

Edinburgh Research Explorer

Enforcing Deadlines for Skeleton-based Parallel Programming
Citation for published version:
Metzger, P, Cole, M, Fensch, C, Aldinucci, M & Bini, E 2020, Enforcing Deadlines for Skeleton-based
Parallel Programming. in 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). Institute of Electrical and Electronics Engineers (IEEE), pp. 188-199, 26th IEEE Real-Time and
Embedded Technology and Applications Symposium, Sydney, New South Wales, Australia, 21/04/20.
https://doi.org/10.1109/RTAS48715.2020.000-7

Digital Object Identifier (DOI):
10.1109/RTAS48715.2020.000-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

Publisher Rights Statement:
©2020 IEEE Copyright held by the IEEE. This is the author’s copy of P. Metzger, M. Cole, C. Fensch, M.
Aldinucci and E. Bini, ”Enforcing Deadlines for Skeleton-based Parallel Programming,” 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), Sydney, Australia, 2020, pp.188-199, doi:
10.1109/RTAS48715.2020.000-7.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 06. May. 2024

https://doi.org/10.1109/RTAS48715.2020.000-7
https://doi.org/10.1109/RTAS48715.2020.000-7
https://www.research.ed.ac.uk/en/publications/5ec185bb-28f2-4886-915f-8ac4acb08b9d

Enforcing Deadlines for
Skeleton-based Parallel Programming
Paul Metzger∗, Murray Cole∗, Christian Fensch∗, Marco Aldinucci†, Enrico Bini†

∗School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
†Department of Computer Science, University of Torino, 10149 Torino, Italy

paul.metzger@ed.ac.uk, m.cole@inf.ed.ac.uk, c.fensch@ed.ac.uk, marco.aldinucci@unito.it, enrico.bini@unito.it

Abstract—High throughput applications with real-time guar-
antees are increasingly relevant. For these applications, par-
allelism must be exposed to meet deadlines. Directed Acyclic
Graphs (DAGs) are a popular and very general application
model that can capture any possible interaction among threads.
However, we argue that by constraining the application structure
to a set of composable “skeletons”, at the price of losing some
generality w.r.t. DAGs, the following advantages are gained: (i)
a finer model of the application enables tighter analysis, (ii)
specialised scheduling policies are applicable, (iii) programming
is simplified, (iv) specialised implementation techniques can be
exploited transparently, and (v) the program can be automatically
tuned to minimise resource usage while still meeting its hard
deadlines.

As a first step towards a set of real-time skeletons we conduct
a case study with the job farm skeleton and the hard real-
time XMOS xCore-200 microcontroller. We present an analytical
framework for job farms that reduces the number of required
cores by scheduling jobs in batches, while ensuring that deadlines
are still met. Our experimental results demonstrate that batching
reduces the minimum sustainable period by up to 22%, leading
to a reduced number of required cores. The framework chooses
the best parameters in 83% of cases and never selects parameters
that cause deadline misses. Finally, we show that the overheads
introduced by the skeleton abstraction layer are negligible.

I. INTRODUCTION

High throughput applications with timing constraints, such
as autonomous driving 1, and network applications 2 3 , drive
the development of parallel real-time systems [1], [2], [3].
To program these, programmers have to resort to low-level
programming language models such as message passing and
threads [4], [5], [6], [7], [8], These are considered error
prone, non-portable and inefficient in terms of programmer
productivity [9], [10], [11], [12]. As previous work points
out, new high-level programming language models for real-
time systems are therefore needed [13]. Directed Acyclic
Graphs (DAGs) are a very general application model that
can capture any possible interaction among threads [14]. In
contrast, we propose to constrain the application structure to

1https://www.mobileye.com/our-technology/evolution-eyeq-chip/
2https://www.kalrayinc.com/download/wp kalray-nvme-of-target-

controller-solutions/
3https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-

aggregation-services-routers/solution overview c22-448936.html

a set of composable skeletons to improve programmability,
resource usage and timing analysis at the price of often
expendable generality w.r.t. DAGs. Individual skeletons may
cover seperate portions of an application. Therefore, we en-
vision a framework of different real-time skeletons that can
be composed to implement full applications as is the case for
mainstream parallel systems [15], [16], [17], [18].

As a first step towards such a framework we conduct a
case study with the job farm skeleton 4 that is applicable to a
wide range of applications [17], [19], [20]. Job farms lend
themselves to programs that process streams of input data
such as signal processing, graphics and networking applica-
tions [21], [22], [23], [24]. Thies et al. report 51 applications
that use farms with a median of eight farm instances per ap-
plication [25]. These applications include a ”Ground Moving
Target Indicator”, ”2D Inverse Discrete Cosin Transform”, and
”Fast Fourier Transform”.

Structural information encoded in skeletons can be used to
automatically tune applications. As an example of this, we
introduce job batching for real-time systems. Batching reduces
the overheads that come with parallelism and so decreases
the required core counts. Alternatively, it allows the use of
less powerful and so cheaper hardware, or adding additional
workload without increasing resources. We show that batching
is viable in the context of real-time systems and that it can
be implemented transparently to developers with the farm
skeleton. To further ease programming, we devise an analytical
framework for the computation of farm internal parameters,
which would have to be carefully chosen by hand otherwise.
Using this framework, we implement Peso 5, a deterministic
and self-tuning farm skeleton library for the hard real-time
XMOS xCore-200 microcontroller.

Interference in the memory system poses a challenge for
predictability on conventional multi-core systems [26], [27]. In
contrast, our evaluation platform by XMOS, its compiler tool
chain, and WCET predictor have been co-designed to remove
this issue [28] (see Sec. VII-B). Consequently, our model and
techniques also benefit from this property.

4We remark that this skeleton is called “task farm” in the parallel com-
puting community. However, to not overload the term “task” with conflicting
interpretations, we use the term job farm, which, we believe, better represents
our intended interpretation in real-time systems.

5https://github.com/paulmetzger/Peso

© 2020 IEEE Copyright held by the IEEE. This is the author’s copy of
P. Metzger, M. Cole, C. Fensch, M. Aldinucci and E. Bini, ”Enforcing
Deadlines for Skeleton-based Parallel Programming,” 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), Sydney,
Australia, 2020, pp. 188-199, doi: 10.1109/RTAS48715.2020.000-7.

https://ieeexplore.ieee.org/abstract/document/9113093

Pj Wj Cj
Jo
b
s

Time

Pj+1 Wj+1 Cj+1
Pj+2 Wj+2 Cj+2

T T

Fig. 1: Illustration of computations that can be implemented
with job farms. Such computations have three generic phases:
a producer (P), a worker (W), and a consumer phase (C).

We show experimentally that the computed parameter
choices are the same or are very close to the best parameter
choices that we determine through brute-force searches, and
never cause deadline misses. Batching reduces the minimum
task period that can be sustained by a given application
and core count by 22.38%. Therefore, it can improve the
throughput by the same percentage or reduce the core count.
Finally, we show that the overheads introduced by Peso over
hand-coded solutions are negligible.

The remainder of this paper is structured as follows: Sec. II
introduces skeletons and the job farm skeleton. Sec. III moti-
vates and describes job batching. Sec. IV describes our system
model. Sec. V presents our analytical framework for farm
parameters. Sec. VI introduces our Peso library. Sections VII
and VIII present the experimental setup and results. Finally,
Sections IX and X discuss related work and conclude.

