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Abstract

The paper presents a Matlab toolbox for simulation of
real-time control systems. The basic idea is to simulate
a real-time kernel in parallel with continuous plant dy-
namics. The toolbox allows the user to explore the timely
behavior of control algorithms, and to study the interac-
tion between the control tasks and the scheduler. From a
research perspective, it also becomes possible to exper-
iment with more flexible approaches to real-time control
systems, such as feedback scheduling. The importance of a
more unified approach for the design of real-time control
systems is discussed. The implementation is described in
some detail and a number of examples are given.

1. Introduction

Real-time control systems are traditionally designed jointly
by two different types of engineers. The control engineer
develops a model for the plant to be controlled, designs
a control law and tests it in simulation. The real-time
systems engineer is given a control algorithm to implement,
and configures the real-time system by assigning priorities,
deadlines, etc.

The real-time systems engineer usually regards control
systems as hard real-time systems, i.e. deadlines should
never be missed. The control engineer on the other
hand expects the computing platform to be predictive
and support equidistant sampling. In reality none of the
assumptions are necessarily true. This is even more obvious
in the case where several control loops are running on
the same hardware unit. The controllers will interact with
each other since they are sharing resources such as CPU,
network, analog/digital converters, etc. see Figure 1.

A new interdisciplinary approach is currently emerging
where control and real-time issues are discussed at all
design levels. One of the first papers that dealt with co-
design of control and real-time systems was [7], where the
sampling rates for a set of controllers sharing the same
CPU are calculated using standard control performance
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Figure 1 Several control loops execute concurrently on one
CPU. The interaction between the control tasks will affect the
control performance.

metrics. Control and scheduling co-design is also found
in [6], where the control performance is specified in
terms of steady state error, overshoot, rise time, and
settling time. These performance parameters are expressed
as functions of the sampling period and the input-output
latency. A heuristic iterative algorithm is proposed for the
optimization of these parameters subject to schedulability
constraints.

Good interaction between control theory and real-time
systems theory opens up for a unified approach and more
integrated algorithms. Scheduling parameters could for
example be adjusted automatically on-line by a kernel
supervisor. Such a setup would allow much more flexible
real-time control systems than those available today. Ideas
on adaption of scheduling parameters are for example
found in [1] and [8].

The development of algorithms for co-design of control
and real-time systems requires new theory and new tools.
This paper presents a novel simulation environment for
co-design of control systems and real-time systems within
the Matlab/Simulink environment. The advantages of using



Matlab for this purpose are many. Matlab/Simulink is com-
monly used by control engineers to model physical plants,
to design control systems, and to evaluate their perfor-
mance by simulations. A missing piece in the simulations,
however, has been the actual execution of the controllers
when implemented as tasks in a real-time system. On the
other hand, most of the existing tools for task simulations,
for instance STRESS [3], DRTSS [9], and the simulator
in [2], give no support for the simulation of continuous
dynamics. Not much work has previously been done on
mixed simulations of both process dynamics, control tasks,
and the underlying real-time kernel. An exception is [5],
where a single control task and a continuous plant was
simulated within the Ptolemy II framework.

The simulator proposed in this paper is designed for
simultaneous simulation of continuous plant dynamics,
real-time tasks, and network traffic, in order to study the
effects of the task interaction on the control performance.

2. The Basic Idea

The interaction between control tasks executing on the
same CPU is usually neglected by the control engineer.
It is however the case that having a set of control tasks
competing for the computing resources will lead to various
amounts of delay and jitter for different tasks. Figure 2
shows an example where three control tasks with the same
execution times but different periods are scheduled using
rate-monotonic priorities. In this case the schedule does not
tell the whole story. In the example, the actual control delay
(the delay from reading the input signal until writing a new
output signal) for the low priority task varies from one to
three times the execution time. Intuitively, this delay will
affect the control performance, but how much, and how
can we investigate this?

To study how the execution of tasks affects the control
performance we must simulate the whole system, i.e. both
the continuous dynamics of the controlled plant and the
execution of the controllers in the CPU. We need not
simulate the execution of the controller code on instruction
level. In fact, it is enough to model the timely aspects of
the code that are of relevance to other tasks and to the
controlled plant. This includes computational phases, input
and output actions, and blocking of common resources
(other than the CPU).

