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Abstract 

In this paper; we describe optimal algorithms for  incorpo- 
rating error recovery in the imprecise computation model. In 
that model eack task compriser a mandatory and an optional 
part. The mandatory part must be completed within the task’s 
deadline even in the presence of faults and a reward function 
is associated with the execution of each optional part. We ad- 
dress the problem of optimal scheduling in an imprecise com- 
putation environment so as to maximize total reward while si- 
multaneously guaranteeing timely completion of recovery op- 
erations when faults OCCUI: Furthermore, in order to prevent 
run-time overhead we enforce that no changes in the optimal 
schedule should be necessary as long as no error is detected 
in mandatory parts. Independent imprecise computation tasks 
as well as tasks with an end-to-end deadline and linearprece- 
dence constraints are considered. We present polynomial-time 
optimal algorithms for  models with upper and lower bounds 
on execution times of the optional parts and for  reward func- 
tions represented by general nondecreasing linear and concave 
functions. 

1 Introduction and Related Work 

In a hard real-time system each task must provide a logi- 
cally correct output before its deadline. The consequences of 
missing a deadline in a hard real-time environment may be seri- 
ous, even catastrophic. On the aother hand, an approximate but 
timely result may be acceptable in many application areas. Ex- 
amples of such applications are multimedia applications [ 151, 
image and speech processing [6, 8, 181, time-dependent plan- 
ning [5], robot controVnavigation systems [20], medical deci- 
sion making [IO], information gathering [9], real-time heuristic 
search [ 1 I] and database query processing [ 191. 

The imprecise computation approach is a technique of im- 
proving the responsiveness and resource utilization of systems 
where requirements are less stringent than hard-real time envi- 
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ronments [ 17, 121. In this model, every real-time task is com- 
posed of a mandatory part and an optional part. The mandatory 
part should be completed by the task’s deadline to yield an out- 
put of minimal quality. The optional part may be executed after 
the mandatory part while still before the deadline, if the appli- 
cation objectives justify doing so. The quality of the final result 
improves as the optional part runs longer. In the previous stud- 
ies it is generally assumed that the quality improvement is a 
linear function of the optional service time; more general and 
possibly non-linear functions are usually not considered. 

An alternative model is Increasing-reward-with-increasing- 
service (IRIS model) [7], where each task can be considered as 
entirely optional and a task executes for as long as the sched- 
uler allows. However, the more general case of non-linear con- 
cave reward functions are addressed in this work. Extensions 
to models with mandatory parts and dynamic arrivals are de- 
scribed in [7]. The notion of reward in the IRIS model is anal- 
ogous to that of precision error in the Imprecise Computation 
model. 

Linear and general concave functions represent most of 
the real-world applications such as those mentioned above 
[6, 8, 18, 15, 5 ,  20, 1 I ,  9, 191. Note that the first derivative 
of a nondecreasing concave function is nonincreasing. In this 
paper, we focus on linear and concave reward functions. Max- 
imization of the total reward in a system of tasks with 0/1 con- 
straints, where no reward is accrued for apartial execution was 
shown to be NP-complete [ 171. Continuous convex reward 
functions results also in an NP-Hard problem [Z]. 

Although the imprecise computation models allow for 
greater scheduling flexibility, the timely completion of manda- 
tory parts, even in the presence of faults, is still of utmost im- 
portance. A first study incorporating error recovery operations 
in the imprecise computation model has appeared in [3]. An 
extension to on-line scheduling was described in [4]. An im- 
portant assumption of these works is the a priori knowledge 
of worst-case fault profile per task. This information is much 
more difficult to obtain as compared to the maximum number 
of faults of the entire task set: without information about the 
fault profile one should provison for simultaneous occurrences 
of all the faults for all the tasks, which may yield the rejec- 
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tion of many task sets and the low CPU utilization. Further- 
more, even when the task set is accepted, the schedule needs to 
be updated on-line whenever a mandatory part completes suc- 
cessfully (without failure). As the authors observe in [ 3 ] ,  this 
approach becomes prohibitively expensive in systems with low 
fault rates, which is usually the case. Also, the reward (error) 
functions are assumed to be all linear and all tasks indepen- 
dent. In this paper, we consider the more general case of con- 
cave reward functions and also examine task sets with linear 
precedence constraints along with independent tasks. More- 
over, our fault model assumes at most k faults within the sys- 
tem and requires that the FT-Optimality of the schedule be pre- 
served as long as no fault occurs. This drastically reduces the 
run-time overhead when compared with [ 3 ] ,  since faults are 
unusual events in  every practical system. 