II. BACKGROUND

A. Skeletons

Algorithmic Skeletons are high-level programming con-
structs for typical parallel computations [15]. They implement
generic code concerned with parallelism. Developers pass se-
quential application specific code to them that is then executed
in parallel. A range of skeletons have been proposed for other
fields. Well known examples are: map, and reduce [16] [29].
We focus on the job farm skeleton, as it is widely applicable
to real-time systems (see Sec. I).

Benefits of skeletons are more efficient implementations
and increased programmer productivity. Structural information
encoded in skeletons can be used for implementations with
lower execution time, lower energy consumption or higher
throughput [30], [31], [32]. Skeletons improve programmer
productivity by off-loading the error prone task of writing
and tuning low-level parallel code to library or compiler
developers [9]. Skeleton libraries have a small overhead (e.g.
due to extra function calls).

B. Job Farms

Farms are composed of a set of workers that run in parallel
and apply a function to a stream of inputs. Inputs are generated
by a producer and the workers’ results are sent to a consumer.
Fig. 1 illustrates applications that lend themselves to farms
with a set of jobs, released every period T . Each job j is
composed of a producer phase Pj that generates input data,

1 CONFIGURE_FARM(farm, //Farm name
2 producer_func, worker_func, consumer_func)
3
4 void main() {
5 start_farm();
6 }

Fig. 2: Illustration of a task farm API. The functions ending
with _func are provided by application developers. Example
implementations of these functions are shown in Fig. 7.

With batching Without batching
0

200
400
600
800

1000
1200
1400

Na
no

se
co

nd
s/

Jo
b

Summation
Coordination
Batching

Fig. 3: Break down of the per job execution time in a
farm worker with and without batching for a simple example
application that sums up 30 integers per job (less is better).
10 jobs are aggregated to a batch on the left-hand side.

a worker phase Wj that processes the data, and a consumer
phase Cj that consumes the results.

Here the phases Pj can be mapped to the same cores as
their execution does not overlap. The same is true for the Cj

phases. However, Wj and Wj+1 cannot be mapped to the same
core as their execution overlaps.

Fig. 2 illustrates a task farm API. The functions that are
passed to CONFIGURE_FARM implement Pj , Wj , and Cj

of Fig. 1. Synchronisation and farm internal communication
between producer, workers, and consumer as well as the
parallel execution of workers is implemented by a skeleton
library or compiler. The sole task of application developers
is to provide the sequential worker, producer, and consumer
functions. Internal communication is implemented with the
so-called dispatcher and aggregator. They are hidden from
application developers behind the farm API. The dispatcher
schedules jobs on workers and the aggregator informs the
consumer when new worker generated results are available
(see Sec. VI-B for their implementation in our Peso library).

Non real-time farms have demand-driven implementations
like work stealing which hinder WCET calculations. In con-
trast, our farm implementation is timing predictable.

III. THE CASE FOR JOB BATCHING & SELF-ADAPTATION

This section motivates batching with a simple example,
and argues for a self-adaptive implementation to further ease
programming.

A. Reduced Core Count via Job Batching

Passing a job through a job farm incurs bookkeeping over-
heads as some of the execution time is spent by coordination

No farm 2 3 4 5 6
Number of Workers

No batch.

2

3

4

5

6

7

8

9

10
B

a
tc

h
 S

iz
e

1450 870 584 458 452 452

1515 758 507 409 398 400

1447 724 484 392 375 375

1408 690 461 375 357 358

1384 684 457 372 352 353

1369 680 454 370 349 349

678 452 369 347

675 451 368

450

400 600 800 1000 1200 1400
Min. Sustainable Period (ns)

-- DEADLINE MISSES --

Fig. 4: Measured minimum supported task periods with in-
creasing batch size and worker count on our evaluation plat-
form (see Section VII-A). Each job computes the sum of 30
integers and the relative deadlines are 15µs.

between producer, worker, and consumer threads. In the case
of our evaluation platform and library, this means passing a
pointer to the in- and output data of a job from the producer
to a worker, and from a worker to the consumer. Note, the
costs of this do not depend on the in- and output size of a
job. These coordination costs can be substantial for tasks with
short running rapidly arriving jobs. We propose job batching
to reduce these overheads.

In a simple farm (with no batching), jobs are executed im-
mediately when their input data and the necessary computing
resources are available. Job batching exploits the slack time
to the deadline to reduce communication overheads. With job
batching, jobs are halted and aggregated to be then dispatched
and processed in batches. This way communication costs are
spent only per batch and not per job. Reduced overheads in
turn allow tasks to run on cheaper hardware with less cores.

As a preliminary investigation, we break down the execution
time that each job of a simple example task spends in a worker
with and without batching. Fig. 3 shows this break-down for a
sample application. Job batching reduces the communication
costs by 10× here and introduces a small overhead that
comes from additional instructions that implement batching.
The number of instructions executed during each summation
is slightly higher when batching is used as the instructions
generated by the compiler are slightly different.

Multiple instances of this simple computation need to be
run in parallel if new input data arrives rapidly and a single
core cannot meet the target period (see next section). In this
example job batching allows for 12% lower task periods than
without batching. Section VIII-B presents a quantitative study
of the benefits of batching.

B. Improved Ease of Programming Through Self-Adaptation

The number of jobs in batches and worker counts have
to be carefully chosen to avoid deadline misses. Choosing
these parameters is non-trivial for developers as the batch size

and worker count parameter space is difficult to navigate. For
example, Fig. 4 shows the minimum supported periods for all
possible parameter combinations with the same simple task
used in Fig. 3 on our evaluation platform. As can be seen if
this task has a period of 400ns then four workers and batch
sizes larger than two are best. Given a task and hardware
platform it is not obvious what the best parameter choice is if
data like the one in this heatmap is not available. Without our
analytical framework, this data can only be attained through a
time consuming and so often impractical exhaustive search.

IV. SYSTEM MODEL

The relation between the number of cores, batch size, and
characteristics of the farm workers is established in this sec-
tion. The presented system model allows the implementation
of a farm skeleton to automatically pick the minimal number
of cores required to meet the application’s period and deadline.

A. Jobs, Job Releases, and Deadlines

The workload to be executed by the job farm is modelled
by a periodic task that releases a sequence of jobs. The k-th
job is released at time

rk = (k − 1)T, k = 1, 2, . . .

with T being the period of job releases. When a job is released,
it processes its input data and generates the corresponding
output data. All jobs have a deadline D relative to the release
instant. This means that the k-th job cannot finish later than

dk = rk +D = (k − 1)T +D.

We do not set any constraint on the deadline (neither implicit
nor constrained deadline model). Hence, we assume to have
an arbitrary deadline.

The response time Rk is the time taken by the k-th job to
complete starting from its release at rk. Hence, no job misses
any deadline if

∀k = 1, 2, . . . , rk +Rk ≤ dk

which is equivalent to

∀k = 1, 2, . . . Rk ≤ D. (1)

The computation of the response time Rk depends on several
scheduling decisions and is investigated in Sec. V.

