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Abstract—This paper presents CaM, a holistic cache and
memory bandwidth resource allocation strategy for multicore
real-time systems. CaM is designed for partitioned scheduling,
where tasks are mapped onto cores, and the shared cache and
memory bandwidth resources are partitioned among cores to
reduce resource interferences due to concurrent accesses. Based
on our extension of LITMUSRT with Intel’s Cache Allocation
Technology and MemGuard, we present an experimental eval-
uation of the relationship between the allocation of cache and
memory bandwidth resources and a task’s WCET. Our resource
allocation strategy exploits this relationship to map tasks onto
cores, and to compute the resource allocation for each core. By
grouping tasks with similar characteristics (in terms of resource
demands) to the same core, it enables tasks on each core to
fully utilize the assigned resources. In addition, based on the
tasks’ execution time behaviors with respect to their assigned
resources, we can determine a desirable allocation that maximizes
schedulability under resource constraints. Extensive evaluations
using real-world benchmarks show that CaM offers near optimal
schedulability performance while being highly efficient, and that
it substantially outperforms existing solutions.

I. INTRODUCTION

Multicore processors are becoming increasingly common in

real-time systems. In the automotive domain, for instance, they

have been used to consolidate features that are traditionally

implemented on separate electronic control units to reduce

size, weight, and power consumption. This trend, however,

also makes it much more difficult to guarantee timing pre-

dictability: since the cores share the last-level cache and the

memory bandwidth, tasks running concurrently on different

cores may interfere with one another through these resources.

As a result, traditional resource allocation techniques that

consider only CPU resource can no longer be safely applied.

One effective approach to mitigating interferences among

concurrent tasks is resource partitioning: by dividing the cache

and memory bandwidth among the cores, tasks running on

each core can have exclusive accesses to the resources assigned

to that core. This approach can be implemented using today’s

hardware features and memory management techniques—for

instance, the shared cache can be efficiently allocated to cores

using cache coloring or Intel’s Cache Allocation Technology

(CAT), and the memory bandwidth can be distributed among

cores using regulation mechanisms such as [72]. If we combine

this with a partitioned scheduling algorithm, e.g., partitioned

Earliest Deadline First, timing guarantees can be achieved by

applying existing schedulability analysis for uniprocessors.

However, two research questions remain in realizing this

approach: (1) how to partition tasks onto the cores? and (2)

how much cache and memory bandwidth should each core

have? One solution is to evenly divide the cache and the

memory bandwidth among the cores, and then use an existing

bin-packing technique to map tasks onto cores. This method

works in principle, but it has important limitations: First, not

all cores need the same cache size and the same amount of

memory bandwidth, since the resource demands of a core

depend on that of the specific tasks running on it; therefore,

evenly distributing the resources among cores could lead to

inefficient use of resources. Second, existing task partitioning

techniques do not consider other types of resources besides

CPU, and they typically assume a fixed worst-case execution

time (WCET) for each task. As our experiments in Section III

show, the WCET of a task highly depends on the cache and

memory bandwidth resources it is given. Without considering

this behavior, the resulting mapping may result in poor timing

performance, because cache- and memory-sensitive tasks may

take much longer to execute if not given sufficient resources,

whereas computation-intensive tasks may be given more re-

sources than they strictly require. Prior work has considered

cache and memory bandwidth in scheduling [68], but it focuses

on soft real-time performance instead of schedulability.

In this paper, we take a holistic approach towards answering

these research questions. Rather than decoupling them, we

compute the mapping of tasks and the allocation of shared

resources to cores in an integrated resource allocation strategy

called CaM that considers the demands on CPU, cache, and

memory bandwidth concurrently to minimize resources while

ensuring timing guarantees. Developing such a strategy turns

out to be highly challenging. Due to the interactions between

the different types of resources, there is a tradeoff between

the demand of one type and the allocation of another. For

instance, when a task is allocated more cache space, it will

typically incur fewer cache misses and thus have fewer mem-

ory requests, resulting in less memory bandwidth demand.

Conversely, when a task is allocated more memory bandwidth,

it will have a smaller average worst-case memory request

latency and thus a smaller cache miss latency; as a result, it

will become less sensitive to the amount of cache space it is

allocated. Since all three types of resources are limited, finding

the right tradeoff is non-trivial. Further, to best assign a task

to a core, we need to know its CPU demand, but this demand

depends on the task’s WCET and thus the cache space and

the amount of memory bandwidth given to its assigned core.

This circular dependency makes the allocation non-trivial.

To address the above challenges, we first experimentally

investigate the interdependence between the WCET of a task

and the cache space and memory bandwidth it is given. For

this, we integrate both the cache partitioning (using Intel’s

CAT) and the memory regulation (using MemGuard [72])

mechanisms into an existing real-time OS (LITMUSRT [13]) to

provide an end-to-end platform that can be used to experimen-

tally explore the above relationship for real-world workloads.

By exploiting this relationship, our allocation strategy can



effectively find the right tradeoff between WCET and shared

resource needs. In addition, by grouping tasks with similar

characteristics to a core, it enables the tasks to fully utilize

the resources allocated to their assigned cores. Our evaluation

shows that our strategy is highly effective in utilizing resources

and maximizing schedulability—it performs very close to

an optimal solution based on constraint optimization, and

it substantially outperforms both a baseline solution (which

distributes the resources evenly) and MC2 (a state-of-the-art

resource allocation technique developed in [17]).

In summary, we make the following contributions:

• an extensive empirical evaluation of the impact cache and

memory bandwidth resources on the WCET of a task;

• CaM, an efficient and effective resource allocation al-

gorithm for tasks that can minimize resources while

guaranteeing schedulability; and

• an extensive performance evaluation of our algorithm

using real-world benchmarks.

For performance evaluation, we also develop an optimal solu-

tion of our resource allocation problem using Mixed Integer

Programming (MIP), which can be found in [63].

II. RELATED WORK

Memory bandwidth resource. Memory bandwidth regulation

has been studied extensively at both hardware and software

levels. Hardware-based techniques [23, 24, 25, 33, 75] can

provide fine-grained memory bandwidth allocation to the cores

using the memory controller; however, they require hardware

customization and cannot be applied to COTS platforms. In

contrast, software-based techniques [6, 71, 72, 73] extend

the system software to implement the memory bandwidth

allocation; typically, they use the performance monitoring unit

to monitor the memory requests from each core, and throttle

a core when it exceeds its allocated memory bandwidth.