Figure 3 shows the activation graph for the low priority
task from Figure 2 and how it interacts with the continuous
plant. The controller samples the continuous measurement
signal from the plant (y) and writes new control outputs
(u).

Figure 4 provides a schematic view of how we simu-
late the system. A model of a real-time kernel handles the
scheduling of the control tasks and is also responsible for
properly interfacing the tasks with the physical environ-
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Figure 2 The activation graph for three control tasks, with
fixed priorities (high, medium, low), running in a pre-emptive
kernel. The execution times are the same for all three processes.
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Figure 3 This is how the low priority task from Figure 2
interacts with its plant. (u is the control signal,y is the
measurement signal.)

ment. The outputs from the kernel model, i.e. the control
signals, are piecewise constant. The plantdynamics and the
plant outputs, i.e. the measurement signals, are continuous.

3. The Simulation Model

The heart of the toolbox is a Simulink block (an S-
function) that simulates a tick-driven preemptive real-
time kernel. The kernel maintains a number of data
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Figure 4 Schematic view of the simulation setup. The con-
trollers are tasks executing in a simulated pre-emptive kernel.
The controllers and the control signals are discrete while the
plant dynamics and the plant output are continuous. The contin-
uous signals from the plants are sampled by the control tasks.

structures that are commonly found in a real-time kernel:
a set of task records, a ready queue, a time queue,
etc. At each clock tick, the kernel is responsible for
letting the highest-priority ready task, i.e. the running
task, execute in a virtual CPU. The scheduling policy
used is determined by a priority function, which is a
function of the attributes of a task. For instance, a priority
function that returns the period of a task implements rate-
monotonic scheduling, while a function that returns the
absolute deadline of a task implements earliest-deadline-
first scheduling. There currently exist predefined priority
functions for rate-monotonic (RM), deadline-monotonic
(DM), arbitrary fixed-priority (FP), and earliest-deadline-
first (EDF) scheduling. The user may also write his own
priority function that implements an arbitrary scheduling
policy.

The execution model used is similar to thelive task
model described in [9]. During a simulation, the kernel
executes user-defined code, i.e. Matlab functions, that have
been associated with the different tasks. A code function
returns an execution time estimate, and the task is not
allowed to resume execution until the same amount of time
has been consumed by the task in the virtual CPU.

3.1 The Task

Each task in the kernel has a set of basic attributes: A
name, a list of code segments to execute, a period, a release
time, a relative deadline, and the remaining execution
time to be consumed in the virtual CPU. Some of the
attributes, such as the release time and the remaining
execution time, are constantly updated by the kernel during
a simulation. The other attributes, such as the period
and the relative deadline, remain constant unless they are

explicitly changed by kernel function calls from the user
code.

3.2 The Code

The local memory of a task is represented by two local,
user-defined data structuresstates and parameters.
The states may be changed by the user code, while the
parameters remain constant throughout the execution.

To capture the timely behavior of a task, the associated
code is divided into one or several code segments, see
Figure 5. The execution time of a segment is determined
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Figure 5 The execution structure of a task. The flexible
structure supports data dependent execution times and advanced
scheduling techniques.

dynamically at its invocation. Normally, the segments are
executed in order, but this may be changed by kernel
function calls from the user code.

On a finer level, actual execution of statements in a
code segment can only occur at two points: at the very
beginning of the code segment (in theenterCode part) or
at the very end of the code segment (in theexitCode

part), see Figure 6. Typically, reading of input signals,

enterCode exitCode

Code
Segment

Execution Time

Figure 6 A code segment is divided in two parts: the
enterCode part and theexitCode part.

locking of resources, and calculations are performed in
the enterCode part. Writing of output signals, unlocking
of resources, and other kernel function calls are typically
performed in theexitCode part. The following examples
illustrate how code segments can model real-time tasks.



