
Incorporating Error Recovery into the Imprecise Computation Model *

Hakan Aydin, Rami Melhem, Daniel Moss6
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

(aydin, melhem, mosse) @cs.pitt.edu

Abstract

In this paper; we describe optimal algorithms for incorpo-
rating error recovery in the imprecise computation model. In
that model eack task compriser a mandatory and an optional
part. The mandatory part must be completed within the task’s
deadline even in the presence of faults and a reward function
is associated with the execution of each optional part. We ad-
dress the problem of optimal scheduling in an imprecise com-
putation environment so as to maximize total reward while si-
multaneously guaranteeing timely completion of recovery op-
erations when faults OCCUI: Furthermore, in order to prevent
run-time overhead we enforce that no changes in the optimal
schedule should be necessary as long as no error is detected
in mandatory parts. Independent imprecise computation tasks
as well as tasks with an end-to-end deadline and linearprece-
dence constraints are considered. We present polynomial-time
optimal algorithms for models with upper and lower bounds
on execution times of the optional parts and for reward func-
tions represented by general nondecreasing linear and concave
functions.

1 Introduction and Related Work

In a hard real-time system each task must provide a logi-
cally correct output before its deadline. The consequences of
missing a deadline in a hard real-time environment may be seri-
ous, even catastrophic. On the aother hand, an approximate but
timely result may be acceptable in many application areas. Ex-
amples of such applications are multimedia applications [151,
image and speech processing [6, 8, 181, time-dependent plan-
ning [5], robot controVnavigation systems [20], medical deci-
sion making [IO], information gathering [9], real-time heuristic
search [1 I] and database query processing [191.

The imprecise computation approach is a technique of im-
proving the responsiveness and resource utilization of systems
where requirements are less stringent than hard-real time envi-

‘This work has been supported by the Defense Advanced Research Projects
Agency (Contract DABT63-96-C-0044).

ronments [17, 121. In this model, every real-time task is com-
posed of a mandatory part and an optional part. The mandatory
part should be completed by the task’s deadline to yield an out-
put of minimal quality. The optional part may be executed after
the mandatory part while still before the deadline, if the appli-
cation objectives justify doing so. The quality of the final result
improves as the optional part runs longer. In the previous stud-
ies it is generally assumed that the quality improvement is a
linear function of the optional service time; more general and
possibly non-linear functions are usually not considered.

An alternative model is Increasing-reward-with-increasing-
service (IRIS model) [7], where each task can be considered as
entirely optional and a task executes for as long as the sched-
uler allows. However, the more general case of non-linear con-
cave reward functions are addressed in this work. Extensions
to models with mandatory parts and dynamic arrivals are de-
scribed in [7]. The notion of reward in the IRIS model is anal-
ogous to that of precision error in the Imprecise Computation
model.

Linear and general concave functions represent most of
the real-world applications such as those mentioned above
[6, 8, 18, 15, 5 , 20, 1 I , 9, 191. Note that the first derivative
of a nondecreasing concave function is nonincreasing. In this
paper, we focus on linear and concave reward functions. Max-
imization of the total reward in a system of tasks with 0/1 con-
straints, where no reward is accrued for apartial execution was
shown to be NP-complete [171. Continuous convex reward
functions results also in an NP-Hard problem [Z].

Although the imprecise computation models allow for
greater scheduling flexibility, the timely completion of manda-
tory parts, even in the presence of faults, is still of utmost im-
portance. A first study incorporating error recovery operations
in the imprecise computation model has appeared in [3]. An
extension to on-line scheduling was described in [4]. An im-
portant assumption of these works is the a priori knowledge
of worst-case fault profile per task. This information is much
more difficult to obtain as compared to the maximum number
of faults of the entire task set: without information about the
fault profile one should provison for simultaneous occurrences
of all the faults for all the tasks, which may yield the rejec-

0-7695-0306-3/99 $10.00 0 1999 IEEE
348

mailto:cs.pitt.edu

tion of many task sets and the low CPU utilization. Further-
more, even when the task set is accepted, the schedule needs to
be updated on-line whenever a mandatory part completes suc-
cessfully (without failure). As the authors observe in [3] , this
approach becomes prohibitively expensive in systems with low
fault rates, which is usually the case. Also, the reward (error)
functions are assumed to be all linear and all tasks indepen-
dent. In this paper, we consider the more general case of con-
cave reward functions and also examine task sets with linear
precedence constraints along with independent tasks. More-
over, our fault model assumes at most k faults within the sys-
tem and requires that the FT-Optimality of the schedule be pre-
served as long as no fault occurs. This drastically reduces the
run-time overhead when compared with [3] , since faults are
unusual events in every practical system.

The work in this paper is based on the observation that, even
when the system is overloaded, the time assigned to optional
parts in the imprecise computation model provides opportu-
nities for recovery of tasks, in case an error is detected. We
address the problem of optimally assigning service times to
tasks in order to simultaneously guarantee error recovery and
maximize total reward. Further, our solution has the desirable
property that i t eliminates any dynamic re-adjustment of the
schedule (hence, run-time overhead), as long as no errors are
encountered. We present polynomial-time solutions to fault-
tolerant scheduling problems with upper bounds on service
times; our solution works for arbitrary non-decreasing concave
reward functions.