Our experimental platform leverages MemGuard [72], a state-

of-the-art software-based regulation technique in real-time

systems for the memory bandwidth regulation.

There exists an alternative line of work that focuses on

memory bandwidth-aware timing analysis [18, 27, 50, 51, 52,

70]. These techniques account for the overhead caused by

memory bandwidth interference and its impact on schedula-

bility. Without any isolation, it is generally difficult to obtain a

tight bound on the interference and thus these techniques typi-

cally produce pessimistic results. Recent research [40, 43, 48]

has started to study the worst-case memory request latency in

the context of memory bandwidth regulation. We expect that

the results therein can be incorporated into CaM allocation

strategy to consider the extra memory access delay from cores

with limited memory bandwidth.

Cache resource. Several cache partitioning techniques have

been proposed to reduce the shared cache interference [9, 21,

22, 26, 28, 59, 61, 62, 68, 74]. The software-based approach

reorganizes a task’s memory layout to allocate a specific

cache area to the task using, e.g., page coloring [28, 39, 67]

or compiler-based [42] techniques. The hardware-based ap-

proach [39, 61] leverages the cache partitioning capability in

recent COTS processors, such as the Cache Allocation Tech-

nology (CAT) in Intel processors [5] and the Lockdown-by-

Master (LbM) technology in ARM processors [2]. We use the

hardware-based approach (specifically, Intel’s CAT) to achieve

the per-core cache allocation as it is much more efficient

than the software-based approach. We note that although the

interference due to concurrent accesses to the shared cache

can be mitigated using cache partitioning, tasks running on

the same core may still experience cache-related preemption

and migration delay (CRPMD) overhead. Our work assumes

that such overhead is included in the WCET of a task, but

it can easily be extended to account for such overhead in

the allocation, e.g., by incorporating with existing CRPMD

overhead-aware analysis [8, 14, 19, 61].

Recent research [60] has also considered the shared cache

interference directly in the analysis instead of cache partition-

ing. While promising, the initial result is limited to direct-

mapped noninclusive cache (which is rarely used in COTS

multicore processors) and thus requires further research to

make it more practically applicable.

Multiple resources. There also exists a large body of work on

management schemes that consider multiple types of resources

concurrently [12, 35]. These techniques consider different

combinations of resources, such as the co-allocation of cache

and memory bank resources [35], or the co-allocation of cache

and memory bandwidth resources [12, 32, 53, 54, 58]. The

majority of these techniques focus on improving the average

performance (e.g., throughput) and fairness of the system, and

thus cannot be directly applied to our setting.

The management of multiple resources has recently been

studied for latency-sensitive systems. For instance, Hera-

cles [37] can manage CPU, cache, memory bandwidth, and

networking resources altogether to achieve low latency for

latency-sensitive tasks in data centers, such as web search

and online machine learning clustering algorithm. However,

Heracles considers a highly simplified real-time setting where

each machine has only one latency-sensitive task. In contrast,

our work solves the resource co-allocation for a much more

general real-time task setting. Ma et al [38] proposed PARD,

a new programmable hardware architecture to improve QoS

and resource utilization. However, PARD requires customized

hardware support and is not suitable for COTS platforms.

Recent research (e.g., [55, 66]) in the real-time community

has begun to investigate the impact of multiple resources on

real-time performance. Researchers in [6, 41, 47, 66] have

developed coordinated allocation schemes for CPU and mem-

ory bandwidth resources, but they ignored the cache resource.

Researchers in [30, 31, 55] considered the cache and memory

bank resources but ignored the memory bandwidth resources.

Researchers in [17] proposed a multi-resource allocation al-

gorithm for real-time mixed criticality systems, which focuses

on the tradeoffs of the cache allocation while considering the

memory bank allocation. The allocation algorithm in [17] has

two assumptions: (i) tasks have been pre-allocated to cores

(using a bin-packing algorithm); and (ii) memory banks are



evenly allocated to cores.1 Thus, it focuses on the allocation

of only one resource (i.e., cache resource) and does not

consider the allocation tradeoffs between multiple resources.

Unlike these techniques, our work considers all three types

of resources (CPU, cache, and memory bandwidth) in the

allocation. Recently, Ye et al. [68] proposed MARACAS, a

multicore scheduling and load-balancing framework to address

cache and memory bandwidth interference; however, MARA-

CAS focuses on soft real-time requirements.

Existing work has also investigated the impact of other

types of shared resources on real-time performance, including

e.g., impacts of Miss Status Holding Registers (MSHR) on

partitioned caches [56], interferences due to memory bank

contention [31, 55, 69], TLB interferences [45], and effects

of interrupts [13, 29, 46, 49]. As an initial step, our work

focuses on interferences due to concurrent cache accesses and

shared memory bandwidth, while assuming that the overhead

due to other types of interferences has been accounted for in

the tasks’ WCETs. We defer the extension to other types of

interferences—which is highly non-trivial—to future work.

Partitioning algorithms. The problem of partitioning real-

time tasks onto identical multiprocessor platforms has been

known to be NP-hard. Several polynomial-time algorithms [15,

20, 44] have been proposed for solving it approximately

(see [10] for a comprehensive comparison). These techniques

consider only CPU resource and assume that each task has

a fixed WCET; therefore, they cannot be directly applied to

our setting. There exists extensions to multiple WCETs per

task – for instance, energy-aware partitioning algorithms that

consider a vector of WCETs for a task depending on the speed

of the processor have been proposed in [7, 65]. However,

algorithms in this setting cannot be apply as they typically

ignore the shared cache and memory BW resources, which

work differently from that of energy.

III. IMPACT OF CACHE AND MEMORY BANDWIDTH

RESOURCES ON WCET

We begin by presenting the experimental evaluation that guides

our resource allocation strategy. Specifically, our evaluation

aims to (1) investigate the benefits of cache and memory iso-

lation on timing performance, and (2) explore the relationship

between the allocated cache and memory resources and the

timing behavior of a task. For this, we needed a real-time

OS with built-in cache partitioning and memory bandwidth

regulation features. As we were not aware of any such free

open-source platform available, we extended LITMUSRT with

Intel’s CAT and MemGuard for our experiments. Before

discussing the experimental results, we first describe this

integrated prototype. For convenience, we refer to memory

bandwidth simply as bandwidth (BW) in the rest of the paper.