B. Cores and Batch Size

To minimise the communication costs incurred through
parallelisation, jobs are grouped in batches of size b. An
entire batch of b jobs is then executed on the same core. The
number of available cores that process batches is denoted by
m. Usually the term “worker” is used to denote a thread that
executes the worker function of the jobs that are assigned to
it, while a “core” is a physical piece of hardware capable of
executing instructions. However, from a scheduling point of
view the distinction between these two notions vanishes since a
static 1-to-1 assignment from workers to cores is used. Hence,
we use the terms worker cores and workers interchangeably.

W1

W2

Wm
f(xn-mb)

f(xn-2b)

f(xn-b)

xn-(m-2)b

xn-2mb

xn-(m-1)b

CA
f(xn)

DP
xn-(2m-1)b

Fig. 5: Illustration of a farm implementation. The producer (P)
generates jobs that are scheduled in batches of size b over m
workers (W) by a dispatcher (D). An aggregator (A) receives
results and sends them to the consumer (C). Grey ellipses
indicate that producer and dispatcher, and aggregator and
consumer share a core each. Workers execute on their private
cores. Light and dark green boxes are in- and output data.
Drawn through and perforated arrows indicate communication
channels and round robin scheduling.

For the analysis we assume that code executing on one core
cannot influence the WCET of code on another. We discuss
when this holds for our evaluation platform and how we allow
for situations in which it does not hold in Sec. VII-C.

C. Execution Time

Introducing job batching requires a deeper understanding
of the job execution time, which goes beyond a single worst-
case execution time (WCET). For this reason, we split the job
execution time into time intervals, which map to the execution
phases of Fig. 5. Most terms stand for time spent in a worker
and are denoted with CW....

• CD is the execution time spent in the dispatcher (see
Sections II-B and VI-B).

• Ccom is the latency of farm internal communication that is
required for the coordination between dispatcher, work-
ers, and aggregator. Therefore, this is application indepen-
dent. Ccom does not include execution time that is required
to tear down a communication channel on the sender
side and set up a channel on the receiver side because
these instructions do not contribute to the latency. More
specifically, this is the communication delay between
dispatcher and workers, and workers and aggregator (see
Sections II-B and VI-B). On our evaluation system this
is the delay for communication via a crossbar.

• CWc is the execution time spent by a worker in farm
internal communication. Unlike Ccom, it includes the code
necessary to set up and tear down the communication
channels. This corresponds to the communication time in
Fig. 3.

• CWsetup is the execution time of code that sets up the
execution of a batch and so is executed once per batch.
Hence, in the special case when b = 1 (no job batching)
this term is CWsetup = 0.

• CWonceJ is the execution time of code that implements
batching and so is executed once per job. For the same
reason as above, if b = 1 then CWonceJ = 0. The sum

of CWsetup and CWonceJ corresponds to the time spent in
batching in Fig. 3.

• CWuser is the execution time for the user provided worker
function. This function is executed once per job. This
corresponds to the time spent in the summation in Fig. 3.

• CA is execution time that is spent in the aggregator (see
Sections II-B and VI-B), once per batch.

• CC is the execution time to unbatch the results of a job.
This takes place before results are used by the consumer
and is necessary to hide batching from application devel-
opers. Since unbatching happens sequentially

CC ≤ T (2)

must hold. Otherwise, the unbatching phase is over-
loaded. As above for CWsetup, if b = 1 then CC = 0.

The concrete execution times that we used for our exper-
iments are listed in Table I. These execution times may be
summed up depending on whether they are executed once per
job or once per batch. To highlight these two portions of time,
we define the following quantities:
• CWonceB = CWc + CWsetup subsumes execution time that is

spent once per batch.
• CWfullJ = CWonceJ +CWuser subsumes execution time of code

that is executed once per job.
Finally, we also set
• CWfullB = CWonceB + CWfullJb, which is the execution time

required to process an entire batch.
• CO = CA + 2Ccom +CD, which are the overheads of code

that implements the parallel execution. Ccom is multiplied
by two to account for the communication between dis-
patcher and a worker, and a worker and the aggregator.
This is the only term that subsumes execution time spent
outside the workers.

From a farm’s perspective jobs arrive when the input data
associated with a job is ready to be processed. Therefore, we
do not introduce a term for any external input data preparation.

Two example schedules of the same sequence of jobs with
and without batching are illustrated in Fig. 6. As shown in
Fig. 6b, thanks to the savings of communication cost, one
worker core less is required if three consecutive jobs are
grouped in a batch, at the price of an increase of response time.
If a task’s deadline D allows for larger response times as in
Fig. 6b then batching reduces the number of cores required
for a task. Communication blocks correspond to Ccom (see
above). The next section is dedicated to the formalisation of
this qualitative argument.

V. OUR ANALYTICAL FRAMEWORK:
ANALYSIS OF BATCH SCHEDULING

This section presents an analytical framework that allows
farm skeleton implementations such as Peso to automatically
choose the number of worker cores and the batch size. Firstly,
we compute the minimum worker core count m as a function
of the batch size b and demonstrate that the required worker
core count m decreases with the batch size b. As the intuition

P

W1

W2

C

T T T T T

R1

W3

R1

R1

R1

R1

R1

(a) Execution without batching.

P

W1

W2

C

T T T T T

R1

R2

R3

Communication+ Job processing Results available Unbatching

(b) Execution with batching and a batch size of three.

Fig. 6: Illustration that shows that batching reduces the required worker core count at the expense of longer job response times
Rk. (a) and (b) illustrate the execution of a job farm with three and two workers (Wi), a producer (P), an aggregator (A), a
consumer (C), and with the same period in both subfigures. Time flows from left to right. (a) does not use batching, but (b)
does with a batch size of three. The farm in (b) needs less worker cores for the same task due to batching. The response times
are higher in (b) than in (a) because jobs have to wait for other jobs in the same batch. Some of the arrows in (b) that indicate
the arrival of a new job are not followed by communication because batches are only dispatched after enough jobs have been
accumulated. The index k of Rk in (b) indicates the relative position of a job in its batch.

suggests, we show that the job response times increase linearly
with the batch size b. Hence, the job deadline sets a natural
upper limit on the batch size b. The maximum feasible batch
size bmax is then the value that:

• maximises throughput if the core count is given, or
• minimises resource usage if the job period T is given.

A. Worker Core Count vs. Task Period

We establish here the relationship between the task period
T , which determines the required throughput, and the worker
core count m, which determines the available throughput.
Clearly, a shorter task period T needs more worker cores m
and vice versa.

The first step is to define the minimum sustainable period.

Definition 1. Given m worker cores and a batch size of b, we
define the minimum sustainable period Tmin(b,m) of a task
as the minimum period which does not cause overload and so
deadline misses.

Such a term is well defined, since for an arbitrarily small
period T the job farm will be overloaded at some point, while
it will never be overloaded for an arbitrarily large T .

As a first step, we compute the minimum period Tmin(b, 1)
that can be sustained if only a single worker is used. A batch
of b jobs is ready to be processed every b×T time units. The
time required by a worker to process such a batch is CWfullB.
Hence, with only one worker no overload occurs as long as

b× T ≥ CWfullB b = 2, 3, . . . (3)

which means that

Tmin(b, 1) =
CWfullB

b
, b = 2, 3, . . .

=
CWonceB + CWfullJb

b

=
CWc + CWsetup + (CWuser + CWonceJ)b

b
. (4)

Note that Equation (3) is only concerned with hypothetical
job farms with a single worker and so does not stand in
contradiction with Fig. 6, which uses multiple workers.