2 System Model
2.1 Task Model

We consider a set T composed of R imprecise computation
tasks T1, Tz, . . . , Tn , all ready to run on a uniprocessor system.
Each task Ti consists of a mandatory part M i and an optional
part Oi. The length of the mandatory part is denoted by mi;
each task must receive at least mi units of service time in order
to provide output of acceptable quality. The optional part Oi
becomes ready for cxecution only when the mandatory part Mi
completes.

We analyze and provide solutions for two models which dif-
fer by the nature of precedence relations. The chain model
considers linear precedence constraints among tasks with a
common end-to-end deadline D , which is also equal to the
period if the task set is periodic. In view of precedence con-
straints, an optional part Oi must execute after the mandatory
part Mi and before Mi+l. The independent tasks model is
identical to the chain model with the only exception that differ-
ent tasks have no dependence relations. However, a mandatory
part A4i must still complete before 0; may start.

Associated with each optional part of a task is a reward
function & (t) which indicates the reward accrued by task Ti
when it receives t units of service beyond its mandatory por-
tion. R,(t) is of the form:

where Fi is a nondecreasing, concave and continuously dif-
ferentiable function over nonnegative real numbers and oi is
the length of entire optional part 0;. Note also that in this
formulation, by the time the task's optional execution time t
reaches the threshold value oi, the reward accrued ceases to
increase.

Given a task set T, a schedule for T determines the amount
of service each task receives. A feasible schedule exists if and
only if it is possible to complete all the mandatory parts be-
fore the deadline; it is clear that this condition is equivalent to
Cy=l mi 5 D. If d = D - mi is the slack available for
optional portions, then the foregoing discussion indicates that
no feasible schedule exists if d < 0.

The Total Reward of an imprecise computation schedule S

is REWs = R,(t ,) where t i is the amount of service that

optional part Oi receives in S. A feasible schedule is optimal if
i t muximizes the total reward accrued.

n

i = l

2.2 Fault Model
We assume that at most k faults may occur during the ex-

ecution of the task set. However, we develop and present our
methodology first in the context o f a single fault model (that
is k = 1) for the sake of simplicity. The extension of this
framework to the multiple faults case is straightforward and
presented in Section 4.2.

The results are produced or committed at the end of M i and
then again at the end of Oi. Consistency or acceptance checks
are performed before the results are committed. If an error
in a task Ti is detected at the end of its mandatory part M i ,

then a recovery mechanism is invoked, either to re-execute the
mandatory part of the task, or to invoke a recovery block. We
refer to this as the recovety of a faulty task. The execution time
of the recovery block associated with Mi is indicated by rj. If
an error is detected at the end of the optional part Oi, the result
of the optional part is not committed.

In general, a feasible schedule is said to be Fault-Tolerant
(FT) if it allows the timely recovery of an error detected in any
of the mandatory parts. A schedule which allows for recovery
of any single fault while maximizing the total reward is called
a Fault-Tolerant Optimal Schedule (IT-Optimal). Similarly a
k-FT-Optimal Schedule may be defined for k faults.

We note that in an Imprecise Computation environment, op-
tional parts do not impose stringent hard real-time require-
ments and provide intrinsically a sort of slack for recovery
operations of mandatory parts. However, one needs to keep
track of the optional parts and schedule them appropriately so
as to be able to use their CPU allotments for recovery. Fur-
thermore, we need a systematic approach to generate an IT-
Optimal schedule.

349

For a task set T, Fault Tolerant Reward Ratio (FTRR) is de-
fined as the ratio :/$::', where REWNFT and REWFT
are the total rewards of the Optimal schedule and the FT-
Optimal schedule for T, respectively. It is clear that FTRR
is a real number in the range [O , 11 unless an FT schedule does
not exist for T (in which case FTRR is undefined).

3 Generating FT-Optimal Schedules
Before dealing with the optimality issue, we first present a

few fundamental results regarding the existence of FT sched-
ules for a given task set T.

Let Slack(i , S) be the sum of optional service times sched-
uled after Mi in schedule S. We will omit the parameter
S whenever the schedule, involved is clear from the con-
text. A task Ti will be said to satisfy the slack constraint if
Slack(i, S) 2 r , .

Proposition 1 A schedule S of imprecise computation tasks is
Fault Tolerant if the slack constraint is satisjed by everv. task
(i.e., V i Slack(i , S) 2 r ,) .

Proof: Consider a system in which the slack constraint is sat-
isfied by each task Tj. If an error is detected when Mj was
expected to complete, we initiate the recovery operation which
will take at most rj time units. Due to this additional workload,
the execution of mandatory parts which are scheduled after M j
now may have to be delayed. However, each of them will be
able to complete by the deadline, since the sum of optional
parts which will "provide" slack for recovery of Mj is at least
r j . Notice that the optional parts scheduled after Mj may not

0 execute as a result of the recovery of Mj .

