Extensionsto Optimistic Concurrency Control with Time Intervals

Jan Lindstrom *
University of Helsinki, Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, FINLAND
jplindst@cs.helsinki.fi

Abstract

Although an optimistic approach has been shown to be better
suited than locking protocols for real-time database systems
(RTDBS), it has the problems of unnecessary restarts and
heavy restart overhead. In this paper we identify the unnec-
essary restart problem in OCC-TI (Optimistic Concurrency
Control with Time Intervals), propose a solution to this prob-
lem and demonstrate that the solution will produce a correct
result. Additionally, two extensions to the basic dynamic ad-
justment of the serialization order conflict resolution method
used in OCC-TI are proposed. Experiments with a prototype
implementation of a real-time database system show that the
proposed method clearly outperforms the original OCC-TI.

1 Introduction

A real-time database system (RTDBS) is a database system
that must process transactions within definite time bounds,
usually defined as a deadline. Failure to complete transac-
tions before their deadlines greatly decreases the usefulness
of the transactions. Deadlines may be lost due to problems
in scheduling or transaction data contention. Considerable
research has been devoted to designing concurrency control
algorithms for RTDBSs and to evaluating their performance
Most of these algorithms use serializability as correctness
criterion and are based on one of the two basic concurrency
control mechanisms: 2PL [4, 6, 12, 13, 16, 19] or optimistic
concurrency control (OCC) [9, 7, 3, 2, 13, 10, 11]. However,
2PL has some inherent problems such as the possibility of
deadlocks as well as long and unpredictable blocking times.
These problems appear to be serious in real-time transaction
processing since real-time transactions need to meet their

*This work is partially funded by Nokia Telecommunications, Solid In-
formation Technology Ltd., and the National Technology Agency Finland.

timing constraints, in addition to consistency requirements
[18].

Optimistic concurrency control [9, 5] protocols have the
properties of non-blocking and deadlock-free which make
them especially attractive for RTDBS. As conflict resolu-
tion between the transactions is delayed until a transaction
is near completion, there will be more information available
for making the choice in resolving the conflict. However,
the problem with these real-time optimistic concurrency con-
trol protocols is the late conflict detection, which makes the
restart overhead heavy as some near-to-complete transac-
tions have to be restarted. Since transactions in a real-time
database are time-constrained, it is essential that any concur-
rency control algorithm must minimize waste of resources
[19].

In this paper we will identify an unnecessary restart problem
in OCC-TI [12] optimistic concurrency control algorithm.
We will present a solution to this problem and demonstrate
that our solution will produce the correct result. Additionally
we propose two extensions to the basic conflict resolution
method used in OCC-TI. The remainder of this paper is or-
ganized as follows. In Section 2, we review the principles of
the original OCC-TI concurrency control protocol. Section
3 proposes extensions to the conflict resolution method used
in OCC-TI. A revised OCC-T]1 algorithm is provided in Sec-
tion 4. Section 5 presents results of experiments and finally,
Section 6 summarizes the main conclusions of the study.

2 Optimistic Concurrency Control
2.1 OCC-TI

The OCC-TI (Optimistic Concurrency Control with Times-
tamp Intervals) [12] is one of the optimistic concurrency con-
trol protocols proposed for the real-time database systems.
In the OCC-TI protocol, every transaction in the read phase

is assigned a timestamp interval (TI). At the start of the exe-
cution, the timestamp interval of the transaction is initialized
as [0, oo, i.e., the entire range of the timestamp space. This
timestamp interval is used to record a temporary serialization
order during the execution of the transaction. Whenever the
serialization order of the transaction is altered by its data ac-
cessing operation or the validation of other transactions, its
timestamp interval is adjusted to represent the dependencies.
This conflict resolution method is called dynamic adjustment
of the serialization order.

When a read operation is executed in the read phase, the
write timestamp (WWT'S) of the accessed object (D;) is veri-
fied against the time interval allocated to the transaction (7).
When a write operation is executed in the read phase, a pre-
write operation is used to verify the read timestamp (RT'S)
and write timestamps of the written object against the time
interval allocated to the transaction. If another transaction
has read or written the object outside the time interval, the
transaction must be restarted.

At the beginning of the validation phase, the final timestamp
(T'S(T,)) of the validated transaction is determined from the
timestamp interval allocated to the transaction. In this algo-
rithm, the minimum value of TI(T,) is selected as the times-
tamp 7'S(T,) for the validating transaction [12]. The adjust-
ment of timestamp intervals iterates through the read set (RS)
and write set (WS) of the validating transaction. The proto-
col iterates the set of active conflicting transactions. When
access has been made to the same objects both in the vali-
dating transaction and in the active transaction, the time in-
terval of the active transaction is adjusted. Non-serializable
execution is detected when the timestamp interval of an ac-
tive transaction becomes empty. If the timestamp interval
is empty the transaction is restarted. Finally current read
and write timestamps of accessed objects are updated and
changes to the database are committed.

