
Processor Utilization

10_Proc

9_Proc

8_Proc

7_Proc

6_Proc

Utilization Ratio

Proc_ID-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2.00 4.00 6.00 8.00 10.00

Figure 8: Processor Utilization Ratios for di�erent cases

Figure 9: The Allocation Results and Schedules for AIMS with 6 processors

22



'

&

$

%

. .

Choose an initial temperature T

Choose randomly a starting point P = (�; �

m

; �

c

)

E

p

:= Energy of solution point P

if E

p

= 0 then

output E

p

and exit /* E

p

= 0 means a feasible solution */

end if

repeat

repeat

Choose N , a neighbor of P

E

n

:= Energy of solution point N

if E

n

= 0 then

output E

n

and exit /* E

n

= 0 means a feasible solution */

end if

if E

n

< E

p

then

P := N

E

p

:= E

n

else

x :=

E

p

�E

n

T

if e

x

� random(0,1) then

P := N

E

p

:= E

n

end if

end if

until thermal equilibrium at T

T := � � T (where � < 1)

until stopping criterion

Figure 7: The structure of simulated annealing algorithm.

21



'

&

$

%

. .

Given a solution point P = (�; �

m

; �

c

)

While there is some unscheduled task instance do

Find the next unscheduled instance. /* By the SLsF algorithm */

Let the instance be �

j

i

.

Sort all the incoming communications of �

j

i

based on

the latency values into a descending order.

Schedule each incoming communication starting from

the biggest-latency one to the tightest-latency one.

Schedule the instance �

j

i

.

End While.

Mark each instance as un-examined.

While there is some un-examined task instance do

Find the next un-examined task instance. /* By the �nish times */

Sort all the outgoing communications of the task instance based

on the latency values into an increasing order.

Schedule each outgoing communication starting from

the tightest-latency one to the biggest-latency one.

Mark the task instance examined.

End While.

Collect the start time and �nish time informations for each task instance and communication.

Compute the energy value using Equation 5.

Figure 6: The pseudo code for computing the energy value

20



[CDHC94] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carcio�ni. Arinc 659 scheduling: Problem

de�nition. In Proceedings of IEEE Real-Time Systems Symposium, San Juan, PR, Dec.

1994.

[GMK

+

91]

�

O. Gudmundsson, D. Moss�e, K.T. Ko, A.K. Agrawala, and S.K. Tripathi. Maruti: A

platform for hard real-time applications. In K. Gordon, A.K. Agrawala, and P. Hwang

(eds.), editors, Mission Critical Operating Systems. IOS Press, 1991.

[HS92] Chao-Ju Hou and Kang G. Shin. Allocation of periodic task modules with precedence

and deadline constraints in distributed real-time systems. In Proceedings of the 1992

IEEE 13th Real-Time Systems Symposium, pages 146{155, Phoenix, AZ, 1992.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671{680, May 1983.

[LH91] Feng-Tse Lin and Ching-Chi Hsu. Task assignment problems in distributed comput-

ing systems by simulated annealing. Journal of the Chinese Institute of Engineers,

14(5):537{550, Sept. 1991.

[MSA92] Daniel Moss�e, M.C. Saksena, and Ashok K. Agrawala. Maruti: An approach to real-

time system design. Technical Report CS-TR-2845, UMIACS-TR-92-21, Department

of Computer Science, University of Maryland, College Park, 1992.

[Ram90] Krithi Ramamritham. Allocation and scheduling of complex periodic tasks. In Pro-

ceedings of the 10th International Conference on Distributed Computing Systems, pages

108{115, Paris, France, 1990.

[SdSA94] M. Saksena, J. da Silva, and A. K. Agrawala. Design and implementation of maruti-

ii. Technical Report CS-TR-2845, Department of Computer Science, University of

Maryland, College Park, 1994.

[TBW92] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks: an

NP-hard problem made easy. Real-Time Systems, 4(2):145{165, June 1992.

19



5.1 Discussions

For feasible solutions of the AIMS with various numbers of processors, we calculate the processor

utilization ratio (PUR) of each processor. The processor utilization ratio for a processor p is de�ned

as

P

�(t

i

)=p

(e

i

� q

i

)

LCM

:

The results are shown in Figure 8. The ratios are sorted into a non-decreasing order given a �xed

number of processors. The algorithm generates the feasible solutions for the AIMS with 6, 7, 8, 9

and 10 processors respectively. For example, for the 6-processor case, the PURs for the heaviest-

loaded and lightest-loaded processors are 0.91 and 0.76 respectively. For the 10-processor cases, the

PURs are 0.63 and 0.28 respectively. We �nd that the ratio di�erence between the heaviest-loaded

processor and the lightest-loaded processor in the 6-processor case is smaller than those in other

cases. It means the chance for a more load-balanced allocation to �nd a feasible solution is bigger

when the number of processors is smaller.