Theorem 1 An FT schedule exists for a set of imprecise coni-
putation tasks T ifand only i fc l = D - Cy=, nii > max{ r i } .

Proof: If S is an FT schedule, then all the slack constraints
and in particular, that of the task with the largest recovery time
(m a x { r i }) should be satisfied. This implies that the "total
slack" of the system should be at least equal to this amount.

Conversely, if d 2 mar{ri}, then there exists at least one
FT schedule, namely the one in which first all the mandatory
parts are scheduled and then the optional part of last task T,
with t , = d. 0

3.1 The Independent Tasks Model

Let T= { T I , . . . , Tn} bc a set of imprecise computation
tasks with no precedence constraints. In other words, we have
the flexibility of scheduling the mandatory and optional parts
in any order, except for the restriction that an optional part 0,
may not start executing before Mi completes successfully.

Consider first the (Non-FT) optimal solution of the problem.
Definitely, all mandatory parts should complete before D. The
optional parts may execute only for d units of time, where d is
the total slack, Furthermore, since all the reward functions are

nondecreasing by assumption, this slack may be used fully by
optional parts.

However, when we intend to generate an FT-Optimal sched-
ule, we should make sure that all the slack constraints are sat-
isfied. Consider the schedule in Figure 1. Having indepen-
dent tasks allows us to schedule all optional parts ajier all
mandatory parts. It should be obvious that this choice enforces
Slack(i) for every task Ti to be d, which is the maximum that
can be achieved. So this form of schedule should satisfy the
slack constraints automatically, if an FT schedule exists for T.
In fact, no FT-Schedule exists if this one is not fault tolerant.
Note that one still needs to determine the optimal distribution
of the total slack d among optional parts.

Figure 1. An FT-optimal schedule for independent tasks

Thus, we obtain the formulation of the following nonlinear
optimization problem. Find t l , . . . , t , so as to:

n

i = l
subject to C t i = d (3)

0 5 t i i = l...n (4)

The distributionof available slack d to optional parts should
satisfy the constraints 0 5 ti (i = 1 , 2 . . . n), since nega-
tive service times do not have any physical interpretation. The
formulation just obtained is an instance of a generic nonlinear
optimization problem (denoted by MAX) in which the inequal-
ities in Equation (4) are replaced by the more general form:

l i 5 ti i = l...n (5)

The algorithm ALG-MAX(R, L , d) solves this problem and
is presented in Section 5. It takes as input the set R =
{ R I , . . . , Rn} of reward functions, the set L = { l l , . . .,In}
of lower bounds, and the available slack d and produces opti-
mal ti values maximizing (2) and satisfying (3) and (5).

Observation 1 For an independent task set T, FTRR = 1 i f a
Fault Tolerant schedule exists for T (that is, inax{ r i } 5 d).

The observation is based on the fact that optimal t i values
for Non-FT and FT versions of the problem are the same: both
sets of optimal solutions are provided by ALG-MAX. In case
of the Non-FT schedules, i t is possible to schedule the manda-
tory and optional parts in any order, subject to the constraint
that Oi executes after A4i. However, one needs to commit to
the generic schedule of Figure 1 for the FT case to guarantee
that FTRR is 1.

350

3.2 The Chain Model
In case that 2'1, . . . , T, have linear precedence constraints

among them (i.e., they form a chain), the order of execution is
pre-determined as shown in Figure 2.

MI 01 M ? M J

0 5 ti i = 1 ,2 , ... n (8)

rj < . . t j i = 1,2, ... n (9)
n

-
3 =:

MI MZ OZ M3 03

Figure 2. A chain of imprecise computation tasks

For a chain of imprecise computation tasks, achieving fault
tolerance is not always without cost. To see this, consider the
chain of tasks T I , Tz and T3 with D = 20, shown in the table
that follows.

92

Figure 3. (a) An optimal but Non Fault Tolerant schedule
(b) An FT-Optimal schedule

Note that the FT-Optimal schedule has a total reward of
50, in contrast to the reward of 60 for the Non-FT optimal
schedule. Unlike the case of independent tasks, in a chain,
optional parts cannot be arbitrarily swapped with mandatory
parts. Hence, we have no freedom of scheduling optional parts
late and automatically satisfying the slack constraints. If an er-
ror is detected at the end of M , 's execution, then the recovery
operation has to rely solely on time reserved for 0,. Therefore,
t , should be at least as large as r,. Similarly, if a fault occurs
in Mn-l, the recovery will succeed if and only if the sum of
optional service times t , and t,-l is not less than r,-1.