The work in this paper is based on the observation that, even 
when the system is overloaded, the time assigned to optional 
parts in the imprecise computation model provides opportu- 
nities for recovery of tasks, in case an error is detected. We 
address the problem of optimally assigning service times to 
tasks in order to simultaneously guarantee error recovery and 
maximize total reward. Further, our solution has the desirable 
property that i t  eliminates any dynamic re-adjustment of the 
schedule (hence, run-time overhead), as long as no errors are 
encountered. We present polynomial-time solutions to fault- 
tolerant scheduling problems with upper bounds on service 
times; our solution works for arbitrary non-decreasing concave 
reward functions. 

2 System Model 
2.1 Task Model 

We consider a set T composed of R imprecise computation 
tasks T1, Tz, . . . , Tn , all ready to run on a uniprocessor system. 
Each task Ti consists of a mandatory part M i  and an optional 
part Oi. The length of the mandatory part is denoted by mi; 
each task must receive at least mi units of service time in order 
to provide output of acceptable quality. The optional part Oi 
becomes ready for cxecution only when the mandatory part Mi 
completes. 

We analyze and provide solutions for two models which dif- 
fer by the nature of precedence relations. The chain model 
considers linear precedence constraints among tasks with a 
common end-to-end deadline D ,  which is also equal to the 
period if the task set is periodic. In view of precedence con- 
straints, an optional part Oi must execute after the mandatory 
part Mi and before Mi+l. The independent tasks model is 
identical to the chain model with the only exception that differ- 
ent tasks have no dependence relations. However, a mandatory 
part A4i must still complete before 0; may start. 

Associated with each optional part of a task is a reward 
function & ( t )  which indicates the reward accrued by task Ti 
when it  receives t units of service beyond its mandatory por- 
tion. R,(t)  is of the form: 

where Fi is a nondecreasing, concave and continuously dif- 
ferentiable function over nonnegative real numbers and oi is 
the length of entire optional part 0;. Note also that in this 
formulation, by the time the task's optional execution time t 
reaches the threshold value oi, the reward accrued ceases to 
increase. 

Given a task set T, a schedule for T determines the amount 
of service each task receives. A feasible schedule exists if and 
only if it is possible to complete all the mandatory parts be- 
fore the deadline; it is clear that this condition is equivalent to 
Cy=l mi 5 D. If d = D - mi is the slack available for 
optional portions, then the foregoing discussion indicates that 
no feasible schedule exists if d < 0. 

The Total Reward of an imprecise computation schedule S 

is REWs = R,(t ,)  where t i  is the amount of service that 

optional part Oi receives in S. A feasible schedule is optimal if 
i t  muximizes the total reward accrued. 

n 

i = l  

2.2 Fault Model 
We assume that at most k faults may occur during the ex- 

ecution of the task set. However, we develop and present our 
methodology first in  the context o f  a single fault model (that 
is k = 1) for the sake of simplicity. The extension of this 
framework to the multiple faults case is straightforward and 
presented in Section 4.2. 

The results are produced or committed at the end of M i  and 
then again at the end of Oi. Consistency or acceptance checks 
are performed before the results are committed. If an error 
in  a task Ti is detected at the end of its mandatory part M i ,  

then a recovery mechanism is invoked, either to re-execute the 
mandatory part of the task, or to invoke a recovery block. We 
refer to this as the recovety of a faulty task. The execution time 
of the recovery block associated with Mi is indicated by rj. If 
an error is detected at the end of the optional part Oi, the result 
of the optional part is not committed. 

In general, a feasible schedule is said to be Fault-Tolerant 
(FT) if it allows the timely recovery of an error detected in any 
of the mandatory parts. A schedule which allows for recovery 
of any single fault while maximizing the total reward is called 
a Fault-Tolerant Optimal Schedule (IT-Optimal). Similarly a 
k-FT-Optimal Schedule may be defined for k faults. 

We note that in  an Imprecise Computation environment, op- 
tional parts do not impose stringent hard real-time require- 
ments and provide intrinsically a sort of slack for recovery 
operations of mandatory parts. However, one needs to keep 
track of the optional parts and schedule them appropriately so 
as to be able to use their CPU allotments for recovery. Fur- 
thermore, we need a systematic approach to generate an IT- 
Optimal schedule. 
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For a task set T, Fault Tolerant Reward Ratio (FTRR) is de- 
fined as the ratio :/$::', where REWNFT and REWFT 
are the total rewards of the Optimal schedule and the FT- 
Optimal schedule for T, respectively. It is clear that FTRR 
is a real number in the range [ O ,  11 unless an FT schedule does 
not exist for T (in which case FTRR is undefined). 

3 Generating FT-Optimal Schedules 
Before dealing with the optimality issue, we first present a 

few fundamental results regarding the existence of FT sched- 
ules for a given task set T. 