The detailed schedules for the 6-processor case are shown in Figure 9. The results are shown

on an interactive graphical interface which is developed for the design of MARUTI. The time scale

shown in Figure 9 is 100�s. So the LCM is shown as 2000 in the �gure. (i.e. 2000 � 100�s =

200ms.) This solution consists of seven o�-line non-preemptive schedules: one for each processor

and one for the SafeBus (TM). Each of these schedules will be one LCM long where an in�nite

schedule can be produced by repeating these schedules inde�nitely. Note that the pseudo instances

are introduced to make sure the wrapping around at the end of the LCM-long schedules should

satisfy the latency and next-execution-interval requirements across the point of wrap-around. The

pseudo instances are not shown in Figure 9.

The inclusion of resource and memory constraints into the problem can be done by modifying

neighbor-�nding strategy. Once a neighbor of the current point is generated, it is checked to

ascertain that the constraints on memory etc. are met. If not, the neighbor is discarded and

another neighbor is evaluated.

References

[CA93] Sheng-Tzong Cheng and Ashok K. Agrawala. Scheduling of periodic tasks with relative

timing constraints. Technical Report CS-TR-3392, UMIACS-TR-94-135, Department of

Computer Science, University of Maryland, College Park, December. 1993. Submitted

to the 10th Annual IEEE Conference on Computer Assurance, COMPASS '95.

18



10 Proc 9 Proc 8 Proc 7 Proc 6 Proc

Exec Time (Sec) 2369 5572 19774 36218 78647

= Hr : Min : Sec 0:39:29 1:32:52 5:29:34 10:03:38 21:50:47

Table 1: The execution times of the AIMS with di�erent number of processors

system connected by a SafeBus (TM) ultra-reliable bus. The problem is to �nd the minimum

number of processors needed to assign the tasks to these processors. The objective is to develop

an o�-line non-preemptable schedule for each processor and one schedule for the SafeBus (TM)

ultra-reliable bus.

The AIMS consists of 155 tasks and 951 communications between these tasks. The frequencies

of the tasks vary from 5HZ to 40HZ. The execution times of the tasks vary from 0ms to 16.650ms.

The NEI and XEI of a task t

i

are p

i

� 500�s and p

i

+ 500�s respectively. Since � = 1000�s = 1ms

<

25ms

e

, the smallest-period-�rst scheduling algorithm can be used in this case. Tasks communicate

with others asynchronously and in mutuality. The transmission times for communications are in the

range from 0�s to 447.733�s. The latency constraints of the communications vary from 68.993ms

to 200ms. The LCM of these 155 tasks is 200ms. When the whole system is extended, the total

number of task instances within one scheduling frame is 624 and the number of communications is

1580.

For such a real and tremendous problem size, pre-analysis is necessary. We calculate the resource

utilization index to estimate the minimum number of processors needed to run AIMS. The index

is de�ned as

P

155

i=1

(e

i

� q

i

)

LCM

where e

i

is the execution of task t

i

and q

i

=

LCM

p

i

. The obtained index for AIMS is 5.14. It means

there exist no feasible solutions for the AIMS if the number of processors in the multiprocessor

system is less than 6.

The number of processors which the AIMS is allowed to run on is a parameter to the scheduling

problem. We start the AIMS scheduling problem with 10 processors. After a feasible solution is

found, we decrease the number of processors by one and solve the whole problem again. We run

the algorithm on a DECstation 5000. The execution time for the AIMS scheduling problem with

di�erent numbers of processors is summarized in Table 1. The algorithm is able to �nd a feasible

solution of the AIMS with six processors which is the minimum number of processors according

to the resource utilization index. The time to �nd such a feasible solution is less than one day

(approximately 22 hours).

17



� Balance Mode: We randomly move a task from the heavily-loaded processor to the lightest-

loaded processor. This move tries to balance the workload of processors. By balancing the

workload, the chance to �nd a neighbor with a lower energy value is bigger.

� Swap Mode: We randomly choose two tasks �

i

and �

j

on processors p and q respectively.

Then we change � by setting �(�

i

) = q and �(�

j

) = p.

� Merge Mode: We pick two tasks and move them to one processor. By merging two tasks to

a processor, we increase the workload of the processor. There is an opportunity of increasing

the energy level of the new point by increasing the workload of the processor. The purpose of

the move is to perturb the system and allow the next move to escape from the local optimum.

� Direct Mode: When the system is in a low-energy state, only few tasks violate the jitter

or latency constraints. Under such a circumstance, it will be more bene�cial to change the

assignment of these tasks instead of randomly moving other tasks. From the conducted ex-

periments, we �nd that this mode can accelerate the searching of a feasible solution especially

when the system is about to reach the equilibrium.

The selection of the appropriate mode to �nd a neighbor is based on the current system state.

Given a randomly generated initial state (i.e. solution point), the workload discrepancy between

the processors may be huge. Hence, in the early stage of the simulated annealing, the balance

mode is useful to balance the workload. After the processor workload is balanced out, the swap

mode and the merge mode are frequently used to �nd a lower energy state until the system reaches

near-termination state. In the �nal stage of the annealing, the direct mode tries to �nd a feasible

solution. The whole process terminates when a feasible solution is found in which the energy value

is zero.