A. Prototype

The prototype integrates the Intel’s CAT and MemGuard

bandwidth regulation mechanisms as Linux modules into

LITMUSRT , a real-time extension of the Linux kernel that

1We confirmed these two assumptions with the authors of [17].

provides several real-time scheduling policies [16]. We used

LITMUSRT as the base real-time OS, since it is open-source,

established, and actively maintained.

Intel’s CAT. The Intel’s CAT is a new hardware feature that

allows system software (e.g., the OS) to control the allocation

of the shared last-level cache to physical cores. It divides the

shared cache into N non-overlapped equal-size cache partitions

(e.g., N = 20 on our evaluation machine). It provides two

types of model-specific registers: (1) the Class of Service

(COS) register, which has an N-bit Capacity Bitmask (CBM)

field to specify a particular cache partition set; and (2) the

IA32 PQR ASSOC (PQR) register, which has a COS field

for linking a COS register to a core.

To allocate a set of specific cache partitions to a core,

we need to modify (1) the CBM field of a COS register

to specify the cache partition set and (2) the core’s PQR

register to link the COS register to the core. Both modifications

can be performed using the wrmsr instruction, which can be

executed from the user space using the Intel MSR Tools [1]

(or Intel RDT software package [4]). To enable the operator

to configure cache partitions for cores, we wrote a script

that takes as inputs two parameters – the core index and the

bitmask of the cache partition set for the core – and invokes

the Intel MSR Tools to set the cache partitions for the core.

MemGuard. MemGuard [73] provides different BW man-

agement mechanisms, including reservation, reclaiming and

best-effort bandwidth sharing. We leveraged the reservation

mechanism for our prototype, as it is the only one that can

achieve guaranteed per-core bandwidth reservation. We used

the existing MemGuard implementation and loaded it as a

Linux module in LITMUSRT . We controlled BW allocation

by writing to the proc filesystem exposed by MemGuard.

B. Experimental setup

Hardware. Our prototype ran on a machine with a CAT-

capable Intel Xeon E5-2618L v3 processor with a 20MB 20-

way set-associative L3 shared cache and a single channel 8GB

PC-2133 DDR4 DRAM. The cache can be divided into 20

equal partitions, and a core must be allocated at least 2 parti-

tions (due to hardware constraints). The maximum guaranteed

bandwidth was 1.4GB/s (obtained using the same method as

in [73]). For our experiments, we divided the bandwidth into

20 partitions of 70MB/s each, and the maximum bandwidth

budget allocated to a core was always equal to (the size of)

one or multiple partitions.

System configuration. We enabled 4 cores in BIOS as in [62]

because the processor has only 4 Class of Service (COS)

registers2, supporting at most 4 cores with different cache

partition settings. Like in most existing real-time research [28],

we disabled hyper-threading, SpeedStep, and hardware cache

prefetcher features to avoid non-deterministic timing behavior.

We also shut down all non-essential system services during our

experiments to minimize potential interferences.

Workload. We considered two types of workloads: (i) a

benchmark workload, taken from the PARSEC benchmark

2The number of COS registers varies across Intel processors.



suite [11] and a cache-bench synthetic benchmark, and (ii) an

interference workload. Both the PARSEC benchmark suite and

the cache-bench benchmark have been used as an evaluation

workload in prior real-time research [27, 28, 57, 62]. Charac-

teristics of the former (e.g., the working set size) are available

in [11], while the latter is a cache-intensive program that uses

a linked list to sequentially access every 64 bytes (i.e., the

cache-line size) of a 20MB array. The interference workload

consists of cache-bomb (similar to the one used in [62]), a

program that uses the array index to sequentially access every

64 bytes of a 40MB array until it is terminated.

C. Evaluation of resource isolation

To evaluate how well CaM can protect a task’s WCET from

being affected by concurrent running tasks, we ran a (PARSEC

or cache-bench) benchmark task on one core, and ran a cache-

bomb task on each of the remaining cores. We measured the

execution time of the benchmark task when it is allocated

a fixed number of cache partitions and BW partitions. For

comparision, we performed the same experiment for four more

settings, with (i) cache allocation only, (ii) BW allocation only,

(iii) neither cache nor BW management, and (iv) both cache

and BW allocation, but without running any interference task.

The results show that cache allocation or BW allocation

in isolation is often not sufficient to prevent tasks from both

cache and BW interferences. In contrast, by integrating both

techniques, CaM can effectively isolate tasks from both types

of interferences. A detailed discussion of the experiments and

results can be found in our technical report [63].

D. Impact of cache and bandwidth allocation on WCET

Experiment. For this evaluation, we ran the canneal bench-

mark on one core, which is assigned different numbers of

cache partitions and BW partitions. We measured the bench-

mark task’s execution time across 25 runs, and calculated its

resource slowdown factor under a cache and BW configuration

(as the ratio of the task’s measured WCET to the WCET when

it is allocated all cache and BW partitions in the system).

Results. Figs. 1 and 2 show the impact of BW and cache

resource allocation on the task’s WCET, respectively. Fig. 1

shows that the canneal benchmark task’s slowdown varies

from 17.06× to 2.84× when the task is allocated 1 memory

bandwidth partitions; in contrast, the slowdown does not

change substantially when the task is allocated 20 memory

bandwidth partitions. A similar trend can also be observed in

Fig. 2. In general, we can make the following observation:

Observation 1. The relation between a task’s WCET and the

amount of cache (resp. memory bandwidth) resource it receives

is highly dependent on the amount of BW (resp. cache) it

receives. In particular, a task’s WCET is more sensitive to

the cache allocation when it is allocated a smaller amount of

BW, and vice versa.

This behavior is expected, as the more cache space a

task receives, the fewer cache misses it incurs, and thus the

frequency that it is throttled also decreases. Similarly, when a

task receives less memory bandwidth, it runs out of memory

budget more quickly and becomes throttled more frequently,

thus making it more sensitive to its allocated cache space.

We repeated the experiment with each PARSEC benchmark

to examine the effect of the workload’s characteristics. Our

results show that the above observed pattern varies across

benchmarks. Due to space constraints, we omit the results.

Observation 2. The relation between a task’s WCET and

its allocated cache and BW resources varies across different

benchmark tasks. Some tasks (e.g., canneal benchmark) are

sensitive to both cache and BW resources, whereas others are

sensitive to only one (e.g., facesim benchmark) or none (e.g.,

swaptions benchmark) of the resources.