As a consequence, ALG-MAX needs to be modified to ex-
plicitly incorporate slack constraints in the optimization prob-
lem. Clearly, Slack(i) = cy=itj for each task 7;:. Also,
slack constraints can be expressed as Slack(i) 2 rj for i =
1 , 2 . . . n. Thus, the problem CHAIN can be formalized as:

maximize 5 Ri (tz (6)
i= l

n

i = l
subject to Cti=d (7)

This is another nonlinear optimization problem with equal-
ity and inequality constraints. Even though the addition of
new constraints makes the problem more difficult, i t is still
tractable. The Algorithm ALG-CHAIN (see Figure 4) in-
vokes ALG-MAX repeatedly (lines 7 and 15), but with dif-
ferent lower bound sets (L) each time.

Informally, the solution is based on the observation that
once the slack constraints are satisfied, the problem merely re-
duces to an instance of MAX. However, care must be taken
not to get a sub-optimal solution while trying to satisfy slack
constraints.

ALG-CHAIN, which assigns FT-Optimal ti values, pro-
ceeds in two phases. In the first phase, we focus solely on
satisfying the slack constraints by processing the chain i n a
bottom-up manner. During this phase, we apply a least com-
mitment strategy in that we provide only optimal distribution
of minimum slack rnai{r i } which can yield an FT schedule.
During the second phase, we make optimal distribution of the
total slack d to all the tasks in the chain, considering the output
of the j u t phase as lower bounds on the execution times.

Algorithm ALG-CHAIN
1 S e t t l = t 2 = . . . t , = O
2 Set 11 = 12 = . . . I , = 0 /*initial lower bounds * I
3 I* First phase: Bottom-up processing of the chain * I
4 Set t , = slack = I , = r, I* Process T, first *I
5 For j = n - 1 downto 1 do if r j > slack

7 I* distribute rj among Tj . . . T, * I
8 lnvoke ALG-MAX({Rj, . . . , R,,}, { l j , . . . ,In}, rj)
9 Set slack = rj
I O For p = j to R do set 1, = t ,

12 I* Second Phase *I
13 I* Slack constraints being satisfied,
14 distribute the entire slack d optimally
IS while adhering to current lower bounds (1 ; } *I
16 lnvokeALG-MAX({RI,. . . , R,,}, (11, . . . , l n } , d)

6 {

I* Adjust lower bounds * I
11 1

17 Output ti, t2 . . . t ,

Figure 4. Algorithm to solve CHAIN

Initially, all t i values are set to 0. We start by setting t , =
T, (note that, from (9), this is minimum requirement for the last
task of the chain). We also increase the lower bound 1, for the
last task from 0 to 1, = T,, thereby ensuring that t , will not
be decreased in the iterations yet to come. Then we consider
the next slack constraint, or rather its "least committed form"
which is 2 , + t , - 1 = r,-1. If this is already satisfied by the
t , = T, assignment (i.e., if ~ , - 1 5 r,), we do not make any
changes to 1,-1 or t , . Otherwise, the total slack should be

351

increased to the minimum acceptable level of rn-l . Hence,
we invoke ALG-MAX to distribute r,-1 optimally between t ,
and 1 , - 1 (line 7).

Finally, before processing the next task (Tn-2), we commit
to the current t , and t,-1 values as the lower bounds for the
next iteration (line 9), since they can not be reduced because
of FT considerations. We continue processing the remaining
slack constraints in the same fashion.

Notice that during the first phase, after AIS-CHAIN pro-
cesses Tj, the value of s l ack is equal to the sum of optional
assignments made so far, that is, Eknzjtk. This in turn, is
equal to rnaz{rj, . . . , rn} (minimum acceptable slack to ob-
tain an FT-schedule for the subchain Tj, . . . , Tn).

When we finish processing the whole chain in this fash-
ion, Phase 2 invokes ALG-MAX to distribute optimally any
remaining slack among all optional parts. This is done by
distributing the slack d among all tasks while adhering to
the lower bounds provided by the outcome of the first phase
(which has satisfied slack constraints while still remaining in
the search space containing optimal values, as proven in Sec-
tion 6).

We emphasize the fact that the optimality of the least com-
mitment strategy is based on concave and nondecreasing prop-
erties of reward functions. A formal correctness proof is pre-
sented in the Appendix. The time complexity of ALG-CHAIN
is closely related to that of ALG-MAX and is discussed in Sec-
tion 5.

Before examining the FTRR, let us consider the Non-FT
Optimal solution for the case of chain. In this case, slack con-
straints do not need to be incorporated into the optimization
problem and the pre-determined order of execution does not
introduce any complications: i t is sufficient to solve the prob-
lem MAX to compute optimal t i values and then produce a
schedule with the order shown in Figure 2.

Theorem 2 For a chain, FTRR = 1 ifand only ifthe solution
of the nonlinear optimization problem MAX satisjies the slack
constraints given by inequalities (9) of problem CHAIN.

Proof: Suppose that the solution of MAX (Non-FT optimal
solution) satisfies all the slack constraints given by inequali-
ties (9) of problem CHAIN. Then clearly it is contained in the
search space (which is a rectangular region) of the algorithm
that solves CHAIN. Hence, this algorithm, assuming that it be-
haves correctly, will produce the solution with the same re-
ward. Thus the ratio /;;:& is 1 .