5 Experimental Results

We implemented the algorithm as the framework of the allocator on MARUTI [GMK

+

91, MSA92,

SdSA94], a real-time operating system developed at the University of Maryland, and conducted

extensive experiments under various task characteristics. The tests involve the allocation of real-

time tasks on a homogeneous distributed system connected by a communication channel.

To test the practicality of the approach and show the signi�cance of the algorithm, we consider a

simpli�ed and sanitized version of a real problem. This was derived from actual development work,

and is therefore representative of the scheduling requirements of an actual avionics system. The

Boeing 777 Aircraft Information Management System (AIMS) is to be running on a multiprocessor

16



time of the communication. Once the time slot is inserted, we check the e�ective start time of �

j

i

to make sure that it is not less than the �nish time of the time slot. If it is, the e�ective start time

of �

j

i

is updated to be the �nish time of the time slot.

If a task instance has more than one incoming communication, the scheduling order among these

communications is based on their latency constraints. The bigger the latency value is, the earlier

the communication is scheduled. The incoming communication with the tightest latency constraint

is scheduled last. It is because the e�ective start time of the receiving task instance is constantly

updated by the scheduling of the incoming communications. It is possible that the scheduling of

the later incoming communications increases the e�ective start time of the receiving task instance

and make the early scheduled communication violate its latency constraint if the constraint is tight.

4.1.3 Scheduling the Outgoing Communications: �

c

The scheduling of the outgoing communications for the whole task set is performed after all the

task instances have been scheduled. The scheduling order among these communications is based

on the �nish times of the sending task instances. The task instance with the smallest �nish time is

considered �rst. When a task instance is taken into account, all its outgoing communications are

scheduled one by one according to their latency constraints. The communication with the tightest

latency constraint is scheduled �rst.

Given an outgoing communication �

j

i

7! �

?

k

, and the �nish time of �

j

i

, f

j

i

, the e�ective start

time of the communication is set to be f

j

i

. Based on the e�ective start time, a time slot in inserted

for this communication. Then the nearest instance of receiving task can be found based on the

�nish time of the time slot.

For the example shown in Figure 5, The incoming communicationmarked with \(1)" is scheduled

before the scheduling of �

2

y

. The sixth instance of �

x

is chosen as the nearest instance. As for the

outgoing communication marked with \(3)", it is scheduled after the scheduling of �

5

x

, �

6

x

, �

7

x

, and

�

8

x

. In this example, �

8

x

is the nearest instance of the outgoing communication.

4.2 Neighbor Finding Strategy: �

The neighbor �nding strategy is used to �nd the next solution point once the current solution point

is evaluated as infeasible (i.e. energy value is nonnegative). The neighbor space of a solution point

is the set of points which can be reached by changing the assignment of one or two tasks. There

are several modes of neighbor �nding strategy.

15



4.1.1 Priority Assignment of Task Instances: �

m

In the work [CA93], we presented the SLsF algorithm and the performance evaluation. The re-

sults showed that SLsF outperforms SPF and SJF. In this paper we use the SLsF as the priority

assignment algorithm for the task instances in I .

Formally, if lst(�

j

i

) < lst(�

`

k

), then �

m

(�

j

i

) < �

m

(�

`

k

). And the insertion of a time slot for

�

j

i

precedes that for �

`

k

if �

m

(�

j

i

) < �

m

(�

`

k

). The time-based scheduling algorithm for a task

instance is used to �nd a time slot for a task instance once the e�ective start time is given. We

de�ne the e�ective start time of a task instance as the earliest start time when the incoming

communications are taken into account. Let t be the maximum completion time among all the

incoming communications of a task instance, then the e�ective start time of the task instance is set

to the bigger value among t and est (as stated in Equation 6).

4.1.2 Scheduling the Incoming Communications:�

c

There are two kinds of incoming communications. The �rst kind is called the synchronous com-

munication in which the frequencies of the sender and receiver are identical. The other kind is

called the asynchronous communication in which the sending task instance is associated with a

question mark. For such an asynchronous communication, we have to decide which instance of the

sending task should communicate with the receiving task instance. The approach we take is to �nd

the nearest instance of the sending task. The reason is that, by �nding the nearest instance, the

time di�erence between start time of the receiving instance and the completion time of the sending

instance is the smallest. The chance of violating the latency constraint of a communication will be

the smallest then.

The nearest instance of a sending task can be found using the following method. Given an

incoming communication �

?

k

7! �

j

i

, and the e�ective start time of �

j

i

, eft we search through the

linked list of processor �(�

k

) up to time eft. If there is some instance of �

k

, say �

`

k

, whose completion

time is the latest among all scheduled instances of �

k

, then the nearest instance is found. Otherwise,

we continue to search through the linked list until an instance of �

k

is found. We set the e�ective

start time of the communication to be the completion time of the found instance. We also erase

the question mark such that �

?

k

7! �

j

i

is changed to �

`

k

7! �

j

i

. For the synchronous communication,

the e�ective start time of the communication is simply assigned as the �nish time of the sending

task instance.