Following the same arguments that we used to derive (4),
if m worker cores are available (instead of only 1) a lower
period can be sustained. Therefore, we construct

Tmin(b,m) =
CWonceB + CWfullJb

bm
, b = 2, 3, . . . , (5)

by multiplying the denominator of (4) by m.
Tmin(1,m), which is the minimum sustainable period with-

out batching (b = 1) and with m worker cores cannot be
determined by setting b = 1 in (5). Tmin(b,m) in (5) accounts
for all batching overheads which are clearly not present if jobs
are not batched. Hence, we have

Tmin(1,m) =
CWc + CWuser

m
(6)

that is based on the same reasoning as (5) except that CWsetup

and CWonceJ are set to 0 and b is set to 1 because jobs are not
processed in batches.

To show that batching can reduce the minimum sustainable
period we compute the factor by which batching improves the
minimum sustainable period over an implementation without

batching. More specifically, we compute the ratio between
Tmin(b,m) of (5) and Tmin(1,m) of (6)

Tmin(b,m)

Tmin(1,m)
=

CWonceB

b + CWonceJ + CWuser

CWc + CWuser

=⇒ lim
b→∞

Tmin(b,m)

Tmin(1,m)
=
CWonceJ + CWuser

CWc + CWuser

=⇒ lim
b→∞

Tmin(b,m)

Tmin(1,m)

{
< 1, if CWc > CWonceJ

≥ 1, if CWc ≤ CWonceJ.

(7)

Equation (7) shows two things. Firstly, batching improves the
minimum sustainable period because CWonceB

b approaches zero
if b approaches infinity. Secondly, we can assert that batching
reduces the minimum sustainable period Tmin(b,m), if this
factor is lower than 1 i.e. if the time required for batching
CWonceJ is lower than the time required for communication CWc.

Finally, we address a different although related problem:
given an application period T , what is the minimum number
of worker cores m that can match the demanded workload? If
the following inequality holds strictly

T ≥ Tmin(b,m) (8)

the slack between T and Tmin(b,m) can be used to reduce the
number of cores. From (5) and (8) it follows that

T ≥ CWonceB + CWfullJb

mb

and
m ≥ CWonceB + CWfullJb

Tb
.

Since m must be an integer it must be

m ≥ mmin(b, T)=

⌈
CWonceB+CWfullJb

Tb

⌉
=

⌈
CWonceB

Tb
+
CWfullJ

T

⌉
. (9)

As can be seen in (9), the minimum number of required
worker cores mmin(b, T) decreases with the batch size b.
However, the batch size b cannot be chosen arbitrarily high
to minimise the number of worker cores as it has a natural
limit due to the task deadline D, as shown next.

B. Job Batch Size vs. Task Deadline

This section shows that the batch size cannot be chosen
arbitrarily high. This is the case because, as the size of batches
grows, the time needed for a job to pass through a job farm
grows as well, which eventually leads to deadline violations.

Fig. 6 illustrates how batching affects the response time.
As expected, the response time with batching (of Fig. 6b) is
higher than the response time without batching (of Fig. 6a).
Other factors that can increase response times are the same
in both figures. As illustrated in Fig. 6b the response time
increases with the batch size for multiple reasons:
• jobs are not immediately dispatched to workers but are

halted until the batches to which they belong are full,
• jobs have to wait until the other jobs in the same batch

are processed by a worker,
• jobs have to wait until other jobs are unbatched.

We start by computing the response time Rk(b) of the k-th
job, assuming a batch size b, which is

Rk(b)
k=1,...,b

= (b− k)T︸ ︷︷ ︸
Batch

aggregation

+ bCWfullJ︸ ︷︷ ︸
Batch

processing

+(k − 1)CC + CC︸ ︷︷ ︸
Unbatching

+CO. (10)

Job response times are composed of several components that
are discussed in detail below:
• (b− k)T is the time spent to batch b jobs. The first job

in a batch (with k = 1) experiences the longest delay
(b − 1)T , while the last one (with k = b) completes a
batch and experience no aggregation delay.

• bCWfullJ is the batch processing time. As discussed in depth
earlier, the completion of jobs is not communicated to the
dispatcher until all b jobs in the same batch are processed.
Therefore, all jobs in a batch experience a delay of bCWfullJ

which is the time required to process an entire batch.
• The time to unbatch the result of the k-th job is due to

(i) the waiting time for the earlier jobs in the same batch
CC(k − 1) to be unbatched, plus (ii) the time to unbatch
the k-th job itself which is CC. Hence, altogether the time
needed to unbatch the result of the k-th job is k CC, which
is the sum of two terms: time spent by the k-th job waiting
for earlier jobs to be unbatched, and the time needed to
unbatch the k-th job.

• The term CO represents time spent in farm internal com-
munication, dispatcher, and aggregator (see Sec. IV-C).

For clarity, some of the terms used in (10) are not explicitly
shown in Fig. 6b. The batch aggregation time in (10) is
the time between the arrival of a job and the subsequent
communication between the producer and worker in Fig. 6b.
The batch processing time corresponds to the light green “Job
processing” boxes, and the time required for unbatching is
directly shown in the figure. The term CO corresponds to the
yellow and green communication blocks.

Next, we determine the impact of the deadline constraint
of (1) on the batch size b. Since the task response time R is

R = max
k
{Rk} = max

k=1,...,b
{Rk} (11)

then the deadline constraint of (1) trivially becomes R ≤ D.
From (10), the job response time Rk can be written as:

Rk(b)
k=1,..,b

= (b− k)T + bCWfullJ + kCC + CO

= bT + bCWfullJ + CO − k(T − CC). (12)

From the constraint of (2), it follows that T − CC ≥ 0.
Unsurprisingly, (12) is maximal for k = 1 since the first job
in a batch has the longest response time. By setting k = 1
in (12), we find the response time R of the task that is

R = max
k=1,...,b

{Rk} = (b− 1)T + bCWfullJ + CO + CC. (13)

Finally, from the deadline constraint of

R ≤ D

we can find the constraint on the batch size b, that is

R = (b− 1)T + bCWfullJ + CO + CC ≤ D
= b(T + CWfullJ)− T + CO + CC ≤ D

which allows us to find the maximum batch size bmax(T,D)

bmax(T,D) =
⌊D + T − CO − CC

T + CWfullJ

⌋
. (14)

We observe that the upper bound for bmax(T,D) is

bmax(T,D) ≤
⌊D
T

⌋
+ 1

which states the natural fact that the number of jobs in a batch
cannot exceed the maximum number of pending jobs.

Based on Equation (14) we determine when a task benefits
from batching. Naturally, batching is beneficial if and only if

bmax(T,D) ≥ 2.

This means that batching is only applicable if it is possible to
aggregate two or more tasks. This equation is equivalent to

D + T − CO − CC

T + CWonceJ + CWuser

≥ 2.

CWuser ≤
D − T − CO − CC − 2CWonceJ

2
. (15)

Clearly, a necessary condition for batching is D > T since
jobs cannot be aggregated otherwise.

For example, by replacing the constants in Equation (15)
with values for our evaluation platform (see Table I) we get

CWuser ≤
D − T − 980 ns

2
.

In this case a task with period T = 1 us and deadline D = 5 us
benefits from batching as long as CWuser ≤ 1.51us.