EXAMPLE 1
A task implementing a control loop can often be divided
into two parts: one that calculates a new control signal
and one that updates the controller states. The first part,
called Calculate Output, has a hard timing constraint and
should finish as fast as possible. The timing requirement
for the second part, Update State, is that it must finish
before the next invocation of the task. Two code segments
are appropriate to model the task:

Read Inputs }
Write Outputs

LOOP

CalculateOutput

UpdateState
Sleep

END

CodeCode
Segment Segment

The enterCode of the first segment contains the reading
of the measurement signals, and the calculation of a new
control signal. In the same segment, inexitCode, the
control signal is sent to the actuator. The control delay
of the controller is thus equal to the execution time of
the first segment. TheenterCode of the second code
segment contains Update State. When the last segment has
completed, the task is suspended until the next period by
the kernel.

EXAMPLE 2
The structure of a periodic task that first calculates some
data and then writes to a common resource could look like
this:

Unlock(Mutex)

LOOP

}

Sleep
END

Calculate
Lock(Mutex)
WriteData

CodeCode
Segment Segment

Again, two code segments can capture the timely behavior.
The first code segment contains theCalculate statement,
located in theenterCode part. The enterCode part
of the second code segment contains theLock(Mutex)

andWriteData statements, whileexitCode contains the
Unlock(Mutex) statement. When the last segment has
completed, the task is suspended until the next period by
the kernel.

4. Using the Simulator

From the user’s perspective, the toolbox offers a Simulink
block that models a computer with a real-time kernel. Con-
necting the Computer block’s inputs and outputs (repre-
senting for instance A-D and D-A converters) to the plant,
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Figure 7 The simulation environment offers a Simulink
Computer block that can be connected to the model of the plant
dynamics.

a complete computer-controlled system is formed, see Fig-
ure 7.

The plant dynamics may have to be controlled by
several digital controllers, each implemented as a periodic
control task in the computer. Besides the controllers, other
tasks could be executing in the computer, for instance
planning tasks, supervision tasks, and user communication
tasks.

Opening up the Computer block, the user may study
detailed information about the execution of the different
tasks, see Figure 8. It is for instance possible to study
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Figure 8 Inside the Computer block, it is possible to study
details about the execution of different tasks.

the schedule, i.e. a plot that shows when different tasks
are executing, at run-time. Further statistics about the
execution is stored in the workspace and may be analyzed
when the simulation has stopped.

4.1 Controller Implementation

It is highly desirable that the design of the kernel is
flexible and allows components to be reused and replaced.
Much effort has been put into writing control algorithms
in Matlab, and these algorithms should be straightforward
to reuse. In the toolbox, a control algorithm can be
implemented as a code segment with the following format:

function [exectime,states] = ...

myController(flag,states,params)



switch flag,

case 1, % enterCode

y = analogIn(params.inChan);

states.u = <place control law here>

exectime = 0.002;

case 2, % exitCode

analogOut(params.outChan,states.u)

end

The input variables tomyController are the state vari-
ablesstates, and the controller parametersparams. The
flag is used to indicate whether theenterCode or the
exitCode part should be executed. If theenterCode part
is executed, the function returns the execution time esti-
mateexectime and the new state variables. The control
signal is sent to the plant in theexitCode part.

Remark The output signalu is not normally regarded
as a state variable in a controller. In this example, however,
we need to store the value ofu between two invocations
of the myController function.

4.2 Configuration

Before a simulation can start, the user must define what
tasks that should exist in the system, what scheduling
policy should be used, whether any common resources
exist, etc. The initialization is performed in a Matlab script.

EXAMPLE 3
Three dummy tasks are initialized in the script below. The
tick-size of the kernel is set to 0.001 s and the scheduling
type is set to rate monotonic. The dummy code segment
empty models a task that computes nothing for a certain
amount a time. Each task is assigned a period, and a
deadline which is equal to the period.

function rtsys = rtsys_init

% 1 = RM, 2 = DM, 3 = Arbitrary FP, 4 = EDF

rtsys.st = 1;

rtsys.tick_size = 0.001;

T = [0.10 0.08 0.06]; % Task Periods

D = [0.10 0.08 0.06]; % Deadlines

C = [0.02 0.02 0.02]; % Computation times

rtsys.Tasks = {}

code1 = code('empty',[],C(1))

code2 = code('empty',[],C(2))

code3 = code('empty',[],C(3))

rtsys.Tasks{1}=task('Task1',code1,T(1),D(1));

rtsys.Tasks{2}=task('Task2',code2,T(2),D(2));

rtsys.Tasks{3}=task('Task3',code3,T(3),D(3));

The initialization script is given as a parameter to a
Computer block in a Simulink model. Simulating the model

for one second produces, among other things, the schedule
plot shown in Figure 9.
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Figure 9 The schedule resulting from the simulation in
Example 3. The bottom graph shows when Task 1 is running
(high), ready (medium) or blocked (low). The other two graphs
represent Task 2 and Task 3.