The scheduling of the communication is done by inserting a time slot to the linked list for the

communications network. The start time of the time slot can not be earlier than the e�ective start

14



the algorithm is to randomly choose an assignment �, a total ordering of instances within one

scheduling frame, �

m

, and a total ordering of communications for the instances, �

c

. A solution

point in the search space of SA is a 3-tuple (�,�

m

,�

c

). The energy of a solution point is computed by

equation (5). For each solution point P which is infeasible, (i.e. E

p

is nonzero), a neighbor �nding

strategy is invoked to generate a neighbor of P . As stated before, if the energy of the neighbor is

lower than the current value, we accept the neighbor as the current solution; otherwise, a probability

function (i.e. exp(

E

p

�E

n

T

)) is evaluated to determine whether to accept the neighbor or not. The

parameter of the probability function is the current temperature. As the temperature is decreasing,

the chance of accepting an uphill jump (i.e. a solution point with a higher energy level) is smaller.

The inner and outer loops are for thermal equilibrium and termination respectively. The number of

iterations for the inner loop is also a function of current temperature. The lower the temperature

is, the bigger the number is. Methods about how to model the numbers of iterations and how

to assign the number for each temperature have been proposed [LH91]. In this dissertation, we

consider a simple incremental function. Namely, N = N + � where N is the number of iterations

and � is a constant. The termination condition for the outer loop is E

p

= 0. Whenever thermal

equilibrium is reached at a temperature, the temperature is decreased. Linear or nonlinear approach

of temperature decrease function can be simple or complex. Here we consider a simple multiplication

function (i.e. T = T � �, where � < 1).

4.1 Evaluation of Energy Value for a Solution Point (�, �

m

, �

c

)

The computation of the energy value stated in Equation 5 , is done by constructing multi-processor

schedules and a network schedule, and collecting the the start and completion times of each task

instance and communication from these schedules.

The construction of the schedules is characterized by the priority assignment of the task in-

stances in the set. The priority assignment algorithm determines the scheduling order among all

the task instances. Each time when a task instance is chosen to be scheduled, the incoming com-

munications of the instance are scheduled �rst and then the task instance itself. After all the

task instances have been scheduled, the scheduling of the outgoing communications is performed.

An algorithmic description about how to compute the energy value for a solution point is given

in Figure 6. Note that a communication is an incoming communication to a task instance if the

frequency of the receiving task instance is equal to or less than that of the sending task instance.

For example, �

?

k

7! �

j

i

and �

j

k

7! �

j

i

are incoming communications to �

j

i

. On the other hand, if

the sender frequency is less than the receiver frequency, then the communication is an outgoing

communication. (e.g. �

j

k

7! �

?

i

is the outgoing communication of �

j

k

).

13



�

5

x

�

7

x

�

8

x

�

6

x

�

2

y

p

y

= 4� p

x

(3)(1)

(2)

Figure 5: Asynchronous communications in mutuality

and k can be stated as

(j � 1)� n < i < k � j � n: (8)

A graphical illustration can be found in Figure 5. In the example, the values of i, j, k, and n are

6, 2, 8, 4 respectively. The communications �

6

x

7! �

2

y

and �

2

y

7! �

8

x

are scheduled before and after

the scheduling of �

2

y

respectively.

4 The Simulated Annealing Algorithm

Kirkpatrick et al. [KGV83] proposed a simulated annealing algorithm for combinatorial optimiza-

tion problems. Simulated annealing is a global optimization technique. It is derived from the

observation that an optimization problem can be identi�ed with a 
uid. There exists an analogy

between �nding an optimal solution of a combinatorial problem with many variables and the slow

cooling of a molten metal until it reaches its low energy ground state. Hence, the terms about

energy function, temperature, and thermal equilibrium are mostly used. During the search of an

optimal solution, the algorithm always accepts the downward moves from the current solution point

to the points of lower energy values, while there is still a small chance of accepting upward moves

to the points of higher energy values. The probability of accepting an uphill move is a function of

current temperature. The purpose of hill climbing is to escape from a local optimal con�guration.

If there are no upward or downward moves over a number of iterations, the thermal equilibrium

is reached. The temperature then is reduced to a smaller value and the searching continues from

the current solution point. The whole process terminates when either (1) the lowest energy point

is found or (2) no upward or downward jumps have been taken for a number of successive thermal

equilibrium.

The structure of simulated annealing (SA) algorithm is shown in Figure 7. The �rst step of

12



Pseudo Instance

�

1

x

�

1

y

�

2

y

�

3

y

�

2

x

�

3

x

�

1

x

�

1

y

�

2

y

�

2

x

�

3

x

LCM

Figure 4: The introduction of a pseudo instance

and wrapped to the beginning of the schedule. As shown in Figure 3 The start time of the new

slot is r while the completion time is r + e�LCM.