Assuming that the maximum batch size bmax is used (there
is no reason to do otherwise), we can find the minimum core
count mmin(bmax(T,D), T). In fact, as apparent from (9), it is
always best to use the largest possible batch size. We find the
minimum core count by setting b = bmax(T,D) in (9):

mmin(bmax(T,D), T) =

⌈
CWonceB

T
⌊
D+T−CO−CC

T+CWfullJ

⌋ + CWfullJ

T

⌉
. (16)

The values of the terms of the right-hand sides of (14)
and (16) are either task properties or can be determined with
WCET analysis. These equations can thus be used to compute
the minimum number of worker cores and the maximum batch
size at compile time as demonstrated by our library.

VI. THE PESO LIBRARY

We present a macro-based farm library for real-time systems
that is statically scheduled to guarantee predictable WCETs.
Peso uses the equations presented in Sec. V. In this section,
we illustrate Peso’s farm API and discuss its implementation.

1 typedef struct per_job_data {
2 int per_job_input_vector[PER_JOB_INPUT_SIZE];
3 int result;
4 } per_job_data_t;
5 PREPARE_FARM(per_job_data_t, PERIOD_NS)
6
7 PRODUCER(producer_func, //Producer name
8 while (1) {
9 /*Wait for input data to be ready*/

10 submit_data();
11 })
12
13 WORKER_FUNCTION(worker_func, //Worker function name
14 data_t,
15 unsigned int result = 0;
16 for (int i = 0; i < PER_JOB_INPUT_SIZE; ++i) {
17 result += access_data()->
18 per_job_input_vector[i];
19 }
20 access_data()->result = result;)
21
22 CONSUMER(consumer_func, //Consumer name
23 data_t,
24 printf("Result:%d", receive_data()->result);)

Fig. 7: Illustration of Peso’s API. Each job computes the sum
of PER_JOB_INPUT_SIZE integers. Multiple summations
are executed in parallel but each one is performed sequentially.

A. API Concepts

Fig. 7 shows the implementation of an example applica-
tion with Peso. The C macros PRODUCER, CONSUMER, and
WORKER_FUNCTION are provided by the library. The first
parameters are unique names that are required to instantiate
the farm (see below) and the second is the implementation.

Peso provides functions for data accesses that hide the inter-
nal storage scheme. The producer uses submit_data() in
line 10 to send input data to the job farm. Either the producer
prepares the input data in per_job_input_vector or an
external process that then signals the producer when the data
is ready. The worker function accesses input data and stores
results via access_data() in lines 17 and 20. Finally, the
consumer receives results via receive_data(). Lines 1
to 4 specify the in- and output data of each job. Note that
an instance of per_job_data is accessed by only a single
worker but multiple instances are processed in parallel. Finally,
line 5 in Fig. 7, and the code in Fig. 2 instantiate the farm.

B. Implementation & Internal Communication Overheads

Fig. 5 provides an overview over Peso’s architecture. The
farm is composed of two logical entities that are hidden from
developers by the farm API: the dispatcher, and the aggregator.
The dispatcher deals out batches to workers and the aggregator
collects the corresponding results. Both serve workers in a
round robin fashion to achieve predictability, for instance, the
aggregator does not collect the n-th result of worker i + 1
before it has collected the n-th result of worker i.

Peso stores worker in- and output data consecutively in
a buffer. The dispatcher sends a pointer into this buffer to
a worker when it deals out a job or a batch if batching is

used. Only the pointer to the inputs of the first job of a batch
are sent. Data locations for other jobs in the same batch are
computed based on this pointer. Time spent in sending these
pointers makes up the internal communication overheads that
we reduce through batching in this implementation.

VII. EXPERIMENTAL SETUP

A. Evaluation Platform & Methodology

We use the XMOS xCore-200 microcontroller which is
designed for hard real-time systems and has two clusters of
eight cores (see below) [33]. We use the XCC compiler version
14.4.4 with the default -O2 optimisation flag. No OS is on
the device and no thread scheduler is required in the context
of our experiments as all threads execute on dedicated cores.

We perform brute-force parameter space searches to deter-
mine optimal parameter choices for comparison with those
computed by our analytical framework (see Sec. VIII-A1
and VIII-A2). These are based on experiments and measure-
ments with timers provided by the target platform.

We take five samples per data point. This is true for the
brute-force parameter searches as well. Each sample yields the
same result except in a small number of cases in Sec. VIII-C
where small variations in intercore communication cost (of
up to 1ns) occur. Note that our WCET costs allow for this.
Because of this invariability we do not show error margins.

B. Predictability & The Memory System

To achieve predictability the xCore-200 uses a barrel pro-
cessor design. This design issues instructions of eight logical
cores to a shared five stage pipeline in a round robin fashion
[33]. This means a core is serviced every five cycles if five or
less cores are used or every six, seven, or eight cycles if more
are active. Consequently, the device must be programmed with
multiple threads to achieve best performance. The memory
system is designed so that all requests are fulfilled in five
cycles. Therefore, at a device clock frequency of 500Mhz
the WCET of memory accesses is: 10ns, 12ns, 14ns or 16ns
depending on how many cores are active. The best-case
execution time is always 10ns.

The device does not have data caches and translation
lookaside buffers which can cause interference in conventional
hardware [28], [33]. Each core has private registers, an instruc-
tion buffer, and access to shared SRAM. Memory accesses
have exclusive access to the shared SRAM as all cores share
the memory pipeline stage. The time to serve a request is not
affected by reordering, or bank and row conflicts.

Cores can directly communicate with each other through a
crossbar. We use this crossbar for farm internal communication
(see Ccom in Sec. IV-C) which is reduced through batching.

C. Worst Case Execution Times

XMOS provides a static code analysis tool for WCETs 6 that
is similar to the OTAWA Eclipse plugin [34]. The tool provides
WCETs on the level of code blocks, and single instructions.

6https://www.xmos.com/developer/published/xmos-timing-analyzer-manual

TABLE I: WCETs in cycles of the job farm components (see
Sec. IV-C) for the sample applications (see Sec. VII-D) and
the used input sizes. Each cycle is 2ns. Presented WCETs are
determined with less than six cores (see Sec. VII-C). Only
CWuser changes with the sample application and the input size.

App. DMV RED SMV

Input
size

5 10 15 30 10 15

CD 75 75 75 75 75 75
Ccom 65 65 65 65 65 65
CWc 125 125 125 125 125 125
CWsetup 5 5 5 5 5 5
CWonceJ 40 40 40 40 40 40
CWuser 630 4030 415 790 1455 3435
CA 115 115 115 115 115 115
CC 90 90 90 90 90 90

The WCET of a code section can be computed by summing
up the WCETs of the relevant instructions.

We determine the WCETs on our evaluation hardware
through static code analysis and measurements. The WCET
of intercore communication Ccom is determined through mea-
surements under stress. To put maximum stress on the core-
interconnect we execute dummy threads on all cores that use
up all available interconnect communication channels and do
nothing but constantly send data back and forth. The maximum
of 10000 measurements is then used for Ccom. Note, the WCET
and best case execution time of intercore communication dif-
fers. All other WCETs are determined through static analysis.