These results motivate the need for considering the rela-

tionship between CPU, cache and BW resources to achieve

better utilization and schedulability. We formally define this

co-resource allocation problem next.

IV. THEORETICAL MODELING AND PROBLEM STATEMENT

Using our prototype, we can already partition cache and

BW resources among cores to provide better isolation among

concurrent tasks. To meet timing guarantees, however, we

also need a resource allocation strategy that, given a set of

tasks, decides 1) how to map tasks onto cores, and 2) how to

distribute cache and BW resources among cores, to minimize

resource usage while ensuring schedulability. To solve this

problem, we first formalize a concrete platform model based

on our experimental platform, and a cache- and memory-

aware task model based on the tasks’ timing characteristics

observed in our empirical evaluation. (A table that summarizes

the notations is available in our technical report [63].)

Platform model. The platform consists of M identical cores,

with a shared cache and a shared memory bus that are

accessible by all cores. The cache is divided into Ncp equal-

size cache partitions, and the memory bandwidth is divided

into Nbw equal-size BW partitions. Cache and BW allocation

is done at the core level: each core is allocated a distinct set

of cache partitions and a certain number of BW partitions,

all of which will be available to any task currently running

on the core. As some hardware does not allow an allocation

that is fewer than a certain number of partitions, we denote

by Nmin
cp and Nmin

bw the minimum numbers of cache partitions

and BW partitions that a core must be allocated, respectively.

We assume that the OS scheduler schedule tasks using the

partitioned Earliest Deadline First (EDF) policy (supported by

LITMUSRT ), due to its high resource utilization bound.

Task model. We consider independent periodic tasks with

implicit deadlines3, but we extend it to capture the relationship

between the task’s WCET and the cache and BW allocation.

Specifically, a task τi is modeled as τi = {pi,di,ei(cpi,bwi) |
Nmin

cp ≤ cpi ≤Ncp∧Nmin
bw ≤ bwi ≤Nbw}, where pi is the period,

di(= pi) is the deadline, and ei(cpi,bwi) is the task’s WCET

when it is assigned cpi cache partitions and bwi bandwidth

partitions. Specifically, the WCET ei(cpi,bwi) of a task is

the task’s execution time when it executes alone on a core,

3We assume this for simplicity; it should be straightforward to extend the
algorithm to constrained deadline tasks.
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where the core is allocated cpi cache partitions and bwi

bandwidth partitions. We assume that all task parameters are

given a priori. (Here, the vector of WCETs ei(cpi,bwi) of a

task τi can be obtained by analysis or measurement. In our

evaluation, it is obtained through profiling, as was done in

our experimental evaluation.) Note that, by definition, a task’s

WCET is invariant with respect to the tasks that are scheduled

on the same core. However, a task’s response time depends on

tasks running on the same core, because of scheduling delay

and various overhead such as CRPD and BW interference

caused by higher-priority tasks. As a first step towards timing

predictability, like in prior work [28, 61], we assume that a

task’s WCET values have been inflated to account for other

sources of overhead; however, it can be extended to explicitly

accounted for such overhead by incorporating with existing

work such as [64] [48] [13].

For analysis purpose, we refer to rei = ei(Ncp,Nbw) as the

reference WCET of τi, i.e., the WCET when it is allocated

all cache and memory partitions in the system. We denote

by rui = rei/pi the reference utilization of τi, which is the

utilization based on its reference WCET. By abuse of notation,

we use the term assigned WCET and assigned utilization to

denote the WCET and utilization of a task, respectively, when

it is already assigned a fixed number of cache partitions and

a fixed number of memory bandwidth partitions. We require

that any task must be assigned to a core.

As usual, we say that a task is schedulable iff it always

finishes execution before its deadline, and the system is

schedulable if all tasks are schedulable. According to the EDF

schedulability test [34], the tasks on a core are schedulable

iff their total utilization does not exceed 1. The system is

schedulable iff the tasks on each core are schedulable.

Problem statement. Given the above model, our goal is to

develop a strategy for computing (i) a mapping of tasks to

cores, and (ii) the number of cache partitions and the number

of BW partitions (per regulation period) for each core in the

system, so that the system is schedulable and the number of

cores needed is minimized.

Challenge. In principle, our resource allocation problem can

be solved using constraint optimization techniques. For refer-

ence, we have developed an MIP formulation of the proposed

problem (details can be found in [63]). Although being opti-

mal, this approach has a very high running time complexity

and is too inefficient to be practical. Achieving both effec-

tiveness and efficiency turns out to be highly challenging in

our setting, because of the inter-dependence between WCET,

cache allocation, and memory bandwidth allocation, as well

as their variances across tasks. The problem we consider is,

in fact, more general than the traditional problem of packing

tasks to cores, which is known to be NP-hard. In the next

section, we present a novel approach to solve this problem,

using a combination of clustering and bin-packing heuristics.

V. HEURISTIC RESOURCE ALLOCATION ALGORITHM

We first discuss the basic strategies that guide our allocation

and present a high-level overview of the algorithm. We then

present the details of the algorithm and discuss its complexity.

A. Overview

Based on the insights obtained from the empirical evaluation in

Section III-D, we propose the following high-level strategies.

These strategies aim to exploit the relationship between the

allocated resources and a task’s WCET, as well as the diverse

resource demands across tasks.

Strategy 1. (Group by sensitivity) As tasks on the same core

are always allocated the same amount of cache and BW

resources (equal to that of the core), grouping tasks with

similar sensitivity to cache and BW resource allocations onto

the same core can help better utilize cache and BW resources.

Our allocation strategy aims to group tasks with similar

resource sensitivity onto the same core. To capture how

sensitive a task is to different allocations of cache and BW

resources, we define the resource-allocation slowdown of

a task τ j under a resource configuration (cpk,bwk) to be

t slowdown j(cpk,bwk) =
e j(cpk,bwk)

re j
, where re j is the task’s

reference WCET (i.e., the WCET when the task is given all

partitions; c.f. Section IV) and e j(cpk,bwk) is the WCET of τ j

under cpk cache partitions and bwk BW partitions. Each task τ j

has an Ncon f ig dimensional slowdown vector ~sv j, where Ncon f ig

is the number of all valid resource configurations (cpk,bwk),
and the kth element of the vector is the resource allocation

slowdown of τ j under the k-th resource configuration. As

the slowdown vector ~sv j captures how sensitive a task is to

different cache and BW configurations, we also refer to it as

the resource sensitivity of τ j.