3.3 Pseudo Instances

As stated in Section 2, we consider the communication pattern in which cyclic dependency exists

among tasks. Given a set of tasks, �, a set of task instances, I , a set of communications, C, and

any solution point, (�; �

m

; �

c

), we introduce pseudo instances to solve this problem. For any task

�

x

, if there exists a task �

y

, in which (1) �

m

(�

i

x

) < �

m

(�

i

y

), 8 i, (2) n

x

= n

y

, and (3) �

x

7! �

y

2

C and �

y

7! �

x

2 C, then a pseudo instance �

n

x

+1

x

is added to I . A pseudo instance is always a

receiving instance. No insertion of time slots for pseudo instances is needed. For a pseudo instance,

only the e�ective start time is concerned. The e�ective start time of a pseudo instance �

n

x

+1

x

in

the constructed schedule based on (�; �

m

; �

c

) is checked to see whether it is less than LCM + s

1

x

or

not. If yes, then the execution of �

1

x

for the next scheduling frame may start at LCM + s

1

x

which

is exactly one LCM away from the execution of �

1

x

for the current scheduling frame. A graphical

illustration of the introduction of pseudo instance to solve the synchronous communications of

cyclic dependency is given in Figure 4 in which n

x

= 2.

As for the asynchronous communications of cyclic dependency, no pseudo instances are needed.

For example, if both �

x

7! �

y

and �

y

7! �

x

exist and n

x

= n

y

� n, then for each �

j

y

, where j = 1,

2, : : : , n

y

, �nd a sending instance �

i

x

2 I and a receiving instance �

k

x

2 I such that (1) f

i

x

� s

j

y

,

(2) f

j

y

� s

k

x

, and (3) �

i

x

7! �

j

y

and �

j

y

7! �

k

x

are the communications. The relationship between i, j,

11



0

0

After:

Before:

LCM

F

F

where F < r < LCM

r + e � LCM

Unscheduled Instance:

LCM

r

Figure 3: Insertion of a new time slot

3.2.1 Recurrence

Given any solution point (�; �

m

; �

c

), we construct the schedule by inserting time slots to the linked

lists. Let �

m

: task id � instance id ! integer. The insertion of a time slot for �

j

i

precedes that for

�

`

k

if �

m

(�

j

i

) < �

m

(�

`

k

).

Recall that Equations 6 and 7 specify the bounds of the scheduling window for a task instance.

Due to the communications, est(�

j

i

) in Equation 6 may not be the earliest time for �

j

i

. We de�ne

the e�ective start time as the time when (1) the hybrid constraints are satis�ed and (2) �

j

i

receives

all necessary data or messages from all the senders.

Given the e�ective start time r and the assignment of �

i

(i.e. p = �(�

i

)), a time slot of processor

p is assigned to �

j

i

where start time � r and finish time � start time = e

i

. Note that we have

to make sure the new time slot does not overlap existent time slots. Since (1) the executions of

all instances within one scheduling frame recur in the next scheduling frame and (2) it is possible

that the time slot for some instance is over LCM, we subtract one LCM from the start time or

finish time if it is greater than LCM. It means the time slot for this task instance will be modulated

10



Equations 3 and 4. Formally, given s

1

i

, s

2

i

, : : :, and : : :, s

j�1

i

, the problem is to derive the feasible

scheduling window for �

j

i

such that a feasible schedule can be obtained if �

j

i

is scheduled within

the window.

Proposition 1 [CA93]: Let the est and lst of �

j

i

be

est(�

j

i

) = maxf(s

j�1

i

+ p

i

� �

i

); (s

1

i

+ (j � 1)� p

i

� (n

i

� j + 1)� �

i

)g; (6)

and lst(�

j

i

) = minf(s

j�1

i

+ p

i

+ �

i

); (s

1

i

+ (j � 1)� p

i

+ (n

i

� j + 1)� �

i

)g: (7)

If s

j

i

is in between the est(�

j

i

) and lst(�

j

i

), then the estimated est and lst of s

n

i

i

, based on s

j

i

and

s

n

i

+1

i

, specify a feasible window.

3.2 Cyclic Scheduling Technique

The basic approach of scheduling a set of synchronous periodic tasks is to consider the execution

of all instances within the scheduling frame whose length is the LCM of all periods. The release

times of the �rst periods of all tasks are zero. As long as one instance is scheduled in each period

within the frame and these executions meet the timing constraints, a feasible schedule is obtained.

In a feasible schedule, all instances complete the executions before the LCM.

On the other hand, in asynchronous task systems, as depicted in Figure 2 in which the LCM

is 200ms, the periods of the two tasks are out of phase. It is possible that the completion time

of some instance in a feasible schedule exceeds the LCM. To �nd a feasible schedule for such an

asynchronous system, a technique of handling the time value which exceeds the LCM is proposed.

The technique is based on the linked list structure described in the work [CA93]. Without loss

of generality, we assume the minimum release time among the �rst periods of all tasks is zero. We

keep a linked list for each processor and a separated list for the communication network. Each

element in the list represents a time slot assigned to some instance or communication. The �elds of

a time slot of some processor p: (1) task id i and instance id j indicate the identi�er of the time slot.

(2) start time st and �nish time ft indicate the start time and completion time of �

j

i

respectively.

(3) prev ptr and next ptr are the pointers to the preceding and succeeding time slots respectively.

The list is arranged in an increasing order of start time. Any two time slots are nonoverlapping.

Since the execution of an instance is nonpreemptable, the time di�erence between start time and

finish time equals the execution time of the task.