The compiler generated instructions of the worker function
and the farm internal worker code can slightly vary with
the batch size. With rare instruction sequences the hardware
cannot refill the instruction cache transparently and has to stall
the pipeline for a single cycle to fetch instructions [28]. This
can cause the statically determined execution times to vary
with the batch size. Based on the maximum number of such
pipeline stalls that we could observe for a set of instructions we
manually increase the generated WCETs that we used for our
evaluation to allow for these stalls. The so adjusted WCETs
are presented in Table I. These stalls cause the slight increases
in Fig. 4 when six instead of five workers are used.

Per instruction WCETs increase with each additional core if
more than five cores are used (see Sec.VII-B). Peso considers
this when it chooses the worker count and handles this further
complexity for application developers.

D. Sample Applications

The sample applications are: dense matrix vector multipli-
cation (DMV), sparse matrix vector multiplication (SMV), and
reduction (RED). They are widely used across various domains
such as computer vision and machine learning [35]. SMV
uses the compressed sparse row format. RED computes the
sum of a set number of integers. Each worker executes the
computational kernel of an application (i.e. the reduction or
matrix multiplication) sequentially. However, multiple kernel

instances are executed in parallel. We use two input vector
sizes with each application. Table I shows the relevant WCETs.

VIII. EVALUATION

This section experimentally validates the analytical frame-
work presented in Sec. V, and shows that Peso’s overheads
over hand-crafted code are small. As mentioned in Sec. VII-B,
to achieve predictability our evaluation platform uses an atypi-
cal core design as opposed to the cores in conventional systems
(see Sec. VII-B). For clarity, we refer to these as cores.

A. Experimental Validation of our Analytical Framework

1) Worker Core Counts: We validate the worker count
choices of our framework (that is mmin(bmax, T)) as computed
from (16) against, the best possible worker counts that we
determine with an exhaustive search (see Sec. VII-A). For
this we decrease the number of workers until deadline misses
occur.

Fig. 8a shows that our framework chooses the best worker
count in all cases except two and crucially, never makes
choices that cause deadline misses. Possible explanations for
these two cases are the pessimism added to WCETs by
potential pipeline stalls, and intercore communication that
can be faster than its WCET as discussed in Sec. VII. The
pessimism added by stalls is highest in these two cases.

Required worker core counts decrease with higher periods,
and increase with larger input sizes. Increasing periods mean
less pressure on the farm and so allow for less worker cores.
Larger input sizes cause higher batch processing times (see
Sec. V) and so require more workers to match the task period.

2) Batch Sizes: We validate the batch sizes computed by
our framework by comparing them with the best ones, which
we determine through a brute-force search (see Sec. VII-A).
For this we hard code the worker count to the maximum and
increase the batch sizes until we measure deadline misses.

Fig. 8b shows that our framework chooses the best or
close to best batch sizes and never ones that cause deadline
misses. Again, differences between the two batch sizes can be
explained with the pessimism inherent to the WCETs of the
user code and intercore communication (see Sec. VIII-A1).

The batch sizes decrease with increasing periods (see DMV)
and with larger job input sizes (see RED). Larger periods and
input sizes cause longer job aggregation and batch processing
times (see Sec. V) respectively and so only allow for smaller
batch sizes with the same relative deadlines.

B. Fewer Cores with Batching & The Effect of Input Sizes

To quantify the impact of batching, Fig. 9 shows by how
much batching reduces the min. sustainable periods Tmin(1,m)
for a given number m of cores over implementations without
batching (see Equation (6)). A lower min. period means that
tasks that previously needed additional cores because their
periods are too low for a given core count can now be
scheduled. We use a variant of Peso without batching for the
baseline measurements. To experimentally determine the min.
periods of both versions, we decrease the periods until the

farm is overloaded and jobs miss their deadlines. The number
of worker cores is hard coded to the maximum for this.

Batching lowers the min. periods Tmin(b,m) (and so enables
higher throughput) by up to 45.36%, 16.6% on average, and
never degrades the min. period. However, the baselines of RED
with input size 15 and DMV with input size 10 are affected
by the pipeline stall issue discussed in Sec. VII-C. Therefore,
in the interest of a fair comparison, omitting these gives a
maximum and average lowering of the min. period of 22.38%
and 12.54% respectively.

The improvements of the min. period decrease with increas-
ing input sizes. For example, RED benefits more with an input
size of 15 elements than with 30 elements. This is expected
since larger input sizes mean higher application code WCETs.
The execution time share spent in communication decreases
with higher application code WCETs and so maximum achiev-
able improvements through batching decrease.

C. Abstraction Layer Overheads

This section evaluates Peso’s overheads in terms of the min-
imum sustainable period. Fig. 10 compares the min. periods
of Peso based implementations with the ones of carefully
hand-crafted code that does not use Peso’s abstractions and
thus parallelism and batching have to be implemented in the
application code. To measure the min. period, we decreased the
periods until the implementations are overloaded and deadline
misses occur. The number of workers is set to the maximum
for this.

The minimum, average, and maximum difference between
the min. period of the hand and Peso implementations are
8ns, 18.6ns, and 24ns. The overheads introduced by Peso’s
abstraction layer over hand implementations translates to an
on average 3.37% higher min. period. The maximum overhead
is 8.66% and the minimum 1.06%. The min. period of the hand
implementation of the reduction application with an input size
of 30 is slightly higher than the period of the Peso based
implementation due to the stall issue discussed in Sec. VII-C.

The overheads come from hiding job batching from appli-
cation developers through Peso’s abstraction layer. To make
batching application developer transparent the consumer calls
access_data() for each job even though all results of a
batch of jobs are completed at the same time. Removing this
abstraction and its associated costs lowers the min. period but
exposes application developers to more complexity.

IX. RELATED WORK

Previous works map jobs to multicore processors and group
them to reduce communication costs [36], [37], [38], [39].
However, most existing parallel programming models for real-
time systems focus on very general application models (such
as dataflow). In contrast, we constrain the application structure
to given skeletons. At the price of losing some generality w.r.t.
DAGs, the advantages are: tighter analysis, skeleton informed
scheduling policies, simplified programming, and programmer
transparent efficient implementation techniques.

DM
V

i5
 p

0.
5

DM
V

i5
 p

1

DM
V

i5
 p

1.
5

DM
V

i1
0

p3
.5

DM
V

i1
0

p6

DM
V

i1
0

p8
.5

RE
D

i1
5

p0
.5

RE
D

i1
5

p0
.7

5

RE
D

i1
5

p1

RE
D

i3
0

p0
.5

RE
D

i3
0

p0
.7

5

RE
D

i3
0

p1

SM
V

i1
0

p1

SM
V

i1
0

p2

SM
V

i1
0

p3

SM
V

i1
5

p3

SM
V

i1
5

p4

SM
V

i1
5

p5

0

3

6
W

or
ke

r
co

re
 c

ou
nt

Experimental results Our analytical framework

(a) Experimentally determined worker core counts and worker core counts chosen by our analytical framework.

DM
V

i5
 p

0.
5

DM
V

i5
 p

1

DM
V

i5
 p

1.
5

DM
V

i1
0

p3
.5

DM
V

i1
0

p6

DM
V

i1
0

p8
.5

RE
D

i1
5

p0
.5

RE
D

i1
5

p0
.7

5

RE
D

i1
5

p1

RE
D

i3
0

p0
.5

RE
D

i3
0

p0
.7

5

RE
D

i3
0

p1

SM
V

i1
0

p1

SM
V

i1
0

p2

SM
V

i1
0

p3

SM
V

i1
5

p3

SM
V

i1
5

p4

SM
V

i1
5

p5

0

6

12

Ba
tc

h
siz

e

(b) Experimentally determined batch sizes and batch sizes computed by our analytical framework.