Let Slack(i ,  S) be the sum of optional service times sched- 
uled after Mi in  schedule S. We will omit the parameter 
S whenever the schedule, involved is clear from the con- 
text. A task Ti will be said to satisfy the slack constraint if 
Slack(i, S) 2 r , .  

Proposition 1 A schedule S of imprecise computation tasks is 
Fault Tolerant if the slack constraint is satisjed by everv. task 
(i.e., V i  Slack(i ,  S )  2 r , ) .  

Proof: Consider a system in which the slack constraint is sat- 
isfied by each task Tj. If an error is detected when Mj was 
expected to complete, we initiate the recovery operation which 
will take at most rj time units. Due to this additional workload, 
the execution of mandatory parts which are scheduled after M j  
now may have to be delayed. However, each of them will be 
able to complete by the deadline, since the sum of optional 
parts which will "provide" slack for recovery of Mj is at least 
r j .  Notice that the optional parts scheduled after Mj may not 

0 execute as a result of the recovery of Mj . 

Theorem 1 An FT schedule exists for a set of imprecise coni- 
putation tasks T ifand only i fc l  = D - Cy=, nii > max{ r i } .  

Proof: If S is an FT schedule, then all the slack constraints 
and in particular, that of the task with the largest recovery time 
( m a x { r i } )  should be satisfied. This implies that the "total 
slack" of the system should be at least equal to this amount. 

Conversely, if d 2 mar{ri},  then there exists at least one 
FT schedule, namely the one in which first all the mandatory 
parts are scheduled and then the optional part of last task T, 
with t ,  = d. 0 

3.1 The Independent Tasks Model 

Let T= { T I ,  . . . , Tn} bc a set of imprecise computation 
tasks with no precedence constraints. In other words, we have 
the flexibility of scheduling the mandatory and optional parts 
in  any order, except for the restriction that an optional part 0, 
may not start executing before Mi completes successfully. 

Consider first the (Non-FT) optimal solution of the problem. 
Definitely, all mandatory parts should complete before D. The 
optional parts may execute only for d units of time, where d is 
the total slack, Furthermore, since all the reward functions are 

nondecreasing by assumption, this slack may be used fully by 
optional parts. 

However, when we intend to generate an FT-Optimal sched- 
ule, we should make sure that all the slack constraints are sat- 
isfied. Consider the schedule in Figure 1. Having indepen- 
dent tasks allows us to schedule all optional parts ajier all 
mandatory parts. It should be obvious that this choice enforces 
Slack(i) for every task Ti to be d, which is the maximum that 
can be achieved. So this form of schedule should satisfy the 
slack constraints automatically, if an FT schedule exists for T. 
In fact, no FT-Schedule exists if this one is not fault tolerant. 
Note that one still needs to determine the optimal distribution 
of the total slack d among optional parts. 

Figure 1. An FT-optimal schedule for independent tasks 

Thus, we obtain the formulation of the following nonlinear 
optimization problem. Find t l ,  . . . , t ,  so as to: 

n 

i = l  
subject to C t i = d  (3) 

0 5 t i  i = l...n (4) 

The distributionof available slack d to optional parts should 
satisfy the constraints 0 5 ti ( i  = 1 , 2 . .  . n), since nega- 
tive service times do not have any physical interpretation. The 
formulation just obtained is an instance of a generic nonlinear 
optimization problem (denoted by MAX) in  which the inequal- 
ities in  Equation (4) are replaced by the more general form: 

l i  5 ti  i = l...n (5) 

The algorithm ALG-MAX(R, L ,  d )  solves this problem and 
is presented in Section 5. It takes as input the set R = 
{ R I , .  . . , Rn}  of reward functions, the set L = { l l , .  . .,In} 
of lower bounds, and the available slack d and produces opti- 
mal ti values maximizing (2) and satisfying (3) and (5). 

Observation 1 For an independent task set T, FTRR = 1 i f a  
Fault Tolerant schedule exists for T (that is, inax{ r i }  5 d). 

The observation is based on the fact that optimal t i  values 
for Non-FT and FT versions of the problem are the same: both 
sets of optimal solutions are provided by ALG-MAX. In case 
of the Non-FT schedules, i t  is possible to schedule the manda- 
tory and optional parts in  any order, subject to the constraint 
that Oi executes after A4i. However, one needs to commit to 
the generic schedule of Figure 1 for the FT case to guarantee 
that FTRR is 1. 
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3.2 The Chain Model 
In case that 2'1, . . . , T, have linear precedence constraints 

among them (i.e., they form a chain), the order of execution is 
pre-determined as shown in Figure 2. 