9



� s

j

i

is the start time of �

j

i

under �

m

.

� f

j

i

is the completion time of �

j

i

under �

m

.

� r

j

i

= p

i

� (j � 1) + r

i

, and d

j

i

= p

i

� (j � 1) + d

i

.

� �(x) = 0, if x � 0; and = x, if x > 0.

� �(�

i

) is the ID of processor which �

i

is assigned to.

� �

j

i

7! t

l

k

is the communication from �

j

i

to �

l

k

. If �(�

i

) = �(�

k

), then �

j

i

7! �

l

k

is a local

communication.

� S(c; �

c

) is the start time of communication c on the network under �

c

.

� F (c; �

c

) is the completion time of communication c on the network under �

c

.

The minimum value of E(�; �

m

; �

c

) is zero. It occurs when the executions of all instances

meet the jitter constraints and all communications meet their latency constraints. A feasible

multiprocessor schedule can be obtained by collecting the values of s

j

i

and f

j

i

, 8 i and j. Likewise,

a feasible network schedule can be obtained from S(c; �

c

)s and F (c; �

c

)s.

Since the task system is asynchronous and the communication pattern could be in the form of

cyclic dependency, we solve the problem of �nding a feasible solution (�; �

m

; �

c

) by exploiting the

cyclic scheduling technique and embedding the technique into the simulated annealing algorithm.

3 The Approach

3.1 Bounds of a Scheduling Window

De�ne the scheduling window for a task instance as the time interval during which the task can

start. Traditionally, the lower and upper bounds of the scheduling window for a task instance are

called earliest start time (est) and latest start time (lst) respectively. These values are given and

independent of the start times of the preceding instances.

We consider the scheduling of periodic tasks with relative timing constraints described in Equa-

tions 3 and 4. The scheduling window for a task instance is derived from the start times of its

preceding instances. A feasible scheduling window for a task instance �

j

i

is a scheduling window

in which any start time in the window makes the timing relation between s

j�1

i

and s

j

i

satisfy

8



2.3 Problem Formulation

We consider the static assignment and scheduling in which a task is the �nest granularity object

of assignment and an instance is the unit of scheduling. We applied the simulated annealing

algorithm [KGV83] to solve the problem of real-time periodic task assignment and scheduling with

hybrid timing constraints. In order to make the execution of instances satisfy the speci�cations

and meet the timing constraints, we consider a scheduling frame whose length is the least common

multiple (LCM) of all periods of tasks. Given a task set � and its communications C, we construct

a set of task instances, I , and a set of multiple communications, M . We extend each task �

i

2 �

to n

i

instances, �

1

i

, �

2

i

, : : : , and �

n

i

i

. These n

i

instances are added to I . Each communication �

i

7!

�

j

2 C is extended to min(n

i

,n

j

)

1

undersampled communications where n

i

= LCM/p

i

and n

j

=

LCM/p

j

. These multiple communications are added to M . The extension can be stated as follows.

� If n

i

< n

j

, then �

i

7! �

j

is extended to �

1

i

7! �

?

j

, �

2

i

7! �

?

j

, : : : , and �

n

i

i

7! �

?

j

.

� If n

i

> n

j

, then �

i

7! �

j

is extended to �

?

i

7! �

1

j

, �

?

i

7! �

2

j

, : : : , and �

?

i

7! �

n

j

j

.

� If n

i

= n

j

, then �

i

7! �

j

is extended to �

1

i

7! �

1

j

, �

2

i

7! �

2

j

, : : : , and �

n

i

i

7! �

n

j

j

.

A task ID with a superscript of question mark indicates some instance of the task. For example,

�

1

i

7! �

?

j

means that �

1

i

communicates with some instance of �

j

. We describe how we assign the

nearest instance for each communication in Section 4.1.2.

The problem can be formulated as follows. Given a set of task instance, I , its communications

M , we �nd an assignment �, a total ordering �

m

of all instances, and a total ordering �

c

of all

communications to minimize

E(�; �

m

; �

c

) =

X

i;j

�(p

i

� �

i

� s

j+1

i

+ s

j

i

) +

X

i;j

�(s

j+1

i

� s

j

i

� p

i

� �

i

)

+

X

i;j

�(f

j

i

� d

j

i

) +

X

i;j;k;l

�(F (t

j

i

7! t

l

k

; �

c

)� s

l

k

)

+

X

i;j;k;l

�(f

l

k

� s

j

i

� Latency (�

i

to �

k

)) (5)

subject to s

j

i

� r

j

i

and S(t

j

i

7! t

l

k

; �

c

) � f

j

i

; 8 t

j

i

7! t

l

k

;

where

1

Due to undersampling, when an asynchronous communication is extended to multiple communications, the

number of multiple communications is the smaller number of sender and receiver instances.