Fig. 8: Job farm parameter comparisons. Sample applications: Reduction (RED), dense and sparse matrix-vector multiplication
(DMV and SMV). Periods in µs are prefixed with a p and input sizes are prefixed with an i.

DM
V

i1
0

b3

DM
V

i1
0

b5

DM
V

i1
0

b7

SM
V

i1
0

b2

SM
V

i1
0

b5

SM
V

i1
0

b8

SM
V

i1
5

b3

SM
V

i1
5

b4

SM
V

i1
5

b5

0

5

10

Pe
rio

d
Im

pr
ov

. (
%

)

DM
V

i5
 b

5

DM
V

i5
 b

10

DM
V

i5
 b

15

RE
D

i1
5

b3

RE
D

i1
5

b6

RE
D

i1
5

b9

RE
D

i3
0

b3

RE
D

i3
0

b4

RE
D

i3
0

b5

0

25

50

Pe
rio

d
Im

pr
ov

. (
%

)

Fig. 9: Reduction in the minimum sustainable periods with batching over Peso without batching (higher is better). Sample
applications: Reduction (RED), dense and sparse matrix-vector multiplication (DMV and SMV). Numbers after the sample
application name indicate the number of input elements per job and batch sizes prefixed by i and b.

DM
V

i5 DM
V

i1
0

RE
D

i1
5

RE
D

i3
0

SM
V

i1
0

SM
V

i1
5

0.00

0.85

1.70

M
in

im
um

pe
rio

d
(

s)

Hand impl. Peso

Fig. 10: Minimum sustainable period with and without Peso
(lower is better). Sample applications: Reduction (RED), dense
and sparse matrix-vector multiplication (DMV and SMV).
Numbers after the sample application names indicate the
number of input elements per job prefixed by i.

Stegmeier and Ungerer et al. are the first to use skeletons
in the context of parallel real-time systems and built a library
that offers a farm skeleton [20], [40]. We make three contri-
butions that go beyond this initial work. Firstly, we exploit
inter-job parallelism whereas the authors exploit parallelism
within jobs. Secondly, we are the first to demonstrate that
structural information encoded in skeletons can be used for
performance improvements in the context of real-time systems
as demonstrated before in other fields [16], [30], [31], [32].
Thirdly, we are the first to show that skeletons can be used
for fine grained analytical application models. Stegmeier and
Ungerer et al. provide a tool that recommends core counts

for skeletons based on approximated WCETs. However, they
do not consider synchronisation operations for their analysis.
We improve on this and carefully analyse the execution of
application and library code including the synchronisation
of threads. Lastly, the authors evaluate their library on a
simulator, and we use off the shelf hardware.

The P-SOCRATES project investigates the task based par-
allel programming model in the context of real-time systems
(task has a different meaning here than in the context of real-
time systems) [41], [42]. This model is on a lower abstraction
level than skeletons. It encodes less structural information
that allows for resource efficient implementations such as job
batching. It puts a bigger burden on application developers
as less parallelism related implementation details are hidden.
Lastly, they do not investigate self-adaptation.

We review parallelism related constructs that are offered by
the commonly used real-time APIs of POSIX, Java, and ADA
[4], [5], [6]. These APIs require programmers to work and set
periods and deadlines on the level of threads. Synchronisation
and communication are implemented with mutexes, monitors,
queues, remote procedure calls and/or critical sections. Except
for queues, programmers have to implement mutual exclusion
manually. Failing to do so correctly leads to subtle bugs that
are hard to repeat and fix. Queues are on a higher abstraction
level but are often used to send pointers to data structures. Pro-

grammers have then to implement mutually exclusive access
across concurrently executing threads again themselves. These
constructs are on a lower abstraction level than algorithmic
skeletons. None of the currently used low-level constructs
allow compilers or run-time systems to automatically set
the degree of parallelism or hide and tune resource efficient
implementations such as batching that are informed by the
structure of a task.

X. CONCLUSION & FUTURE WORK

We argue for skeletons as an alternative to DAGs to program
parallel hard real-time systems as they ease programming
by abstracting implementation details. Structural information
encoded in skeletons also allows for tight analysis and efficient
scheduling.

We conduct a case study with the farm skeleton. We present
an analytical framework that combines knowledge about this
skeleton with predictable hardware to automatically choose the
minimum core count. Based on this we develop an efficient
execution strategy that reduces parallelism related overheads.

We demonstrate experimentally that in most cases our
framework chooses the best or close to best parameters, and
never makes choices that cause deadline misses. Our skeleton
informed execution strategy improves minimum sustainable
periods by up to 22.38% and so reduces required core counts.
Lastly, compared to carefully hand-crafted code, the overheads
of our farm are negligible. In the future we plan to investigate
further skeletons for real-time systems as well as the combi-
nation and nesting of them.

ACKNOWLEDGMENTS

We would like thank XMOS and Paul Neil from XMOS for
donating the development board. This work started during a
HiPEAC funded research visit of the first author in Marco
Aldinucci’s group. This work was also supported by the
Engineering and Physical Sciences Research Council (grant
EP/L01503X/1), EPSRC Centre for Doctoral Training in Per-
vasive Parallelism at the University of Edinburgh, School of
Informatics.

REFERENCES

[1] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische,
J. Fernandes, P. G. Zaykov, Z. Petrov, B. Böddeker, S. Kehr, H. Regler,
A. Hugl, C. Rochange, H. Ozaktas, H. Cassé, A. Bonenfant, P. Sainrat,
I. Broster, N. Lay, D. George, E. Quiñones, M. Panic, J. Abella,
F. Cazorla, S. Uhrig, M. Rohde, and A. Pyka, “parMERASA — multi-
core execution of parallelised hard real-time applications supporting
analysability,” in Proc. of the 13th Euromicro Conference on Digital
System Design, 2013, pp. 363–370.

[2] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, F. D. Smith,
and S. Wang, “Making OpenVX really “real time”,” in Proc. of the 39th
IEEE Real-Time Systems Symposium (RTSS), 2018, pp. 80–93.

[3] AUTOSAR Guide to Multi-Core Systems, AUTOSAR, 03 2014.
[4] Realtime and Embedded Specification for Java, aicas GmbH, 2019.
[5] Single UNIX® Specification, Version 4, The Open Group, 2017, ch. 2.8

Realtime.
[6] Ada Reference Manual, Ada Conformity Assessment Authority, 2016,

ch. Real Time Systems.
[7] J. W. McCormick, F. Singhoff, and J. Hugues, Building parallel,

embedded, and real-time applications with Ada. Cambridge University
Press, 2011.

[8] XMOS Programming Guide, XMOS Ltd., 2015.
[9] S. Gorlatch, “Send-receive considered harmful: Myths and realities of

message passing,” ACM Transactions on Programming Languages and
Systems, vol. 26, no. 1, pp. 47–56, 2004.

[10] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5,
pp. 33–42, 2006.

[11] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in Proc. of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2008,
pp. 329–339.

[12] H. Sutter and J. Larus, “Software and the concurrency revolution,” ACM
Queue, vol. 3, no. 7, pp. 54–62, 2005.