4.3 Connecting a Continuous Plant

Figure 10 shows a Simulink diagram where a Computer
block is connected to three pendulum models. The contin-
uous plant models are described by other Simulink blocks.
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Figure 10 A Simulink diagram where three continuous pen-
dulum models are connected with the real-time kernel. The sim-
ulation result from this system is both the activation graph and
the output from the continuous plants.

A real-time system with three control loops are created
in Example 4. One code segment namedmyController

is associated with each task.

EXAMPLE 4
function rtsys = rtsys_init



% Scheduling type, 1=RM, 2=DM, 3=FP, 4=EDF

rtsys.st=1;

rtsys.tick_size=0.001;

% Desired bandwidths

omega=[3 5 7];

% Sampling periods

T=[0.167 0.100 0.071];

for i=1:3

% Design controller

params=ctrl_design(omega(i),T(i));

% Initialize control code

states.xhat=[0 0]';

% The controller reads from input i

params.inChan=i;

% The controller writes to output i

params.outChan=i;

sfbcode=code('myController',states,params);

% Create task

tasks{i}=task(['Task 'num2str(i)],...

sfbcode, T(i), T(i));

end

rtsys.tasks=tasks;

The outputs from a simulation of this system are a set
of continuous signals from the plants together with an
activation graph. It is hence possible to evaluate the
performance of the real-time systems both from a control
design point of view and from a scheduling point of view.

5. A Co-Design Example
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Figure 11 The setup from described in Section 5. Three
inverted pendulums with different lengths are controlled by three
control tasks running on the same CPU.

Using the simulator, it is possible to evaluate different
scheduling policies and their effect on the control perfor-
mance. Again consider the problem of controlling three
inverted pendulums using only one CPU, see Figure 11.

The inverted pendulum may be approximated by the fol-
lowing linear differential equation

θ̈ = ω2
0θ + ω2

0u/g,

whereω0 =
√

g/l is the natural frequency for a pendulum
with length l. The goal is to minimize the angles, so
for each pendulum we want to minimize theaccumulated
quadratic loss function

Ji(t) =
∫ t

0
θ 2

i (s)ds. (1)

Three discrete-time controllers with state feedback and ob-
servers are designed. Sampling periods for the controllers
are chosen according to the desired bandwidths (3, 5 and
7 rad/s respectively) and the CPU resources available. The
execution times of the control tasks,τ i, are all 28 ms, and
the periods areT1 = 167 ms,T2 = 100 ms, andT3 = 71 ms.

Task objects are created according to Example 4. Also,
similar to Example 1, the control algorithm is divided into
two code segments, Calculate Output and Update State,
with execution times of 10 and 18 ms respectively.

In a first simulation, the control tasks are assigned con-
stant prioritiesaccording to the rate-monotonic schema,
and the two code segments execute at the same priority. In
a second simulation, the Calculate Output code segments
are assigned higher priorities than the Update State seg-
ments, according to iterative priority/deadline assignment
algorithm suggested in [4]. Theaccumulated loss function
for the slow pendulum (T1 = 167 ms) is easily recorded in
the Simulink model, and the results from both simulations
are shown in Figure 12.
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Figure 12 The accumulated loss, see Equation (1), for the low
priority controller using normal and improved scheduling. The
cost is substantially reduced under the improved scheduling.

A close-up inspection of the schedule produced in the
second simulation is shown in Figure 13. It can be seen
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Figure 13 The activation graph when the improved scheduling
strategy is used. Note that the control delay for the low priority
task is approximately the same as for the other tasks.

that the faster tasks sometimes allow the slower tasks
to execute, and in this way the control delays in the
slower controllers are minimized. The result is a smaller
accumulated loss, and thus, better control performance.