7



From A (of 10HZ) to B (of 5HZ)

From A (of 5HZ) to B (of 10HZ)

200 ms

B

A

A

From A (of 10HZ) to B (of 5HZ)

From B (of 5HZ) to A (of 10HZ)

From B (of 10HZ) to A (of 10HZ)

From A (of 10HZ) to B (of 10HZ)

(d)

200 ms

BB

AA

(c)

(a.2)

(a.1)

(b.1)

(b.2)

A

A

B

200 ms

B

AA

200 ms

A

B

B

B

B

A

Figure 2: Possible Communication Patterns

6



B

B

T < Latency (A to B)

Time

A

A

Proc

1

:

Proc

2

:

T < Latency (B to A)

A to B

Network:

A to B

B to A

p

A

� �

A

� T � p

A

+ �

A

p

B

� �

B

� T � p

B

+ �

B

Figure 1: Relative Timing Constraints

frequency is n times of the receiver frequency and no cyclic dependency is involved, then one

of every n instances of the sending task has to communicate with one instance of the receiving

task. (Examples of this situation are shown in Figures 2.a.1 and 2.a.2. Likewise, for the case in

which the receiver frequency is n time that of the sender frequency and no cyclic dependency is

present, the patterns are shown in Figures 2.b.1 and 2.b.2. For an asynchronous communication, the

sending (receiving) task in low frequency sends (receives) the message to (from) the nearest receiving

(sending) task as shown in Figure 2.a (2.b). The cases where cyclic dependency is considered are

shown in Figures 2.c and 2.d.

2.2 System Model

A real-time DCS consists of a number of processors connected together by a communications

network. The execution of an instance on a processor is nonpreemptable. To provide predictable

communication and to avoid contention for the communication channel at the run time, we make the

following assumptions. (1) Each IPC occurs at the pre-scheduled time as the schedule is generated.

(2) At most one communication can occur at any given time on the network.

5



s

j

i

� s

j�1

i

+ p

i

+ �

i

(4)

8j = 2; : : : ; n

i

+ 1:

� Asynchronous Communication: Tasks communicate with each others by sending and

receiving data or messages. The frequencies of sending and receiving tasks of a communication

can be di�erent. In consequence, communications between tasks may cross the task periods.

When such asynchronous communications occur, the semantics of undersampling is assumed.

When two tasks of di�erent frequencies are communicating, schedule the message only at

the lower rate. For example, if task A (of 10HZ) sends a message to task B (of 5HZ), then

in every 200ms, one of two instances of task A has to send a message to one instance of

task B. If the sending and receiving tasks are assigned to the same processor, then a local

communication occurs. We assume the time taken by a local communication is negligible.

When an interprocessor communication (IPC) occurs, the communication must be scheduled

on the communications network between the end of the sending task execution and the start

of the receiving task execution. The transmission time required to communicate the message

i over the network is denoted by �

i

.

� Communication Latency: Each communication is associated with a communication la-

tency which speci�es the maximum separation between the start time of the sending task and

the completion time of the receiving task.

� Cyclic Dependency: Research on the allocation problem has usually focused on acyclic

task graphs [Ram90, HS92]. Given an acyclic task graph G = fV;Eg, if the edge from task

A to task B is in E then the edge from B to A can not be in E. The use of acyclic task

graphs excludes the possibility of specifying the cyclic dependency among tasks. For example,

consider the following situation in which one instance of task A can not start its execution

until it receives data from the last instance of task B. After the instance of task A �nished

its execution, it sends data to the next instance of task B. Since tasks A and B are periodic,

the communication pattern goes on throughout the lifetime of the application. To be able to

accommodate this situation, we take cyclic dependency into consideration.

The timing constraints described above are shown in Figure 1. For periodic tasks A and B, the

start times of each and every instance of task execution and communication are pre-scheduled such

that (1) the execution intervals fall into the range between p�� and p+� and (2) the time window

between the start time of sending task and the completion time of receiving task is less than the

latency of the communication. In Figure 2, we illustrate examples of all possible communication

patterns considered in this paper. The description of the communications in the task system is in

the form of \From sender-task-id (of frequency) To receiver-task-id (of frequency)". If the sender

4



2 Problem Description

Various kinds of periodic task models have been proposed to represent the real-time system char-

acteristics. One of them is to model an application as an independent set of tasks, in which each

task is executed once every period under the ready time and deadline constraints. Synchronization

(e.g. precedence and mutual exclusion) and communications are simply ignored. Another model

to take the precedence relationship and communications into account is to model the application

as a task graph. In a task graph, tasks are represented as nodes while communications and prece-

dence relationship between tasks are represented as edges. The absolute timing constraints can

be imposed on the tasks. Tasks have to be allocated and scheduled to meet their ready time and

deadline constraints upon the presence of synchronization and communications. The de�ciency

of task graph modeling is inability of specifying the relative constraints across task periods. For

example, one can not specify the minimum separation interval between two consecutive executions

of the same task.

In the work [CA93], we modi�ed the real-time system characteristics by taking into account

the relative constraints on the instances of a task. We considered the scheduling problem of the

periodic tasks with the relative timing constraints. We analyzed the timing constraints and derive

the scheduling window for each task instance. Based on the scheduling window, we presented

the time-based approach of scheduling a task instance. The task instances are scheduled one by

one based on their priorities assigned by the proposed algorithms. In this paper we augment the

real-time system characteristics by considering the inter-task communication on DCS.