[13] H.-M. Huang, C. Gill, and C. Lu, “MCFlow: A real-time multi-core
aware middleware for dependent task graphs,” in Proc. of the 18th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2012, pp. 104–113.

[14] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment
in real-time scheduling of dag tasks on multi-cores,” IEEE Transactions
on Parallel and Distributed Systems, 2019.

[15] M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming,” Parallel computing, vol. 30, no. 3,
pp. 389–406, 2004.

[16] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[17] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “Accelerating code on multi-cores with FastFlow,” in Proc.
of 17th International European Conference on Parallel and Distributed
Computing (Euro-Par). Springer, 2011, pp. 170–181.

[18] J. Enmyren and C. W. Kessler, “SkePU: a multi-backend skeleton
programming library for multi-gpu systems,” in Proc. of the 4th ACM
International Workshop on High-Level Parallel Programming and Ap-
plications (HLPP). ACM, 2010, pp. 5–14.

[19] D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli, and M. Danelutto,
“Bringing parallel patterns out of the corner: The P3ARSEC benchmark
suite,” ACM Transactions on Architecture and Code Optimization,
vol. 14, no. 4, pp. 33:1–33:26, 2017.

[20] T. Ungerer, C. Bradatsch, M. Frieb, F. Kluge, J. Mische, A. Stegmeier,
R. Jahr, M. Gerdes, P. G. Zaykov, L. Matusova, Z. J. J. Li, Z. Petrov,
B. Böddeker, S. Kehr, H. Regler, A. Hugl, C. Rochange, H. Ozaktas,
H. Cassé, A. Bonenfant, P. Sainrat, N. Lay, D. George, I. Broster,
E. Quiñones, M. Panic, J. Abella, C. Hernández, F. J. Cazorla, S. Uhrig,
M. Rohde, and A. Pyka, “Parallelizing industrial hard real-time applica-
tions for the parMERASA multicore,” ACM Transactions on Embedded
Computing Systems, vol. 15, no. 3, pp. 53:1–53:27, 2016.

[21] M. K. Chen, X. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju, “Shangri-
La: achieving high performance from compiled network applications
while enabling ease of programming,” in Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2005, pp. 224–236.

[22] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson,
and J. D. Owens, “Programmable stream processors,” IEEE Computer,
vol. 36, no. 8, pp. 54–62, 2003.

[23] S. Benkner, E. Bajrovic, E. Marth, M. Sandrieser, R. Namyst, and
S. Thibault, “High-level support for pipeline parallelism on many-core
architectures,” in Proc. of 18th International European Conference on
Parallel and Distributed Computing (Euro-Par). Springer, 2012, pp.
614–625.

[24] J. C. Beard, P. Li, and R. D. Chamberlain, “Raftlib: A C++ template
library for high performance stream parallel processing,” The Interna-
tional Journal of High Performance Computing Applications, vol. 31,
no. 5, pp. 391–404, 2017.

[25] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
Proc. of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2010, pp. 365–376.

[26] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Ra-
jkumar, “Bounding memory interference delay in cots-based multi-core
systems,” in 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2014, pp. 145–154.

[27] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero,
“Hardware support for wcet analysis of hard real-time multicore sys-

tems,” in 2009 ACM 36th Annual International Symposium on Computer
Architecture (ISCA), vol. 37, no. 3. ACM, 2009, pp. 57–68.

[28] D. May, xCORE-200: The XMOS XS2 Architecture, XMOS, 2015.
[29] M. Steuwer, T. Remmelg, and C. Dubach, “Lift: a functional data-

parallel ir for high-performance gpu code generation,” in 2017
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE, 2017, pp. 74–85.

[30] P. Metzger, M. Cole, and C. Fensch, “NUMA optimizations for algo-
rithmic skeletons,” in Proc. of 24th International European Conference
on Parallel and Distributed Computing (Euro-Par). Springer, 2018, pp.
590–602.

[31] T. Lutz, C. Fensch, and M. Cole, “PARTANS: An autotuning framework
for stencil computation on multi-gpu systems.” ACM Transactions on
Architecture and Code Optimization, vol. 9, no. 4, pp. 59:1–59:24, 2013.

[32] D. De Sensi, M. Torquati, and M. Danelutto, “A reconfiguration al-
gorithm for power-aware parallel applications,” ACM Transactions on
Architecture and Code Optimization, vol. 13, no. 4, pp. 43:1–43:25,
2016.

[33] X216-512-TQ128 Datasheet, XMOS Ltd., 09 2018.
[34] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an

open toolbox for adaptive WCET analysis,” in Proc. of the 8th IFIP
International Workshop on Software Technolgies for Embedded and
Ubiquitous Systems (SEUS), 2010, pp. 35–46.

[35] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In
MATLAB® Second, Completely Revised. Springer, 2017, vol. 118, p.
405.

[36] V. Kianzad and S. Bhattacharyya, “Efficient techniques for clustering
and scheduling onto embedded multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, vol. 17, no. 7, pp. 667–680, 2006.

[37] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning real-time applications over
multicore reservations,” IEEE Transactions on Industrial Informatics,
vol. 7, no. 2, pp. 302–315, May 2011.

[38] Q. Tang, T. Basten, M. Geilen, S. Stuijk, and J.-B. Wei, “Mapping of
synchronous dataflow graphs on mpsocs based on parallelism enhance-
ment,” Journal of Parallel and Distributed Computing, vol. 101, pp.
79–91, 2017.

[39] J. Sun, N. Guan, X. Wang, C. Jin, and Y. Chi, “Real-time scheduling
and analysis of synchronous openmp task systems with tied tasks,” in
Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 2019, p. 94.

[40] A. Stegmeier, M. Frieb, R. Jahr, and T. Ungerer, “Algorithmic skeletons
for parallelization of embedded real-time systems,” in 3rd Workshop on
High-Performance and Real-time Embedded Systems (HiRES), 2015.

[41] L. M. Pinho, V. Nélis, P. M. Yomsi, E. Quiñones, M. Bertogna, P. Burgio,
A. Marongiu, C. Scordino, P. Gai, M. Ramponi, and M. Mardiak, “P-
SOCRATES: A parallel software framework for time-critical many-core
systems,” Microprocessors and Microsystems, vol. 39, no. 8, pp. 1190–
1203, 2015.

[42] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quiñones, “Timing characterization of OpenMP4 tasking model,” in
Proc. of the IEEE International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2015, pp. 157–166.

	Introduction
	Background
	Skeletons
	Job Farms

	The Case for Job Batching & Self-Adaptation
	Reduced Core Count via Job Batching
	Improved Ease of Programming Through Self-Adaptation

	System Model
	Jobs, Job Releases, and Deadlines
	Cores and Batch Size
	Execution Time

	Our analytical framework: Analysis of batch scheduling
	Worker Core Count vs. Task Period
	Job Batch Size vs. Task Deadline

	The Peso Library
	API Concepts
	Implementation & Internal Communication Overheads

	Experimental Setup
	Evaluation Platform & Methodology
	Predictability & The Memory System
	Worst Case Execution Times
	Sample Applications

	Evaluation
	Experimental Validation of our Analytical Framework
	Worker Core Counts
	Batch Sizes

	Fewer Cores with Batching & The Effect of Input Sizes
	Abstraction Layer Overheads

	Related Work
	Conclusion & Future Work
	References