MI 01 M ?  M J  

0 5 ti i =  1 ,2 ,  ... n (8) 

rj < . .  t j  i = 1,2,  ... n (9) 
n 

- 
3 =: 

MI MZ OZ M3 03 

Figure 2. A chain of imprecise computation tasks 

For a chain of imprecise computation tasks, achieving fault 
tolerance is not always without cost. To see this, consider the 
chain of tasks T I ,  Tz and T3 with D = 20, shown in the table 
that follows. 

92 

Figure 3. (a) An optimal but Non Fault Tolerant schedule 
(b) An FT-Optimal schedule 

Note that the FT-Optimal schedule has a total reward of 
50, in  contrast to the reward of 60 for the Non-FT optimal 
schedule. Unlike the case of independent tasks, in  a chain, 
optional parts cannot be arbitrarily swapped with mandatory 
parts. Hence, we have no freedom of scheduling optional parts 
late and automatically satisfying the slack constraints. If an er- 
ror is detected at the end of M ,  's execution, then the recovery 
operation has to rely solely on time reserved for 0,. Therefore, 
t ,  should be at least as large as r,. Similarly, if a fault occurs 
in Mn-l, the recovery will succeed if and only if the sum of 
optional service times t ,  and t,-l is not less than r,-1. 

As a consequence, ALG-MAX needs to be modified to ex- 
plicitly incorporate slack constraints in the optimization prob- 
lem. Clearly, Slack(i)  = cy=itj for each task 7;:. Also, 
slack constraints can be expressed as Slack(i)  2 rj for i = 
1 , 2 .  . . n. Thus, the problem CHAIN can be formalized as: 

maximize 5 Ri (tz (6)  
i= l  

n 

i = l  
subject to Cti=d (7) 

This is another nonlinear optimization problem with equal- 
ity and inequality constraints. Even though the addition of 
new constraints makes the problem more difficult, i t  is still 
tractable. The Algorithm ALG-CHAIN (see Figure 4) in- 
vokes ALG-MAX repeatedly (lines 7 and 15), but with dif- 
ferent lower bound sets ( L )  each time. 

Informally, the solution is based on the observation that 
once the slack constraints are satisfied, the problem merely re- 
duces to an instance of MAX. However, care must be taken 
not to get a sub-optimal solution while trying to satisfy slack 
constraints. 

ALG-CHAIN, which assigns FT-Optimal ti values, pro- 
ceeds in two phases. In the first phase, we focus solely on 
satisfying the slack constraints by processing the chain i n  a 
bottom-up manner. During this phase, we apply a least com- 
mitment strategy in that we provide only optimal distribution 
of minimum slack rnai{r i }  which can yield an FT schedule. 
During the second phase, we make optimal distribution of the 
total slack d to all the tasks in the chain, considering the output 
of the j u t  phase as lower bounds on the execution times. 

Algorithm ALG-CHAIN 
1 S e t t l = t 2 =  . . .  t , = O  
2 Set 11 = 12 = . . . I ,  = 0 /*initial lower bounds * I  
3 I* First phase: Bottom-up processing of the chain * I  
4 Set t ,  = slack = I ,  = r, I* Process T, first *I  
5 For j = n - 1 downto 1 do if r j  > slack 

7 I* distribute rj among Tj . . . T, * I  
8 lnvoke ALG-MAX({Rj, . . . , R,,}, { l j ,  . . . ,In}, rj) 
9 Set slack = rj 
I O  For p = j to R do set 1, = t ,  

12 I* Second Phase *I 
13 I* Slack constraints being satisfied, 
14 distribute the entire slack d optimally 
IS while adhering to current lower bounds ( 1 ;  } *I 
16 lnvokeALG-MAX({RI,. . . , R,,}, (11, .  . . , l n } ,  d )  

6 {  

I* Adjust lower bounds * I  
11 1 

17 Output ti, t2 . . . t ,  

Figure 4. Algorithm to solve CHAIN 

Initially, all t i  values are set to 0. We start by setting t ,  = 
T,  (note that, from (9), this is minimum requirement for the last 
task of the chain). We also increase the lower bound 1, for the 
last task from 0 to 1, = T,, thereby ensuring that t ,  will not 
be decreased in the iterations yet to come. Then we consider 
the next slack constraint, or rather its "least committed form" 
which is 2 ,  + t , - 1  = r,-1. If this is already satisfied by the 
t ,  = T,  assignment (i.e., if ~ , - 1  5 r,), we do not make any 
changes to 1,-1 or t , .  Otherwise, the total slack should be 
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increased to the minimum acceptable level of rn-l .  Hence, 
we invoke ALG-MAX to distribute r,-1 optimally between t ,  
and 1 , - 1  (line 7). 

Finally, before processing the next task (Tn-2), we commit 
to the current t ,  and t,-1 values as the lower bounds for the 
next iteration (line 9), since they can not be reduced because 
of FT considerations. We continue processing the remaining 
slack constraints in the same fashion. 