Conversely, suppose that F IRR= 1. This can only happen
if the algorithm ALG-MAX and ALG-CHAIN produce two
solutions with the same total reward. For the sake of contra-
diction, assume that the solution of MAX violates some of the
slack constraints of CHAIN and yet FTRR is 1. However, ob-
serve that any solution of CHAIN should satisfy the constraints
(3) and (4), since they are common in both problems. This im-
plies that the solution of CHAIN which yielded a FTRR of 1 ,

would also be the solution of MAX and satisfy all the slack
constraints; contradicting the assumption.

0

Theorem 2 implies that, in general, an FTRR of 1 may not
be achievable and one needs to invoke ALG-MAX and ALG-
CHAIN to compute actual FTRR. Nevertheless, in case that
the reward functions are all linear, there is a class of task sets
(those with identical rewards) in which FJXR is always 1 .

4 Refinements and Extensions

4.1 Adaptive Scheme

The algorithms presented in Section 3 provide the optimal
static schedules, in the sense that they simultaneously maxi-
mize the total reward while guaranteeing timely completion of
recovery operations. However, they do not (and should not)
make any assumptions about the mandatory part dtiring which
a fault occurs. Furthermore, i t is assumed that once a fault has
occurred in some Mi and recovery is completed, no optional
part is allowed to run due to the possibility of interfering with
other mandatory parts.

Optimal redistribution of the remaining slack among op-
tional parts yet to execute can provide an adaptive FT-
Optimal schedule. For example, consider the FT-Optimal
schedule given in Figure 3b. If an error is detected at the end
of M I , the recovery operation will be initiated. At the end
of the recovery (at 2 = S), the system has still a total slack
of 3 time units for the remaining optional parts. Furthermore,
we can assume that no more faults will occur, since the fault
has been already encountered. By re-distributing optimally the
slack available, we could execute 0 3 for 3 time units, thereby
obtaining a total reward of 27 units. The resulting adaptive
schedule is shown in Figure 5.

Error
Dcsclcd 1

3 6 17 20 12

Figure 5. Adaptive adjustment of FT-Optimal schedule

The foregoing discussion shows that, after recovering from
an error, we can dynamically invoke ALG-MAX to re-
distribute optimally the available slack. Alternatively, instead
of invoking ALG-MAX after a fault, one may produce and
store n alternative schedules a priori, corresponding to the
n possible fault scenarios. In this case, the run-time system
should be responsible for “switching” to the appropriate sched-
ule when a fault occurs; in other words, we provide optimal-
ity dynamically in a way similar to that of scenario or mode
changes [13, 141.

352

4.2 Extension to k Faults Model

Suppose that k faults are to be tolerated during the execu-
tion of the task set T, instead of a single fault. In this case, we
might have more than one recovery block associated with sub-
sequent errors of a task. We assume that the execution time of
all recovery blocks of task Ti is P , . Clearly, the worst-case hap-
pens if all k errors occur during the execution and subsequent
recovery (or recoveries, as the case may be) of the task that has
the largest recovery time. Hence, it is possible to generalize
Theorem 1, with an analogous proof:

Theorem 3 A set of imprecise computation tasks T can be
scheduled while tolerating k faults if and only i f d 2 k ‘
mux{ ri}.

If T comprises only independent tasks, then i t is not diffi-
cult to check that the form of the schedule shown in Figure 1 is
again optimal. Once and when the condition expressed in The-
orem 3 is satisfied, we can invoke ALG-MAX and compute
optimal t i values.

If T is composcd of a chain of tasks, then the “slack con-
straints” have to be modified (tightened) accordingly. It should
be clear that, in this case, the necessary and sufficient condition
to recover from k errors is to have the sum of the reniaining
optional parts (i.e., Slack(i)) at least equal to k . mas { r a } .

Then the slack constraints can be restated as:
a = % , ..., n

I L

k . inas {ra)<Cta i = 1 , 2 , . . . , n (10)
a = a , . . . , n

a=i

In other words, i t is sufficient to scale the lower bounds up
in order to tolerate any k faults and Algorithm ALG-CHAIN
may be used as i t is. Indeed, it is easy to see that when k = 1,
Equation (10) is equivalent to the set of slack constraints given
in Equation (9).

5 Solution of MAX
In this section, we present the solution of the generic non-

linear optimization problem MAX, characterized by 3-tuple
(R , L , d) where R is the set of the reward functions, L is the
set of lower bounds that any solution must adhere to and d is
the total slack. MAX consists of finding 2 1 , . . . , I n so as to:

maximize 2 & (t i)
i = l

subject to k t i = d
i = l

li 5 t i i = l...n

The reward functions R, (t i) in the above formulation are as
in Equation 1 and hence are non-differentiable at t i = oi V i . In
the following discussion, we denote by “entire optional part of
task T,” the quantity muo{li, oi}. Note that a lower bound li

may be larger than the reward function’s upper bound oi in the

problem specification, which is usually a result of fault toler-
ance requirements.