6. Simulation Features

Further features of the toolbox are the support for common
real-time primitives like mutual exclusion locks, events
(also known as condition variables), and network commu-
nication blocks.

6.1 Locks and Events

The control tasks do not only interact with each through
the use of same CPU, but also due to sharing other
user-defined resources. The kernel allows the user to
define monitors and events, for implementing complex
dependencies between the task. The syntax and semantics
of themutex andevent primitives are demonstrated by a
small example. Two tasksRegul and OpCom are sharing
a variable calleddata. To ensure mutual exclusion the
variable is protected by the mutex variableM1. Associated
with M1 is a monitor event calledE1. The Regul-task
consists of two code segments calledrseg1 and rseg2,
that are shown in Example 5. Each time theRegul-task
is released it tries to lock the monitor variableM1. Once
the monitor is locked it may access the shared data. If the
value of thedata-variable is less than two, it waits for the
eventE1 to occur.

EXAMPLE 5
function [exectime, states] = ...

rseg1(flag,states,params)

switch flag,

case 1, % enterCode

if lock('M1')

data = readData('M1');

if data < 2

await('E1');

exectime = 0;

else

exectime = 0.003;

end

else

exectime = 0;

end

case 2, % exitCode

unlock('M1');

end

function [exectime,states] = ...

rseg2(flag,states,params)

switch flag,

case 1, % enterCode

y = analogIn(params.inChan);

states.u = -50*y;

exectime = 0.003;

case 2, % exitCode

analogOut(params.outChan,states.u)

end

The locks and the events are designed similarly to how
monitors and events are implemented in a standard real-
time kernel, i.e. using queues associated with the monitor
for storing tasks blocking on locks or events. The execution
time used for trying, but failing to lock, is in the example
above zero.

6.2 Network Blocks

It is possible to include more than one Computer block
in a Simulink model, and this opens up the possibility
to simulate much more complex systems than the ones
previously discussed. Distributed control systems may be
investigated. Furthermore, fault-tolerant systems, where,
for redundancy, several computers are used for control,
could also be simulated. In order to simulate different
communication protocols in such systems, communication
blocks for sending data between the different Computer
blocks are needed. Figure 14 shows a simulation setup
for a simple distributed system where the controller, and
the actuator and sensor, are located at different places.
Besides the kernel blocks there is a network block for
communication. The network block is event driven, and
each time any of the input signals change, the network
is notified. The user needs to implement the network
protocol, since the blocks simply provides the mechanisms
for sending data between kernels.
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Figure 14 A distributed control system where the sensor
and the CPU are dislocated. The controller and the sensor are
implemented as periodic tasks running on separate CPUs.

6.3 High Level Task Communication

One of the main reasons for designing the kernel and the
network blocks was to facilitate the simulation of flexible
embedded control system, i.e. systems where the task set
is allowed to change dynamically and the underlying real-
time system must compensate for this. From a control
theory perspective we might say that we want to design
a feedback connection between the control tasks and the
scheduler, see Figure 15. To support the simulation of

Scheduler

Processes

Controllers

Figure 15 The control tasks and the task scheduler are
connected in a feedback loop.

feedback scheduling, there must be ways for the tasks and
the task scheduler to communicate. Therefore the kernel
also supports system-level message passing between tasks.

7. Conclusions

This paper presented a novel simulator for the co-design of
real-time systems and control systems. The main objective
is to investigate the consequences on control performance
of task interaction on kernel level. This way, scheduling
algorithms may be evaluated from a control design per-

spective. We believe that this is an issue of increasing im-
portance. There are many more things to be implemented
and improved before this block set will become a truly
useful tool. Currently the kernel is tick-based, and has lit-
tle support for external interrupts. The next version of the
kernel block will probably be event-based in order to better
support interrupts and event-based sampling. To make the
simulations more realistic, the scheduler itself could also
be modeled as a task that consumes CPU time. This would
also enhance the possibilities for the user to implement
new scheduling strategies for control tasks.
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