys-
tems, RTNS 17, pages 208-217, New York, NY, USA, 2017. ACM.
Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra
Fedorova, and Manuel Prieto. Survey of scheduling techniques for
addressing shared resources in multicore processors. ACM Computing
Surveys (CSUR), 45(1):4, 2012.

APPENDIX

A. Pseudo-Random Replacement Analysis

1) A qualitative description of 2-way cache: Let us con-
sider a 2-way associative cache, and to run a number of rounds
of identical access sequences of length 2 to a single given set.
During each round, every memory location is accessed exactly
once and always in the same order. The cache is assumed to be
initialized with valid cache lines outside the given set. More
crucially, we enforce that: (i) all memory blocks are congruent;
and (ii) there is no other parallel process using the memory
locations congruent with the given set, i.e., we are in a cache-
colored setting. These assumptions imply that any cache miss
other than the first one is caused by a self-eviction.

For example, let m; and my be the two memory location
of our choice, and let the access sequence be given by
(mq1,ma2, mq, ma,...). The first access to m; is a cache miss:
the data m, is copied into the cache by evicting one of the
randomly chosen cache lines. The first access to my is also a
cache miss: the data ms is copied into the cache by evicting
one of the randomly chosen cache lines, including the cache
line holding m;. The probability of evicting m; from a cache
set holding W lines is equal to 1/2. The probability of evicting
any other cache line other than the one holding m; is (2—1)/2.

If m; was not evicted by my, the first access to m; during
the second round is a hit. Otherwise, if m; was evicted by meo,
then the first access to my during the second round must be
a cache miss. When m; is copied into the cache it may evict
mo with a probability of 1/2. If so, the subsequent access to
meo will be a cache miss.

Figure 8a shows the transition graph representing the possi-
ble states of the cache set over all two rounds. The symbol ¢
represents a cache line that does not belong to the given set of
memory location. The nodes represent the cache set contents.
The probability of changing to another cache set content is
represented on the edge between the respective nodes. By
traversing the graph starting from the initial state (e,¢), we
can obtain the probability of having a given number of cache
misses.

2) A quantitative description of 16-way cache: We mod-
elled the number of useful cache locations in a 16-way
cache set under a sequence of fill operations with a Markov
process implemented in the GNU Octave code in Listing 1
and described in Figure 8b. The model has been validated
against the ARM prefetch instruction (prfm), as illustrated in
Appendix B.

B. Pseudo-Random Replacement Experiments

To empirically verify the impact of the self-eviction pathol-
ogy, we provide a set of experiments with different software
prefetch patterns. To do that, we make use of ARM “prefetch
memory” prfm instruction, which prefetches data at a given
address in a given cache level.

1) Prefetch for a Whole Set: In a first experiment, repeated
13K times, we prefetch 16 congruent addresses after setting up
the cache so that: (i) all ways of the set are valid, and (ii) the
cache set does not contain useful data. The distribution of the
number of successfully prefetched addresses is shown by blue
vertical bars in Figure 3. These experimental results confirm
the theoretical model given with the Markovian process (cf.
Figure 8b), whose predicted performance is plotted as a solid
line that perfectly matches the top of the vertical bars. In

0
16

—
o
—
S

—
=N
=
=N

16

16 15 14
16 16 16

(b) 16-way cache, states are identified by the number of useful lines.

Fig. 8: Markov chains modelling cache content over a se-
quence of repetitive memory accesses.

Probability
o o o
= o 00—

<
o

Cache misses

Round

Fig. 9: Probabilistic distribution of the number of cache miss
as a function of the number of accesses.

particular, the average of 10.16 successfully prefetched lines
measured by the experiment matches the model’s expected
value of 10.303 lines. Note that the success percentage for
a 16-way prefetch is only 64.393%. In the next section, we
will show a technique to significantly improve this result,
obtaining the performance shown in the rightmost bar with
16 successfully prefetched lines.