Notice that during the first phase, after AIS-CHAIN pro- 
cesses Tj, the value of s l ack  is equal to the sum of optional 
assignments made so far, that is, Eknzjtk. This in  turn, is 
equal to rnaz{rj, . . . , rn} (minimum acceptable slack to ob- 
tain an FT-schedule for the subchain Tj, . . . , Tn). 

When we finish processing the whole chain in this fash- 
ion, Phase 2 invokes ALG-MAX to distribute optimally any 
remaining slack among all optional parts. This is done by 
distributing the slack d among all tasks while adhering to 
the lower bounds provided by the outcome of the first phase 
(which has satisfied slack constraints while still remaining in 
the search space containing optimal values, as proven in Sec- 
tion 6). 

We emphasize the fact that the optimality of the least com- 
mitment strategy is based on concave and nondecreasing prop- 
erties of reward functions. A formal correctness proof is pre- 
sented in the Appendix. The time complexity of ALG-CHAIN 
is closely related to that of ALG-MAX and is discussed in Sec- 
tion 5. 

Before examining the FTRR, let us consider the Non-FT 
Optimal solution for the case of chain. In this case, slack con- 
straints do not need to be incorporated into the optimization 
problem and the pre-determined order of execution does not 
introduce any complications: i t  is sufficient to solve the prob- 
lem MAX to compute optimal t i  values and then produce a 
schedule with the order shown in Figure 2. 

Theorem 2 For a chain, FTRR = 1 ifand only ifthe solution 
of the nonlinear optimization problem MAX satisjies the slack 
constraints given by inequalities (9)  of problem CHAIN. 

Proof: Suppose that the solution of MAX (Non-FT optimal 
solution) satisfies all the slack constraints given by inequali- 
ties (9) of problem CHAIN. Then clearly it is contained in the 
search space (which is a rectangular region) of the algorithm 
that solves CHAIN. Hence, this algorithm, assuming that it be- 
haves correctly, will produce the solution with the same re- 
ward. Thus the ratio /;;:& is 1 .  

Conversely, suppose that F IRR= 1. This can only happen 
if the algorithm ALG-MAX and ALG-CHAIN produce two 
solutions with the same total reward. For the sake of contra- 
diction, assume that the solution of MAX violates some of the 
slack constraints of CHAIN and yet FTRR is 1. However, ob- 
serve that any solution of CHAIN should satisfy the constraints 
(3) and (4), since they are common in both problems. This im- 
plies that the solution of CHAIN which yielded a FTRR of 1 ,  

would also be the solution of MAX and satisfy all the slack 
constraints; contradicting the assumption. 

0 

Theorem 2 implies that, in general, an FTRR of 1 may not 
be achievable and one needs to invoke ALG-MAX and ALG- 
CHAIN to compute actual FTRR. Nevertheless, in case that 
the reward functions are all linear, there is a class of task sets 
(those with identical rewards) in  which FJXR is always 1 .  

4 Refinements and Extensions 

4.1 Adaptive Scheme 

The algorithms presented in Section 3 provide the optimal 
static schedules, in the sense that they simultaneously maxi- 
mize the total reward while guaranteeing timely completion of 
recovery operations. However, they do not (and should not) 
make any assumptions about the mandatory part dtiring which 
a fault occurs. Furthermore, i t  is assumed that once a fault has 
occurred in some Mi and recovery is completed, no optional 
part is allowed to run due to the possibility of interfering with 
other mandatory parts. 

Optimal redistribution of the remaining slack among op- 
tional parts yet to execute can provide an adaptive FT- 
Optimal schedule. For example, consider the FT-Optimal 
schedule given in Figure 3b. If an error is detected at the end 
of M I ,  the recovery operation will be initiated. At the end 
of the recovery (at 2 = S), the system has still a total slack 
of 3 time units for the remaining optional parts. Furthermore, 
we can assume that no more faults will occur, since the fault 
has been already encountered. By re-distributing optimally the 
slack available, we could execute 0 3  for 3 time units, thereby 
obtaining a total reward of 27 units. The resulting adaptive 
schedule is shown in Figure 5. 