The next strategy simply aims to balance load across cores;

the number of cores is a parameter to our algorithm:

Strategy 2. (Load balancing) Given an allocation of resources

to tasks, evenly distributing the tasks among cores based on the

assigned tasks’ utilizations can help balance the load across

cores and avoid under-utilized cores.
We define the resource utility of a core i as the average

reduced utilization per additional cache and BW partition

allocated to the core:

resourceUi(cp,bw) =

{

(ui−u′i)/(cp+bw) if ui > 1

0 otherwise
(1)

where ui and u′i are the core’s utilization before and after it

is given extra cp cache partitions and bw memory bandwidth

partitions, respectively. In our algorithm, each core is assigned

a set of tasks, and it is initially allocated the minimum amount

of cache and BW resources. If a core is schedulable, its

resource utility is always 0. Among the cores that are not

schedulable (if any), we will allocate additional resources to

the core with the largest resource utility, so that we can better

use the limited resources to make all cores schedulable:

Strategy 3. When adding more cache and BW resources to

a core that is unschedulable under the current allocation,

allocating resources to a core that results in the maximum

resource utility can provide a more effective use of the limited

cache and BW resources.

Overview of the algorithm. Algorithm 1 shows the high-

level idea of our allocation algorithm for m cores. Initially,

each core is given the minimum number of cache and BW

partitions. The algorithm then works in three phases:

(1) Phase 1 (Lines 1–2): It first groups tasks that have

similar resource sensitivity (i.e., similar slowdown vector) into

the same cluster, based on Strategy 1. Then, it sorts tasks in

each cluster in decreasing order of tasks’ reference utilization

– this is because it typically is harder for a task with higher

utilization to find a feasible core.

(2) Phase 2 (Lines 4–9): It randomly picks one permutation

of the clusters as the order of packing clusters to cores. It

then packs each task in each cluster onto cores, such that

the total reference utilization of tasks on each core is similar

(i.e., close to the average reference utilization of all cores),

as guided by Strategy 2. Next, using the allocResource()

procedure, it allocates cache and BW resources to cores to

maximize the resulting resource utility, based on Strategy 3.

Once the resources allocated to each core are determined, it

calculates the resulting utilization of each core and checks the

system’s schedulability. If the resulting utilization of each core

is no larger than 1, the system is schedulable. If the system is

schedulable, the algorithm terminates and outputs the resource

allocation policy that schedules the system; otherwise, it

continues to the next phase.

(3) Phase 3 (Lines 10–18): The algorithm tries to balance

the workload across cores (Line 13). For each unschedulable

core, it migrates each of its tasks to a schedulable core that

will have the smallest utilization after the migration, until the

unschedulable core becomes schedulable. After the balance

Algorithm 1 Heuristic resource allocator

Input: V : the set of tasks, m: the number of cores, Ncp: the

number of cache partitions, Nbw: the number of band-

width partitions, maxIterKM: the maximum iterations for

KMeans, maxIterPerm: the maximum iterations.

Output: Schedulable or Unschedulable.

1: clusters← clusterTasks(V,m,maxIterKM)
2: Sort tasks in each cluster in decreasing order of their

reference utilization

3: repeat

4: perm clusters← permute(clusters) ⊲ randomly pick

one permutation of clusters

5: cores← binPackClusters(perm clusters,m)
6: cores← allocResource(cores,m,Ncp,Nbw) ⊲

The cores variable specifies tasks and resources allocated

to each core

7: sched← checkSchedulability(cores) ⊲ schedulable if

each core’s assigned utilization is no larger than 1

8: if sched = schedulable then

9: break

10: oldVal← ∞ ⊲ previous imbalance value

11: while true do ⊲ balance cores’ utilizations iteratively

12: val← getImbalanceValue(cores)
13: cores← balance(cores)
14: cores← allocResource(cores,m,Ncp,Nbw)
15: sched← checkSchedulability(cores)
16: if sched = schedulable or val > oldVal then

17: break

18: oldVal← val

19: maxIterPerm← maxIterPerm−1

20: until maxIterPerm = 0

21: return sched

22:

23: function getImbalanceValue(cores)

24: imbalance = 0

25: for all c ∈ cores do

26: if c’s assigned utilization > 1 then

27: imbalance += c′s assigned utilization −1

28: return imbalance rounded to 2 fractional digits

procedure finishes, the algorithm re-runs the allocResource()

procedure for cores and checks if the system will become

schedulable. The algorithm keeps balancing tasks on cores

until the system becomes schedulable or there is no benefit

in balancing (Line 16). Because the order of the clusters may

affect the bin packing result (Line 5), which may later affect

the resource allocation and balance procedure, the algorithm

re-orders the clusters and repeats Phases 2 and 3 (Lines 3–

20) for a user-specified constant number (i.e., maxIterPerm)

before it claims that the system is unschedulable.

As discussed in the previous section, a system that is

unschedulable when using m cores may become schedulable

with fewer cores. This is because with fewer cores, there

are more cache and BW resources available to each core on



average (since each active core must have at least some cache

and BW partitions). This can lead to smaller tasks’ utilizations

(if the tasks are sensitive to cache and bandwidth resources),

hence making the system easier to schedule. To obtain a

feasible allocation with the minimum number of cores, we use

Algorithm 1 to find a feasible allocation on every valid number

of cores m, where 1≤m≤M, and M is the maximum number

of cores supported by the hardware. We then use the smallest

value of m for which an allocation exists and its corresponding

task mapping and allocation configuration for the system.

B. Details of the algorithm

We now discuss the key ideas of the four main procedures

used in our algorithm: clusterTasks(), binPackClusters(), al-

locResource(), and balance(). Due to space constraints, we

present their pseudo-code in [63].

The clusterTasks() procedure uses the KMeans algo-

rithm [36]—a widely used machine learning method for

clustering data points with similar features—to cluster tasks

that have similar sensitivity to cache and memory bandwidth

resources. Recall from Section V-A that the resource sensi-

tivity of each task τ j is defined as its slowdown vector ~sv j,

whose elements are the slowdown values of τ j under different

valid cache and BW resource configurations. Formally, the

procedure aims to divide the set of tasks τ into m clusters,

such that the pairwise deviation of tasks in the same cluster

is minimized:

arg
C

min

m
∑

k=1

1

2|Ck|

∑

τi,τ j∈Ck

||~svi− ~sv j||
2 (2)

where |Ck| is the number of tasks in the cluster Ck and C is

the set of clusters.