As a preprocessing phase, we check a few conditions which
immediately yield trivial solutions. Specifically,

0 if the available slack d is not large enough to accom-
modate all lower bounds 1 1 , 12, . . . , I , (in other words if

l i > d), then the constraint set is inconsistent and
no solution exists.

if Cyzl li = d, then the unique solution is t i = l i , 1 5
i 5 n.

0 if the available slack d is large enough to accommodate
all optional parts entirely (i.e. if d 2 Cyzl .maz{ l i , oi})
then we first set t i = ~ n u x { l i , o i } V i . That is, we
use every optional part fully. Any remaining slack d -

muz{ l i , oi} can be arbitrarily distributed among
optional parts of tasks T I , . . . , T,. For simplicity, we
choose to increase 2 , .

If none of the above conditions holds, then for every task Tj

such that l j 2 oj we set t j = l j and we reduce the available
slack d accordingly. Note that t j does not need to be set to a
value larger than l j since the reward of does not increase
beyond oj. Finally, the preprocessing procedure completes by
obtaining another optimization problem, which involves only
the tasks such that l , < 0;. For every remaining task Ti, we first
reserve li units of slack, reduce d and oi by l i , define f i (t i) as
F,(ti + l i) , and get the formulationof the concave optimization
problem OPT-LU (i.e., with lower and upper bounds):

maximize 2 f i (t i) (1 1)
i = l
n

i = l
subject to Cti=d (12)

ti < oi i = 1,2 , ... n (13)
0 5 ti i = 1,2, ... n (14)
-

Note that after the preprocessing phase (i.e., for problem
OPT-LU), 0 < d < cy=, oi and oi > OVi. The con-
cave optimization problem OPT-LU can be solved in time
O(n . logn) if all fi()’s are linear, otherwise the time com-
plexity is O(n2 . log n) . The algorithm is discussed in [2], full
details can be found in [11. Note that the complexity of ALG-
CHAIN turns out to be O(n3 logri), if the successive calls to
ALG-MAX are accounted for (O(n2 log n) for all-linear func-
tions).

6 Conclusion
In this paper, we presented a framework for incorporating

error recovery in the imprecise computation model. We have
developed optimal fault-tolerant scheduling algorithms to max-
imize the total reward while allowing time for recovery from
errors in the mandatory parts. The polynomial-time algorithms

353

may be used with any nondecreasing differentiable concave re-
ward functions and with upper bounds on execution times. In
this regard, our work also produces the first efficient solution of
the problem of scheduling a set of imprecise computation tasks
where general concave reward functions (e.g., a mixture of lin-
ear and non-linear functions) and upper bounds on the optional
parts are allowed, with or without FT requirements. Further,
our solution has the desirable property that FT-Optimality is
preserved (hence, the run-time overhead is eliminated) as long
as faults are not encountered.

We addressed the FT-Optimality issue in the context of in-
dependent and dependent tasks separately. Remarkably, gen-
erating FI-Optimal schedules for a set of dependent tasks re-
quires a more complex procedure than the case of independent
tasks, unlike the conventional Non-FT optimality problem of
imprecise computation theory. It should be also underlined
that it is always possible to produce an FT schedule of inde-
pendent tasks whose total reward is the same as the Non-FT
optimal schedule. This can not be achieved for tasks with
precedence constraints. However, for some types of reward
functions (e.g.. exponential) the loss of reward for adding fault
tolerance is usually marginal. The future work includes extend-
ing the framework to more general settings with more com-
plex precedence constraints (such as those given by trees and
forests).

References
[I] H. Aydin, R. Melhem and D. MossC. A Polynomial-time Al-

gorithm to solve Reward-Based Scheduling Problem. Technical
Report 99-10, Department of Computer Science, University of
Pittsburgh, April 1999.

[2] H. Aydin, R. Melhem, D. Moss6 and P.M. Alvarez. Optimal
Reward-Based Scheduling of Periodic Real-Time Tasks In Pro-
ceedings oJ20th tEEE Real-Time Systems Symposium, Decem-
ber 1999.

[3] R. Bettati, N.S. Bowen and J.Y. Chung. Checkpointing Impre-
cise Computation. Proceedirigsof the IEEE Workshop on Impre-
cise and Approximate Cornpuration, Dec. 1992.

[4] R. Bettati, N.S. Bowen and J.Y. Chung. On-Line Scheduling for
Checkpointing Imprecise Computation. Proceedings of the Fifth
Euromicro Workshop on Real-Time Systems, June 1993.

[5] M. Boddy and T. Dean. Solving time-dependent planning prob-
lems. Proceedings of the Eleventh International Joint Confer-
ence on ArtiJicial Intelligence, IJCAI-89, pp. 979-984, August
1989.

[6] E. Chang and A. Zakhor. Scalable Video Coding using 3-D Sub-
band Velocity Coding and Multi-Rate Quantization. In IEEE Inr.
Con$ on Acoustics, Speech arid Signal processing, July 1993.