Error 
Dcsclcd 1 

3 6 17 20 12 

Figure 5. Adaptive adjustment of FT-Optimal schedule 

The foregoing discussion shows that, after recovering from 
an error, we can dynamically invoke ALG-MAX to re- 
distribute optimally the available slack. Alternatively, instead 
of invoking ALG-MAX after a fault, one may produce and 
store n alternative schedules a priori, corresponding to the 
n possible fault scenarios. In this case, the run-time system 
should be responsible for “switching” to the appropriate sched- 
ule when a fault occurs; in  other words, we provide optimal- 
ity dynamically in a way similar to that of scenario or mode 
changes [ 13, 141. 
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4.2 Extension to k Faults Model 

Suppose that k faults are to be tolerated during the execu- 
tion of the task set T, instead of a single fault. In this case, we 
might have more than one recovery block associated with sub- 
sequent errors of a task. We assume that the execution time of 
all recovery blocks of task Ti is P , .  Clearly, the worst-case hap- 
pens if  all k errors occur during the execution and subsequent 
recovery (or recoveries, as the case may be) of the task that has 
the largest recovery time. Hence, it is possible to generalize 
Theorem 1, with an analogous proof: 

Theorem 3 A set of imprecise computation tasks T can be 
scheduled while tolerating k faults if and only i f d  2 k ‘ 
mux{  ri}. 

If T comprises only independent tasks, then i t  is not diffi- 
cult to check that the form of the schedule shown in Figure 1 is 
again optimal. Once and when the condition expressed in The- 
orem 3 is satisfied, we can invoke ALG-MAX and compute 
optimal t i  values. 

If T is composcd of a chain of tasks, then the “slack con- 
straints” have to be modified (tightened) accordingly. It should 
be clear that, in  this case, the necessary and sufficient condition 
to recover from k errors is to have the sum of the reniaining 
optional parts (i.e., Slack( i ) )  at least equal to k . mas { r a } .  

Then the slack constraints can be restated as: 
a = % ,  ..., n 

I L  

k .  inas {ra)<Cta i = 1 , 2 ,  . . .  , n  (10) 
a = a , .  . . , n 

a=i  

In other words, i t  is sufficient to scale the lower bounds up 
in order to tolerate any k faults and Algorithm ALG-CHAIN 
may be used as i t  is. Indeed, it  is easy to see that when k = 1, 
Equation (10) is equivalent to the set of slack constraints given 
in Equation (9). 

5 Solution of MAX 
In this section, we present the solution of the generic non- 

linear optimization problem MAX, characterized by 3-tuple 
( R ,  L ,  d) where R is the set of the reward functions, L is the 
set of lower bounds that any solution must adhere to and d is 
the total slack. MAX consists of finding 2 1 ,  . . . , I n  so as to: 

maximize 2 & ( t i )  
i = l  

subject to k t i = d  
i = l  

li 5 t i  i = l...n 

The reward functions R, ( t i )  in  the above formulation are as 
in Equation 1 and hence are non-differentiable at t i  = oi V i .  In 
the following discussion, we denote by “entire optional part of 
task T,” the quantity muo{li, oi}. Note that a lower bound li 

may be larger than the reward function’s upper bound oi in the 

problem specification, which is usually a result of fault toler- 
ance requirements. 

As a preprocessing phase, we check a few conditions which 
immediately yield trivial solutions. Specifically, 

0 if the available slack d is not large enough to accom- 
modate all lower bounds 1 1 ,  12,  . . . , I ,  (in other words if 

l i  > d), then the constraint set is inconsistent and 
no solution exists. 

if Cyzl li = d, then the unique solution is t i  = l i ,  1 5 
i 5 n. 

0 if the available slack d is large enough to accommodate 
all optional parts entirely (i.e. if d 2 Cyzl .maz{ l i ,  oi})  
then we first set t i  = ~ n u x { l i , o i } V i .  That is, we 
use every optional part fully. Any remaining slack d - 

muz{ l i ,  oi} can be arbitrarily distributed among 
optional parts of tasks T I ,  . . . , T,. For simplicity, we 
choose to increase 2 , .  

If none of the above conditions holds, then for every task Tj 

such that l j  2 oj we set t j  = l j  and we reduce the available 
slack d accordingly. Note that t j  does not need to be set to a 
value larger than l j  since the reward of does not increase 
beyond oj. Finally, the preprocessing procedure completes by 
obtaining another optimization problem, which involves only 
the tasks such that l ,  < 0;. For every remaining task Ti, we first 
reserve li units of slack, reduce d and oi by l i ,  define f i ( t i )  as 
F,(ti + l i ) ,  and get the formulationof the concave optimization 
problem OPT-LU (i.e., with lower and upper bounds): 

maximize 2 f i ( t i )  ( 1  1 )  
i = l  
n 

i = l  
subject to Cti=d (12) 

ti < oi i = 1,2 ,  ... n (13) 
0 5 ti i = 1,2,  ... n (14) 
- 

Note that after the preprocessing phase (i.e., for problem 
OPT-LU), 0 < d < cy=, oi and oi > OVi. The con- 
cave optimization problem OPT-LU can be solved in time 
O(n  . logn)  if all fi()’s are linear, otherwise the time com- 
plexity is O(n2  . log n) .  The algorithm is discussed in [2], full 
details can be found in [ 11. Note that the complexity of ALG- 
CHAIN turns out to be O(n3 logri), if the successive calls to 
ALG-MAX are accounted for (O(n2  log n )  for all-linear func- 
tions). 