The clusterTasks() procedure has three steps: (1) initializa-

tion, which calculates each task’s slowdown vector and creates

an initial set of m clusters; (2) assignment, which assigns each

task to its closest cluster whose mean has the least square

distance to the task; and (3) update, which calculates the new

mean of each cluster as the new centroid of the cluster. The

algorithm repeats the assignment step and the update step until

all clusters’ assigned tasks are no longer changed or until

maxIterKM iterations have reached.

Observe that, since the clusterTasks() procedure does not

consider load balancing during its clustering, the reference

utilizations of the resulting task clusters may vary substan-

tially. Therefore, if we map each cluster directly to a core, the

cores corresponding to clusters with high reference utilizations

will likely be overloaded and become unschedulable, causing

the entire system to become unschedulable. To avoid this

issue, we employ the binPackCluster() procedure to balance

the workload assigned to each core.

The binPackCluster() procedure packs tasks of clusters

into m cores, such that each core’s reference utilization (i.e.,

the total reference utilizations of all tasks on the core) is

similar. The procedure first computes the average reference

utilization meanRefU of m clusters (i.e., the total reference

utilization of all tasks divided by m). Then it uses our modified

first-fit bin-packing algorithm to pack tasks to cores: for each

task, it attempts to pack the task into cores, going from core

0 to core m−1. It packs a task to a core if the core’s current

reference utilization is smaller than the average reference uti-

lization meanRefU and the core’s current reference utilization

plus the task’s reference utilization is no larger than 1. The

procedure packs a task to core 0 if it cannot find any core that

satisfies the above condition.

The allocResource() procedure allocates cache and BW

resources to cores, such that the system is schedulable while

minimizing cache and BW resources. We define the optimal

resource utility of a core ci when the system has Nidle
cp unused

cache partitions and Nidle
bw unused bandwidth partitions as the

maximum resource utility of core ci when it is given cp extra

cache partitions and bw extra bandwidth partitions, for all cp≤
Nidle

cp and bw≤ Nidle
bw . That is,

(3)
optResourceUi(N

idle
cp ,Nidle

bw )

= max
Nmin

cp ≤cp≤Nidle
cp , Nmin

bw
≤bw≤Nidle

bw

resourceUi(cp,bw)

The allocResource() procedure has three steps: The ini-

tialization step allocates the minimum number of cache and

BW partitions to each core. Next, the resource allocation step

allocates cp cache partitions and bw bandwidth partitions to

the core c that has the maximum optimal resource utility with

Nidle
cp cache partitions and Nidle

bw bandwidth partitions available.

In other words, it follows Eq. (4) to allocate some or all

remaining partitions to the core that has the maximum optimal

resource utility:
arg

cp,bw,c
max
ci∈C

optResourceUi(N
idle
cp ,Nidle

bw ) (4)

where C is the set of cores, and cp and bw are the number

of cache partitions and BW partitions, respectively, to be

allocated to the core c with the currently remaining Nidle
cp

idle cache partitions and Nidle
bw idle BW partitions. Finally, the

update step updates the remaining amount of cache and BW

resources and the utilization of the core c. The entire procedure

repeats until all cores become schedulable or there is no benefit

in reducing the utilization of unschedulable cores.

The balance() procedure migrates tasks from unschedu-

lable cores to schedulable cores to balance the utilizations

across cores, to make it easier to schedule the system. It

takes as input m cores whose tasks and number of cache

and memory bandwidth partitions have been determined. The

procedure first sorts tasks on unschedulable cores in increasing

order of tasks’ assigned slowdowns (recall that the assigned

slowdown of a task is its assigned utilization divided by

its reference utilization). For each unschedulable core, the

procedure migrates each sorted task to the core that has

the smallest assigned utilization after the migration, until

the unschedulable core becomes schedulable. The procedure

terminates after all unschedulable cores in the input become

schedulable. Note that the schedulable cores in the input

may become unschedulable after the migration, in which case

the heuristic algorithm will call allocResource() to re-allocate

resources to cores (c.f. Algorithm 1).

Complexity. We first discuss the complexity of the sub-

procedures. The clusterTasks() procedure enumerates all clus-

ters for all tasks for maxIterKM iterations; hence, it takes



O(N ·m ·maxIterKM) time. The binPackCluster() procedure

iterates over all tasks in each cluster (i.e., N tasks in total) for

each core, which takes O(N ·m) time. The allocResource()

procedure takes O(Ncp · Nbw) to calculate Eq 3 for each

core and iterates for maximum Ncp ·Nbw times, thus it takes

O(m ·Ncp
2 ·Nbw

2) time. The balance() procedure sorts at most

N tasks and iterates at most N tasks for at most m cores, so

it takes O(N · logN)+O(N ·m) time.

We next discuss the complexity of the entire heuristic algo-

rithm by analyzing Algorithm 1. In the loop of the balancing

operation (Line 13 to Line 16), the algorithm invokes the

balance() and allocResource() procedures for at most 100

times, because imbalance’s value decreases by at least 0.01

for each loop and the algorithm stops the loop if imbalance’s

value does not decrease. In each iteration (Line 3 to Line 20),

the heuristic algorithm invokes the binPackCluster() and al-

locResource() procedures once, and it invokes the loop of

the balancing operation once. The heuristic algorithm invokes

the iteration for at most maxIterPerm times (Line 20). The

algorithm’s complexity is determined by the longest path in the

algorithm: O(N ·m ·maxIterKM)+O(maxIterPerm ·max{N ·
m,N · logN,m ·Ncp

2 ·Nbw
2}).

VI. NUMERICAL PERFORMANCE EVALUATION

To evaluate the effectiveness and efficiency of our heuristic

resource allocation algorithm, we conducted an extensive set

of experiments using randomly generated real-time workloads.

We had three main objectives: (i) to evaluate the performance

of our algorithm in terms of schedulability; (ii) to investigate

the impact of platform configurations and task parameters

on the schedulability performance; and (iii) to evaluate the

efficiency of our algorithm. For comparison, we performed

the same set of experiments for three other solutions: an MIP-

based optimal algorithm [63]; a baseline algorithm that com-

bines existing bin-packing heuristics with evenly distributing

cache and BW resources to cores; and a variant of MC2, a

state-of-the-art resource allocation algorithm proposed in [17].