2) Prefetch Success for Each Way: A second experiment
was designed as a variation of the aforementioned one, varying
the number n of congruent lines prefetched in the considered
sequence, with 1 < n < 16. In Figure 10, we then show (i)
the number of lines successfully prefetched (red histogram),
and (ii) the probability of successfully prefetch the whole

1

1@
e o
N T O
n || [[-0 -6
g O8] 1P o |
2 oo/ 111 R [Ttee
£ 06 li
a '\ 0o Single, measure
% 0.4 . o Single, model
§ N 00 Seq., measure
0.2 b e Seq., model
g
I Il LALLL
S B B B B B S
1234567389 10111213141516

No. of prefetched cache lines

Fig. 10: Measured incidence and modelled probability for (i)
the number of successfully prefetched locations (single, in
red), and (ii) for successfully prefetching a complete sequence
(seq., in blue), after a prefetch sequence of length n. Note that
both probabilistic models are discrete. Dashed connecting lines
are provided as a visual aid.

sequence (blue histogram). The experiment was performed

100K times for each number of lines to measure the former,

IM for the latter. Figure 10 shows the success rate of both
events as vertical bars as function of n, while solid lines
represent the corresponding probabilistic expectation, obtained

analytically in the previous sub-section. We readily see that
measurements are once again tightly approximated by the
model. We also highlight that, while prefetching a single line
has been always successful in all tries, a single occurrence of
an entirely successful 16-line prefetch was encountered over ,
IM tries. 2

C. Algorithms

pkg load queueing

3 $ probability that at step 0 the system is in state

4

p_0 = zeros(1,17);

5 % start always in the 0 state

6

p_0(1)=
% loop probablthy
p_1 = 0;
next probability
p_n = 1;
% transition probability matrix

(staying in the same state)

(moving to the next state)

o°

> P=zeros (17,17);

for i=1:16
P(i,1)
P(i,1i+1)
p_1
p_n
endfor
P(17,17)
v=0:16;

=p_1; o

is the steady-state probability that the
state 1 after n steps.

% p(n,1i)
% system is in
p=zeros (16,17);
% expected values
e=zeros (1l6,1);
for n=0:16
% steady-state probabilit
p(nt+l,:) = dtmc(P,n,p_0);
% expected value
e (n+1) = sum(p(n+l, :)

ies after n steps

LKV)

TABLE II: Real benchmarks results, data summary. Worst and
average execution time, and L2 miss count per line over 1K
runs.

Time (Kcycles) L2 miss
APPLICATION Conf. maximum average per line
base 8,089.871 7,692.389 2.1973
IDA 7,600.765 7,528.418 1.0127
Heap sort interf. 9,621.041 9,508.141 18.2070
col.+interf. 7,901.555 7,831.802 2,4658
IDA+col.+interf. 7,918.259 7,714.617 7,803.073
base 99.344 91.393 1.5107
IDA 80.492 70.820 1.0000
Seq. iterator interf. 132.608 114.209 1.6406
col.+interf. 125.038 110.916 1.5117
IDA+col.+interf. 102.062 90.613 1.0000
base 272.061 255.475 1.5078
IDA 214.077 193.972 0.9990
Rand. iterator interf. 347411 333.316 1.7783
col.+interf. 315.378 293.524 1.5088
IDA+col.+interf. 243.104 231.182 0.9990
base 808.105 791.198 1.0000
IDA 800.823 783.435 1.0000
SHA-1 interf. 840.917 819.650 1,0010
col.+interf. 819.320 800.049 1.0000
IDA+col.+interf. 829.968 819.233 1.0000
base 14,215.224 14,203.511 1.0010
IDA 14,236.808 14,209.904 1.0000
Convolution interf. 14,115.988 14,091.039 1.0000
col.+interf. 14,130.744 14,092.864 1.0000
IDA+col.+interf. 14,126.034 14,107.558 1.0000

if n>0

s(n+l) = e(n+l)/n;
endif
endfor
Listing 1: Markov chain model of L2 cache random

replacement policy (GNU Octave code)

ptr_t next_colored(ptr_t PA, ptr_t col_mask, ptr_t col_val)
{

ptr_t retval = PA;

unsigned int pos = 0;

/* Make sure the mask value has only x/

/+* bits in agreement with the mask =*/

col_val &= col_mask;

while (pos < bit_width) {

ptr_t cur_bit_mask = 1 << pos;

/+ Skip dont-care bits, or bits that are =*/
/* already compliant with the color =/

if ((col_mask & cur_bit_mask) == |
((col_val ~ retval) & cur_bit_mask)

0);
else {
/* Clear all the bits lower than the current one x/
ptr_t reset_mask = (cur_bit_mask - 1);
retval &= “reset_mask;
/+* Then manipulate high bit */
retval += cur_bit_mask;
/* And apply lower part of color value bits x/
retval |= reset_mask & col_val;

++pos;
}

return retval;
Listing 2: Find next color-compliant PA (C code).

In Listing 2, ptr_t is an integer type with bit-width at
least as long as that of a pointer in the considered platform,
and where bit_width is the number of bits in a PA (e.g.
34).