6 Conclusion 
In this paper, we presented a framework for incorporating 

error recovery in the imprecise computation model. We have 
developed optimal fault-tolerant scheduling algorithms to max- 
imize the total reward while allowing time for recovery from 
errors in the mandatory parts. The polynomial-time algorithms 
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may be used with any nondecreasing differentiable concave re- 
ward functions and with upper bounds on execution times. In 
this regard, our work also produces the first efficient solution of 
the problem of scheduling a set of imprecise computation tasks 
where general concave reward functions (e.g., a mixture of lin- 
ear and non-linear functions) and upper bounds on the optional 
parts are allowed, with or without FT requirements. Further, 
our solution has the desirable property that FT-Optimality is 
preserved (hence, the run-time overhead is eliminated) as long 
as faults are not encountered. 

We addressed the FT-Optimality issue in the context of in- 
dependent and dependent tasks separately. Remarkably, gen- 
erating FI-Optimal schedules for a set of dependent tasks re- 
quires a more complex procedure than the case of independent 
tasks, unlike the conventional Non-FT optimality problem of 
imprecise computation theory. It should be also underlined 
that it is always possible to produce an FT schedule of inde- 
pendent tasks whose total reward is the same as the Non-FT 
optimal schedule. This can not be achieved for tasks with 
precedence constraints. However, for some types of reward 
functions (e.g.. exponential) the loss of reward for adding fault 
tolerance is usually marginal. The future work includes extend- 
ing the framework to more general settings with more com- 
plex precedence constraints (such as those given by trees and 
forests). 
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APPENDIX: The Optimality of the Least Commitment Strategy 
We present the proof of the statement that ALG-CHAIN given in 

Figure 4 provides an IT-Optimal distribution of optional execution 
times. During Phase-] we process the chain in reverse order and com- 
pute the optimal 1;  values that would lead to a IT schedule with a 
ii~inimutn slack. In other words, we first commit to the least slack 
necessary for an IT schedule and we distribute i t  optimally among 
t l  , t z ,  . . . , t , .  The assignments that satisfy all the slack constraints 
oprimal/y in this way, are used as lower bounds (for fault tolerance) 
during the second phase. This phase makes the final distribution of 
the entire available slack d among all optional parts by invoking ALG- 
MAX. 

In the first part of the proof, we show that ALG-CHAIN effec- 
tively solves the two subproblems mentioned above. Finally, we will 
prove that solving these two subproblems is equivalent to solving the 
problem CHAIN. 

Proposition 2 ALG-CHAIN is effectively equivalent to first solving 
PI which finds t i  . . . tk so as to: 
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maximize 

subject to C t : = m a s { r l ,  . . . ,  r,} (15) 

0 5 t: i = 1,2 ,  ... n (16) 

ri 5 ti i = 1 , 2 ,  ... n (17) 

i = l  

n 

. .  
j = r  

and then solving P2 which is computing t ;  , . . t: so as to: 

maximize Ri(t?)  
i = l  

subject to 2 t i ’ = d  (1 8) 
i =1  

t: 5 ti’ i = 1 , 2 ,  ... n (19) 

Note that the lower bounds { t ) }  of P2, used in the constraint set 
(19), are determined by the outcome of PI. We need to prove two 
lemmas before establishing the validity of Proposition 2. 

Lemma 1 After Phase-I processesTi in ALG-CHAIN, the particular 

slack constraint ri _< 

Proof: This follows from the actions performed by the algorithm 
ALG-CHAIN whenever it encounters an ri such that ri > s l a c k  
(lines 7-9). Observe that after Phase-I processes Tj in ALG-CHAIN, 
s l a c k  = 0 

Lemma 2 After Phase-I processes Tj in ALG-CHAIN, { t j ,  . . . , t n }  
is an FT-optimal assignment of s l a c k  = EL=jtk  = 
maz{rj, . . . , r,} to the subchain Tj, . . . , T,. 

Proof: We prove the FT-Optimality by induction. The statement is 
clearly true after T, is processed. Assume that it holds up to and in- 
cluding the m f h  task. We denote by Tj the task considered by Phase-1 
at the m + l f h  iteration (i.e., j = n -.m). 

First, observe that the slack available for eve7  subchain 
T,, . . . , T, (U = j + 1, j+ 2, . . . , n) is the minimum that can yield 
an FT schedule (by Theorem I ) ,  hence the total slack available to any 
of the involved subchains can not be reduced. 