A. Experimental setup

Workload. Each workload contained a number of randomly

generated periodic tasksets. The tasks’ reference utilizations

followed one of the three uniform distributions, whose uti-

lizations were distributed uniformly over [0.01,0.1] (light),

[0.1,0.4] (medium), and [0.4,0.9] (heavy). The tasks’ work-

loads were selected randomly from the PARSEC bench-

marks [11]. A task’s WCET values under different cache

and BW configurations were assigned to be the same as the

WCET values of the corresponding benchmark, which were

obtained by profiling using our experimental prototype on a

real machine. A task’s period was assigned to be the ratio of

its reference WCET to its reference utilization.

We profiled the WCETs of different PARSEC benchmarks

with the simlarge input type under different resource config-

urations using CaM prototype on the machine we used for

our empirical evaluation (c.f. Section III). For each PARSEC

benchmark with each type of input, we dedicated one core

for the benchmark, configured the core with a valid cache and

BW configuration, and measured the WCET of the benchmark

for 25 runs. The valid number of cache partitions was ranged

from 2 to 20, with a step of 1; the valid number of BW

partitions was ranged from 1 to 20, with a step of 1. The

set of valid resource configurations is the cartesian product of

the valid number of cache partitions and the valid number of

BW partitions. For each PARSEC benchmark with each type

of input, we measured its WCETs under 19×20 = 380 valid

resource configurations. The obtained WCETs were used for

the tasks, as explained above.

Platform configurations. We analyzed the above generated

workloads for two platform configurations, which are based

on the Intel Xeon 2618v3 (Platform A) and Intel Xeon D-

1518 (Platform B) processors we have available: Platform A

has 4 cores and 20 cache partitions; Platform B has 4 cores

and 12 cache partitions. The number of BW partitions is the

same as the number of cache partitions on each platform.

Baseline algorithm. The baseline algorithm evenly distributes

cache and BW resources to cores. Each core has Ncp/M cache

partitions and Nbw/M bandwidth partitions, where Ncp is the

total number of cache partitions, Nbw is the total number

of BW partitions, and M is the number of cores on the

platform. The WCET of a task is the measured WCET of the

corresponding benchmark under Ncp/M cache partitions and

Nbw/M bandwidth partitions. The algorithm uses bin-packing

algorithms to pack tasks into cores. If the total assigned

utilization of tasks on each core is no larger than 1, the system

is deemed schedulable; otherwise, it is deemed unschedulable.

We considered three bin-packing approaches: first-fit, best-fit,

and worst-fit. For each task set, we ran all three approaches

and selected the best one as the result (i.e., if the task set was

schedulable by at least one of the approaches, we considered

it as schedulable by the baseline algorithm).

MC2 algorithm. As we are not aware of any prior work that

solves the resource allocation of cache and BW resources con-

currently, we selected the MC2 algorithm [17] for comparison

because it is the closest state-of-the-art algorithm to ours. As

MC2 considers cache and memory bank allocation, it cannot

be directly applied and thus we modified it for our setting as

follows: (1) we pre-allocated tasks to cores by using the same

bin-packing algorithm used in [17]; (2) we evenly allocated

the BW partitions to cores, just as the original MC2 algorithm

does for memory bank resources; and (3) we used the same

MILP in [17] to determine the cache allocations for tasks. As

mixed-criticality is out of scope of this work, we considered

only level-B criticality in MC2 and used partitioned EDF for

task scheduling. We refer to this modified algorithm as MC2.

Variances of our heuristic algorithm. The heuristic al-

gorithm we propose consists of two phases: clustering and

resource allocation. To evaluate the impact of each phase on

the overall performance of the algorithm, we considered two

variances of our algorithm: (1) Heuristic/CL algorithm, which

skips the clustering phase; and (2) Heuristic/RA algorithm,

which skips the resource allocation phase.

Analysis. We analyzed the same set of tasksets with each of



the algorithms considered above. For our heuristic algorithm,

we considered three settings of (maxIterKM,maxIterPerm),
including (100,24), (50,12), and (200,48). As the perfor-

mance results are consistent across these settings, we present

only the results for (100,24) due to space constraints.

Our analyses were performed on an Intel Xeon E5-2620 v3

processor, which has 24 cores (with hyper threading enabled)

operating at 2.40GHz. We set the analysis timeout value as 8

hours4. We refer to a taskset for which an analysis timed out

as an incomputable taskset for the analysis.

B. Schedulability performance

We generated tasksets with taskset utilization ranging from

1 to 4, with a step of 0.1. For each taskset utilization, we

generated 50 independent tasksets (i.e., 1550 tasksets in total),

with tasks’ utilizations uniformly distributed in [0.1,0.4]. We

analyzed the tasksets for Platform A using all the algorithms.

Relative performance of the different algorithms. Fig. 3

shows the fraction of schedulable tasksets out of 1550 tasksets

under each algorithm. The number of schedulable tasksets

under Optimal, Heuristic, MC2, and Baseline algorithms are

1247, 1146, 576 and 551, respectively. The results show

that the fraction of schedulable tasksets under our heuristic

algorithm was very close to that of the optimal algorithm:

only 8.10% of the tasksets (i.e., 1247 − 1146 = 101 out

of 1247) were deemed schedulable by the optimal solution

but deemed unschedulable under our algorithm. Further, our

algorithm significantly outperformed both baseline and MC2

algorithms: it was able to schedule about twice many tasksets

(1146/551 = 2.08× and 1146/576 = 1.99×) compared to the

baseline and MC2 algorithms, respectively. We also observe

that all tasksets that were schedulable under the baseline and

MC2 algorithms were also schedulable under our heuristic

algorithm in our experiments.

Impact of the clustering and resource allocation phases.

The impact of the clustering and resource allocation phases on

our heuristic algorithm can be observed based on the relative

schedulability performance of the heuristic algorithm and its

two variances, Heuristic/CL and Heuristic/RA, respectively

(see also Fig. 3). The results show that, while Heuristic

could schedule 1146 tasksets, Heuristic/CL and Heuristic/RA

could only schedule 1037 and 463 tasksets, respectively. This

suggests that (1) both phases are critical to the performance

of our heuristic algorithm, and that (2) the resource allocation

phase has a more positive impact on the overall performance

of our heuristic algorithm than the clustering phase does, since

omitting the resource allocation phase (i.e., Heuristic/RA)

leads to substantially fewer schedulable tasksets.