[7] J. K. Dey, J. Kurose and D. Towsley. On-Line Scheduling Poli-
cies for a class of IRIS (Increasing Reward with Increasing
Service) Real-Time Tasks. IEEE Transactions on Computers

[8] W. Feng and J. W.-S. Liu. An extended imprecise computation
model for time-constrained speech processing and generation. In
Proceedings of [he IEEE Workshop on Real-Time Applications,
May 1993.

45(7):802-813, July 1996.

[9] J. Grass and S. Zilberstein. Value-Driven Information Gather-
ing. AAA1 Workshop on Building Resource-Bounded Reasoning
Systems, Rhode Island, 1997.

[IO] E.J. Horvitz. Reasoning under varying and uncertain resource
constraints Proceedings of the Seventh National Conference on
Artifcia1 Inrelligence, AAAI-88, pp. 11 1-1 16, August 1988.

[I I] R. E. Korf. Real-time heuristic search. ArtiJicial Intelligence,

[I21 Jane W.3. Liu, K.-J. Lin, W.-K. Shih, A. C.3. Yu,C. Chung, J.
Yao and W. Zhao. Algorithms for scheduling imprecise compu-
tations. IEEE Computer, 24(5): 58-68, May 1991.

[I31 D MossC. Mechanisms for System-Level Fault Tolerance in
Real-Time Systems. In lnr’l Conf on Robotics, Vision, and Par-
allel Processing for Industrial Auromarion, June 1994.

[I41 P. Pedro and A. Bums. Schedulability Analysis for Mode
Changes in Flexible Real-Time Systems. In Proceedings ofthe
10th Eicromicro Workshop on Real-Time Systems, June 1998.

[151 R. Rajkumar, C. Lee, J. P. Lehozcky and D. P. Siewiorek. A Re-
source Allocation Model for QoS Management. In Proceedings ,
of 18th IEEE R e d - S h e Systems Symposium, December 1997.

[I61 B. Randell. System Structure for Software Fault Tolerance.
IEEE Transactions on Software Engineering, 1 (2):220-232,
June 1975.

[I71 W.-K. Shih, J . W.3. Liu, and J.-Y. Chung. Algorithms for
scheduling imprecise computations to minimize total error.
SIAM Journal on Computing, 20(3), July 1991.

[I81 C. J. Turner and L. L. Peterson. Image Transfer: An end-to-end
design. In SICCOMM Symposium on Coriiniunicarioris Arcliitec-
litres arid Protocols, August 1992.

[I91 S. V. Vrbsky and J. W. S. Liu. Producing monotonically im-
proving approximate answers to relational algebra queries. In
Proceedings of IEEE Workshop on Imprecise arid Approximate
Computation. December 1992.

1201 S. Zilberstein and S.J. Russell. Anytime Sensing, Planning and
Action: A practical model for Robot Control. In IJCAI 13,
France. 1993.

42(2): pp.189 -212, 1990.

APPENDIX: The Optimality of the Least Commitment Strategy
We present the proof of the statement that ALG-CHAIN given in

Figure 4 provides an IT-Optimal distribution of optional execution
times. During Phase-] we process the chain in reverse order and com-
pute the optimal 1; values that would lead to a IT schedule with a
ii~inimutn slack. In other words, we first commit to the least slack
necessary for an IT schedule and we distribute i t optimally among
t l , t z , . . . , t , . The assignments that satisfy all the slack constraints
oprimal/y in this way, are used as lower bounds (for fault tolerance)
during the second phase. This phase makes the final distribution of
the entire available slack d among all optional parts by invoking ALG-
MAX.

In the first part of the proof, we show that ALG-CHAIN effec-
tively solves the two subproblems mentioned above. Finally, we will
prove that solving these two subproblems is equivalent to solving the
problem CHAIN.

Proposition 2 ALG-CHAIN is effectively equivalent to first solving
PI which finds t i . . . tk so as to:

354

maximize

subject to C t : = m a s { r l , . . . , r,} (15)

0 5 t: i = 1,2 , ... n (16)

ri 5 ti i = 1 , 2 , ... n (17)

i = l

n

. .
j = r

and then solving P2 which is computing t ; , . . t: so as to:

maximize Ri(t?)
i = l

subject to 2 t i ’ = d (1 8)
i =1

t: 5 ti’ i = 1 , 2 , ... n (19)

Note that the lower bounds { t) } of P2, used in the constraint set
(19), are determined by the outcome of PI. We need to prove two
lemmas before establishing the validity of Proposition 2.

Lemma 1 After Phase-I processesTi in ALG-CHAIN, the particular

slack constraint ri _<

Proof: This follows from the actions performed by the algorithm
ALG-CHAIN whenever it encounters an ri such that ri > s l a c k
(lines 7-9). Observe that after Phase-I processes Tj in ALG-CHAIN,
s l a c k = 0

Lemma 2 After Phase-I processes Tj in ALG-CHAIN, { t j , . . . , t n }
is an FT-optimal assignment of s l a c k = EL=jtk =
maz{rj, . . . , r,} to the subchain Tj, . . . , T,.