2.1 Task Characteristics

The problem considered in this chapter has the following characteristics.

� The Fundamentals: A task is denoted by the 4-tuple < p

i

, e

i

, �

i

, �

i

> denoting the period,

computation time, low jitter and high jitter respectively. One instance of a task is executed

each period. The execution of a task instance is non-preemptable. The start times of two

consecutive instances of task �

i

are at least p

i

� �

i

and at most p

i

+ �

i

apart. Let s

j

i

and

f

j

i

be the start time and �nish time of task instance �

j

i

respectively. The timing constraints

speci�ed in Equations 1 through 4 must be satis�ed.

f

j

i

= s

j

i

+ e

i

(1)

s

n

i

+1

i

= s

1

i

+ LCM (2)

s

j

i

� s

j�1

i

+ p

i

� �

i

(3)

3



1 Introduction

The task allocation and scheduling problem is one of the basic issues of building real-time ap-

plications on a distributed computing system (DCS). DCS is typically modeled as a collection of

processors interconnected by a communication network. For hard real-time applications, the allo-

cation of tasks over DCS is to fully utilize the available processors and the scheduling is to meet

their timing constraints. Failure to meet the speci�ed timing constraints or inability to respond

correctly can result in disastrous consequence.

For the hard real-time applications, such as avionics systems and nuclear power systems, the

approach to guarantee the critical timing constraints is to allocate and schedule tasks a priori.

The essential solution is to �nd an static allocation in which there exists a feasible schedule for the

given task sets. Ramamritham [Ram90] proposes a global view where the purpose of allocation

should directly address the schedulability of processors and communication network. A heuristic

approach is taken to determine an allocation and �nd a feasible schedule under the allocation.

Tindell et al. [TBW92] take the same global view and exploit a simulated annealing technique

to allocate periodic tasks. A distributed rate-monotonic scheduling algorithm is implemented. In

each period a task must execute once before the speci�ed deadline. The transmission times for

the communications are taken into account by subtracting the total communication time from the

deadline and making the execution of the task more stringent.

Simply assuring that one instance of each task starts after the ready time and completes before

the speci�ed deadline is not enough. Some real-time applications have more complicated timing

constraints for the tasks. For example, the relative timing constraints may be imposed upon

the consecutive executions of a task in which the scheduling of two consecutive executions of a

periodic task must be separated by a minimum execution interval. Communication latency can be

speci�ed to make sure that the time di�erence between the completion of the sending task and the

start of the receiving task does not exceed the speci�ed value. The Boeing 777 Aircraft Information

Management System is such an example [CDHC94]. For such applications, the algorithms proposed

in literature do not work because the timing constraints are imposed across the periods of tasks. In

this paper, we consider the relative timing constraints for real examples of real-time applications

in Section 2. Based on the task characteristics, we propose the approach to allocate and schedule

these applications in Section 3. A simulated annealing algorithm is developed to solve the problem

in which the reduction on the search space is given in Section 4. In Section 5, we evaluate the

practicality and show the signi�cance of the algorithm. Instead of randomly generating the ad hoc

test cases, we apply the algorithm to a real example. The example is the Boeing 777 AIMS with

various numbers of processors. The experimental results are shown in Section 5.

2



Allocation and Scheduling of Real-Time Periodic Tasks with

Relative Timing Constraints

�

Sheng-Tzong Cheng and Ashok K. Agrawala

Institute for Advanced Computer Studies

Systems Design and Analysis Group

Department of Computer Science

University of Maryland

College Park, MD 20742

fstcheng,agrawalag@cs.umd.edu

Abstract

Allocation problem has always been one of the fundamental issues of building the applica-

tions in distributed computing systems (DCS). For real-time applications on DCS, the allocation

problem should directly address the issues of task and communication scheduling. In this con-

text, the allocation of tasks has to fully utilize the available processors and the scheduling

of tasks has to meet the speci�ed timing constraints. Clearly, the execution of tasks under

the allocation and schedule has to satisfy the precedence, resources, and other synchronization

constraints among them.

Recently, the timing requirements of the real-time systems emerge that the relative timing

constraints are imposed on the consecutive executions of each task and the inter-task temporal

relationships are speci�ed across task periods. In this paper we consider the allocation and

scheduling problem of the periodic tasks with such timing requirements. Given a set of periodic

tasks, we consider the least common multiple (LCM) of the task periods. Each task is extended

to several instances within the LCM. The scheduling window for each task instance is derived to

satisfy the timing constraints. We develop a simulated annealing algorithm as the overall control

algorithm. An example problem of the sanitized version of the Boeing 777 Aircraft Information

Management System is solved by the algorithm. Experimental results show that the algorithm

solves the problem in a reasonable time complexity.

�

This work is supported in part by Honeywell under N00014-91-C-0195 and Army/Phillips under DASG-60-92-

C-0055. The views, opinions, and/or �ndings contained in this report are those of the author(s) and should not be

interpreted as representing the o�cial policies, either expressed or implied, of Honeywell or Army/Phillips.

1