C. Impact of platform configurations and task parameters

Impact of platform configurations. We investigated the im-

pact of the platform configurations on the fraction of schedu-

lable tasksets for all four algorithms. For this, we repeated the

above experiment on another platform (i.e., Platform B) and

reported the results in Fig. 5.

4We thought 8 hours (i.e., a typical work day) is sufficiently large to deem
an algorithm that does not complete within the timeout impractical.

We observe that, again, our heuristic algorithm consis-

tently performed very close to the optimal solution on both

platforms. On Platform B, the optimal algorithm was able

to schedule 673 tasks, while our heuristic algorithm could

schedule 638 tasksets (i.e., only 1−638/673 = 5.20% reduc-

tion). Our heuristic algorithm also substantially outperformed

the baseline and MC2 algorithms: it could schedule 3.39×
(= 638/188) and 2.24× (= 638/285) more tasksets than the

baseline algorithm and the MC2 algorithm did, respectively.

Impact of task parameters. We investigated the impact of the

task parameters on the fraction of schedulable tasksets for all

four algorithms. We repeated the experiment in Section VI-B

using tasksets with uniform-heavy and uniform-light utiliza-

tion distributions. The results are shown in Fig. 4.

We observe that our heuristic algorithm continued to per-

form close optimal across different distributions of tasks’ uti-

lizations. For the tasksets with uniform-heavy utilization dis-

tribution, the optimal algorithm had 1081 schedulable tasksets,

while our heuristic algorithm had 1057 schedulable tasksets,

which is only 1−1057/1081 = 2.22% fewer.

TABLE 1: Number of analyzed tasksets (out of 1550 tasksets)

for uniform-light tasksets on Platform A.

Heuristic Optimal Baseline MC2

Schedulable 1154 713 537 513

Unschedulable 396 56 1013 1037

Incomputable 0 781 0 0

We further observe that for the tasksets with uniform-

light utilization distribution, the optimal algorithm started to

time out after 8-hour computation for a taskset when the

taskset utilization was larger than 1.9, while our heuristic

algorithm never timed out. Table 1 summarizes the number of

schedulable tasksets, unschedulable tasksets and incomputable

tasksets for all four algorithms for the uniform-light tasksets on

the Platform A. Note that, even in the unlikely situation where

all incomputable tasksets had turned out to be schedulable for

the optimal algorithm, our heuristic algorithm still performed

close to optimal: at most 21.94% of the tasksets, i.e., (713 +

781 - 1154) out of 1550, would be deemed schedulable by the

optimal solution but unschedulable under our algorithm. It can

also be observed that our algorithm outperformed the baseline

algorithm and the MC2 algorithm by a significant factor: it was

able to schedule more than twice as many tasksets compared

to the baseline and MC2 algorithms (1154/537 = 2.15× and

1154/513 = 2.25×, respectively). These results demonstrate

that not only is our heuristic algorithm substantially more

efficient than the optimal solution but it is also highly effective

in allocating resources.

D. Running time efficiency

We measured the running time of four algorithms in the

evaluation in Fig. 3, under which the optimal algorithm never

times out.5 The result is shown in Fig. 7. We observed that

our algorithm is highly efficient: its maximum average running

time was 0.90 minute. On the contrary, the optimal algorithm’s

running time increased exponentially as the taskset’s utiliza-

5This running-time measurement favors the optimal algorithm.
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Fig. 4: Impact of task utilization distributions.
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Fig. 5: Performance on Platform B.
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tion increased, and its maximum average running time was

35.75 minutes, i.e., 35.75/0.90 = 39.72× slower than ours.

VII. EXPERIMENTAL PERFORMANCE EVALUATION

To demonstrate the utility of CaM and to validate its perfor-

mance experimentally, we ran a set of PARSEC benchmarks

with real-time parameters in our experimental platform (de-

scribed in Section III). We used the task mapping and alloca-

tion configuration computed by our heuristic allocation algo-

rithm (Heuristic). For comparison, we also ran the same taskset

with the task mapping and allocation configurations computed

by two other settings: the optimal algorithm (Optimal) on our

prototype; and and a baseline (vanilla) that uses first-fit bin-

packing algorithm to pack tasks onto cores in LITMUSRT

(without cache or memory bandwidth management support).

Workload. We first converted the PARSEC benchmarks into

LITMUSRT -compatible real-time tasks. We then randomly

generated real-time tasks whose utilizations are uniformly

distributed in [0.1, 0.4] until we obtained a taskset with

reference utilization of 2.0. We also used one cache-bomb

(which was used in Section III) as a background task.

Experiment. Under the heuristic and optimal settings, we

reserved one core, two cache partitions and one BW partition

for the background task, and we computed the system configu-

ration for the real-time tasks with the rest of resources. Under

the vanilla setting, we reserved one core for the background

task but we did not control cache or bandwidth resources. We

ran the taskset for 2 minutes for each setting and used the

feather-trace [3] to collect the response time of real-time jobs.

Results. Fig. 7 shows the Cumulative Distribution Function

(CDF) plot of the normalized response time of all real-time

tasks’ jobs under the three different settings. The normalized

response time of a job is the ratio of its observed response

time to its relative deadline. In Fig. 7, the vertical blue line

(marked as Deadline) shows the time when the normalized

response time is 1. The data points that fall to the right of this

line correspond to the jobs that missed their deadlines.

We observe that all jobs met their deadlines under the

heuristic setting. In addition, the response times of jobs when

using the heuristic algorithm were near to the values obtained

under the optimal setting. In contrast, not all jobs met their

deadlines under the vanilla setting, and some jobs experienced

unreasonably long response time (multiple times the deadline).

The results validate that CaM can effectively manage cache

and memory shared resources to reduce interference and

improve the timing performance on real multicore platforms.

VIII. CONCLUSION

We have presented a resource allocation strategy for real-time

multicore systems that considers CPU resource demand of

a task and the allocation of cache and memory bandwidth

resources in a holistic manner. Our strategy integrates existing

cache partitioning and memory bandwidth regulation mecha-

nisms to enable the co-allocation of both resources. Through

insights from our empirical evaluation of real workloads on

real hardware, we designed an effective and efficient algo-

rithm that exploits the interdependence relationship between

the cache and BW resources and the tasks’ WCETs in its

allocation. We have shown through extensive evaluations that

our strategy can effectively reduce interference, and that it

offers near optimal schedulability performance while being

highly efficient.
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