Proof: We prove the FT-Optimality by induction. The statement is
clearly true after T, is processed. Assume that it holds up to and in-
cluding the m f h task. We denote by Tj the task considered by Phase-1
at the m + l f h iteration (i.e., j = n -.m).

First, observe that the slack available for eve7 subchain
T,, . . . , T, (U = j + 1, j+ 2, . . . , n) is the minimum that can yield
an FT schedule (by Theorem I) , hence the total slack available to any
of the involved subchains can not be reduced.

We distinguish two cases. If r j 5 s l ack , then maz{rj, . . . , r,}
= rnaz{rj+l,. . . r,} and the total slack is not increased. Notice
that Slack(j) is sufficient to tolerate an error detected in Mj. In this
case, we may not increase t j which was set to 0, since this would irn-
ply decreasing some tk(k > j) creating a Non-FT schedule for the
subchain Tk, . . . , T,. This shows that t j should remain 0. Further-
more, since we do not increase the total slack and we already have
an IT-Optimal schedule for Tj+l,. . . , T, by the induction assump-
tion, t j = 0, t j+l, . . . , t, is an FT-Optimal distribution of s l a c k to
T j , . . . , T,.

If rj > s l a c k we may consider increasing t j . Note that,
after processing every task, the algorithm commits to the current
assignments { t i } as the lower bounds (1 ;) (line 9). All further
re-assignments done by ALG-MAX adhere to these lower bounds.
Hence, in order to exclude the possibility of having a better distribu-
tion outside of the rectangular region of these constraints, we need
to show that the optimal distribution of rj to Tj, . . . , T,, may never
result in a decrease in the current assignments.

n
t k is satisjied.

k = i

tk = maxjr j , . . . , r,} = Slack($.

Now, let { t j s l , . . . , t.} be the FT-Optimal distribution of
rnaz{rjtl,. . . , r,} to Tj+l , . . . , T, (observe that t, = 0). Also,
let { t ; , . . . , t i } be the FT-Optimal solution for distributing the slack
r j > max{rj+l,. . . , rn) to Tj, . . . , T,.

Note that t: 2 ti = maz{rj+l,.. . , I - , } ,
since the subchain Tj+l,. . . , T, would not be IT by Theorem 1.
In other words, the total slack available for T j t l , . . . , Tn may never
decrease. Let E = max{rj+l, ..., r,} = ti. Remem-
ber that, the problem CHAIN provides IT-Optimal solution for any
chain with a given slack. Hence, {t;,, , . . . , LE} is also a solution
to CHAIN when invoked for the subchain Tj+l,. . . , T, and with the
slack tP = E + e where e 2 0. Therefore, the proof will be
completeif we show that, there is always a solution set {tJtl , . . . , t ; }
to CHAIN such that t: 2 t , w = j + 1 , . . . , n when invoked for the
same subchain Tj+l, . . . , T,, but with the slack E + e where e 2 0.

The full proof of this last statement is based on Kuhn-Tucker op-
timality conditions for nonlinear optimization. It is omitted here for
the lack of space, but can be found in [l]. Informally, this holds in
view of the concave and non-decreasing properties of reward func-
tions, where all the derivatives (marginal returns) are non-increasing:
If there exists an index i such that i > j and tP < t i , then there should
exist an index k such that k > i and t z > t k (otherwise, the subchain
Ti, . . . , T, would not be IT). This could happen only when the opti-
mization algorithm preferred increasing t k by decreasing ti even if the
total available slack increased. Now, according to the best marginal
rate principle, CHAIN would have assigned tP to Ti even for the first

0

We are now ready to prove Proposition 2: Lemma 1 and 2 show
that Phase-I solves the problem PI . Similarly, i t can be seen that the
second phase of the ALG-CHAIN solves P2 (lines 15-1 6 of Figure 4).
With the help of Proposition 2, we can finally establish the optimalily
of the least commitment strategy as follows.

Theorem 4 ALG-CHAIN solves optimally the CHAIN problem.

Proof: Let { t f } be the solution set of Problem CHAIN. If we consider
Proposition 2, all we need to show is that the t:’ values obtained from
the invocation of P2 equal t : i = 1, . . . , n. First, notice that the
slack constraints are already satisfied by P I . Also, the solution set
{ t i } of PI serves as lower bounds in the constraint set (19) of P2.
Thus, if V i t? _> t: then it will be within the search space (feasible
region) of Problem P2. Consequently an algorithm that solves P2
will return a solution set { t ; } with the same total reward as the one
yielded by { t : } . Hence, i f we prove that there is always a solution
{ t f } to CHAIN such that V i tl 2 t i the proof will be completed.

In fact, since d 2 maz(r1, . . . , r,} a reasoning completely anal-
ogous to that exposed in the proof of Lemma 2 can establish that such
a choice would violate “best marginal rate” principle andor produce a
non-FT schedule. 0

invocation, leaving a larger slack for other tasks.

355