We distinguish two cases. If r j  5 s l ack ,  then maz{rj, . . . , r,} 
= rnaz{rj+l,. . . r,} and the total slack is not increased. Notice 
that Slack(j) is sufficient to tolerate an error detected in Mj. In this 
case, we may not increase t j  which was set to 0, since this would irn- 
ply decreasing some tk(k > j) creating a Non-FT schedule for the 
subchain Tk, . . . , T,. This shows that t j  should remain 0. Further- 
more, since we do not increase the total slack and we already have 
an IT-Optimal schedule for Tj+l,. . . , T, by the induction assump- 
tion, t j  = 0, t j+l, .  . . , t, is an FT-Optimal distribution of s l a c k  to 
T j , . . . ,  T,. 

If rj > s l a c k  we may consider increasing t j .  Note that, 
after processing every task, the algorithm commits to the current 
assignments { t i }  as the lower bounds ( 1 ; )  (line 9). All further 
re-assignments done by ALG-MAX adhere to these lower bounds. 
Hence, in order to exclude the possibility of having a better distribu- 
tion outside of the rectangular region of these constraints, we need 
to show that the optimal distribution of rj to Tj, . . . , T,, may never 
result in a decrease in the current assignments. 

n 
t k  is satisjied. 

k = i  

tk = maxjr j , .  . . , r,} = Slack($. 

Now, let { t j s l , .  . . , t.} be the FT-Optimal distribution of 
rnaz{rjtl,. . . , r,} to Tj+l , .  . . , T, (observe that t, = 0). Also, 
let { t ; ,  . . . , t i }  be the FT-Optimal solution for distributing the slack 
r j  > max{rj+l,. . . , rn) to Tj, . . . , T,. 

Note that t: 2 ti = maz{rj+l,.. . , I - , } ,  
since the subchain Tj+l,. . . , T, would not be IT by Theorem 1. 
In other words, the total slack available for T j t l , .  . . , Tn may never 
decrease. Let E = max{rj+l, ..., r,} = ti. Remem- 
ber that, the problem CHAIN provides IT-Optimal solution for any 
chain with a given slack. Hence, {t;,,  , . . . , LE} is also a solution 
to CHAIN when invoked for the subchain Tj+l,. . . , T, and with the 
slack tP = E + e where e 2 0. Therefore, the proof will be 
completeif we show that, there is always a solution set {tJtl , . . . , t ; }  
to CHAIN such that t: 2 t ,  w = j + 1 , . . . , n when invoked for the 
same subchain Tj+l, . . . , T,, but with the slack E + e where e 2 0. 

The full proof of this last statement is based on Kuhn-Tucker op- 
timality conditions for nonlinear optimization. It is omitted here for 
the lack of space, but can be found in [l]. Informally, this holds in 
view of the concave and non-decreasing properties of reward func- 
tions, where all the derivatives (marginal returns) are non-increasing: 
If there exists an index i such that i > j and tP < t i ,  then there should 
exist an index k such that k > i and t z  > t k  (otherwise, the subchain 
Ti, . . . , T, would not be IT). This could happen only when the opti- 
mization algorithm preferred increasing t k  by decreasing ti even if the 
total available slack increased. Now, according to the best marginal 
rate principle, CHAIN would have assigned tP to Ti even for the first 

0 

We are now ready to prove Proposition 2: Lemma 1 and 2 show 
that Phase-I solves the problem PI .  Similarly, i t  can be seen that the 
second phase of the ALG-CHAIN solves P2 (lines 15-1 6 of Figure 4). 
With the help of Proposition 2, we can finally establish the optimalily 
of the least commitment strategy as follows. 

Theorem 4 ALG-CHAIN solves optimally the CHAIN problem. 

Proof: Let { t f  } be the solution set of Problem CHAIN. If we consider 
Proposition 2, all we need to show is that the t:’ values obtained from 
the invocation of P2 equal t :  i = 1, .  . . , n. First, notice that the 
slack constraints are already satisfied by P I .  Also, the solution set 
{ t i }  of PI serves as lower bounds in the constraint set (19) of P2. 
Thus, if V i  t? _> t: then it will be within the search space (feasible 
region) of Problem P2. Consequently an algorithm that solves P2 
will return a solution set { t ; }  with the same total reward as the one 
yielded by { t : } .  Hence, i f  we prove that there is always a solution 
{ t f }  to CHAIN such that V i  tl  2 t i  the proof will be completed. 

In fact, since d 2 maz(r1, . . . , r,} a reasoning completely anal- 
ogous to that exposed in the proof of Lemma 2 can establish that such 
a choice would violate “best marginal rate” principle andor produce a 
non-FT schedule. 0 

invocation, leaving a larger slack for other tasks. 
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