2.2 Unnecessary restarts

A major performance problem with OCC protocols are the
heavy restart overheads, wasting a large amount of resources.
This is because conflict-checking is done in the validation
phase. If the transaction has read or updated many objects
and the transaction has to be aborted, all the changes to the
database must be rolled back and the transaction restarted.
Thus the transaction re-executes all read and write opera-
tions. In many cases, this will resulting missed deadlines
and wasted resources. Forward Validation (OCC-FV) [5] is
based on the assumption that the serialization order of trans-
actions is determined by the arrival order of the transactions

at the validation phase. A validation process based on this as-
sumption can incur restarts that are not necessary to ensure
data consistency. These restarts should be avoided.

This same major problem can be found in the original OCC-
TI. The problem with the existing algorithm is best described
by the example given below.

EXAMPLE 2.1 Let RT'S(z) and WT'S(z) be initialized as
100. Consider transactions T, T», and history H;:

Ty 7 [z]w [z]vicn
T rafz]vace
Hy: ri[z]ra[z]wi[z]v;.

Transaction T executes rq[z], which causes the times-
tamp interval of the transaction to be forward adjusted to
[100, 00[. T» then executes a read operation on the same
object, which causes the timestamp interval of the trans-
action to be forward adjusted similarly, e.g. to [100, ocol.
T, then executes wq[z], which causes the timestamp inter-
val of the transaction to be forward adjusted to [100, ool.
T, starts the validation, and the final (commit) timestamp
is selected to be T'S(T1) = min([100,00[) = 100. Be-
cause we have one write-read conflict between the validating
transaction 7 and the active transaction 7%, the timestamp
interval of the active transaction must be adjusted: Thus
TI(T>) = [100,00[N [0,99] = []. The timestamp in-
terval is shut out, and 75 must be restarted. However this
restart is unnecessary, because history H; is acyclic, that is,
serializable. Taking the minimum as the commit timestamp
(T'S(Ty)) was not a good choice here O.

Major concern in the design of real-time optimistic concur-
rency control protocols is not only to incorporate priority in-
formation for conflict resolution but also to design methods
to minimize the number of transaction restarts. Hence, un-
necessary restart problems found in OCC-TI using a very
simple history is not desirable. Therefore we will propose a
solution to this problem in section 4.

3 Extensionsto OCC-TI

An earlier unnecessary restart problem was detected from
OCC-TI protocol. Secondly, there is no real-time properties
in the OCC-TI protocol. In this section we propose an exten-
sion to the OCC-TI protocol to solve these problems. This
paper includes the following extensions to OCC-TI:

1) Reversible Dynamic Adjustment of Serialization Or-
der

2) Prioritized Dynamic Adjustment of Serialization Or-
der

In the first extension we try to undo dynamic adjustments
done to an active transaction when the adjustment was un-
necessary. For example, if the validating transaction aborts
then all dynamic adjustment to other conflicting active trans-
actions were unnecessary. In the second extension we take
into account priorities before using dynamic adjustment.

3.1 Reversible Dynamic Adjustment

Let TI(T;) denote the timestamp interval for transaction T;
andlet RT'I,(T;),n = 1, ..k, k € N denote the n:th removed
timestamp interval from transaction T’;. One modification to
timestamp interval can be reversed if the current timestamp
interval and the removed timestamp interval are continuous.
Formally,

DEFINITION 3.1 The timestamp interval TI(T;) of trans-
action T; is reversible with removed timestamp interval
RTI,(T;),n=k,..,1,k € Nifand only if:

VaVy((xz € TI(T;) ANy € RTI,(T;)) A
B2(2 € ([0, 00[\(TI(Ti) U RTI,(T;)) A
(x<z<y) V(y<z<ux))).

ExAMPLE 3.1 Let TI(Ty) = [100,1000], RTI;(Ty) =
[0,100], and RTI,(Ty) = [1002,2000]. Using definition
3.1, the first removed timestamp interval to be checked for
reversing is RTI,(Ty). If we set z = 1000 and y = 1002
then clearly 3z(z € [o,00[A (1000 < z < 1002)) e.g.
z = 1001. Thus the removed timestamp interval RT I»(T)
cannot be reversed. When checking RT I (Ty) for reversing
we can see that definition 3.1 holds and we can rollback the
removed timestamp interval O.

Next the definition 3.2 we shows how dynamically adjusted
timestamp intervals can be reversible.

DEFINITION 3.2 The timestamp interval TI(T;) of trans-
action T; is reversed with removed timestamp interval
RTI,(T;),n € N calculating the new timestamp interval

TI(T;) = TI(T;) U RTI,(T}).

EXAMPLE 3.2 Let TI(T1) = [100,1000] and RTI1(T1) =
[0,100]. Then rollbacking is done with

TI(Ty) = [100,1000] U [0, 100] = [0, 1000] CI.

This method, while important, needs additional data struc-
ture to store removed timestamp intervals and in case of
rollbacking quite expensive iteration of data structure hold-
ing removed timestamp intervals. We develop a far better
method in section 4. If the final timestamp of the validat-
ing transaction is selected carefully in the validation phase,
there is no need for rollbacking. Another used method is
to store dynamic adjustments of the timestamp intervals to
local variables and update timestamp intervals of a conflict-
ing transaction when validating transaction is guaranteed to
commit.

3.2 Prioritized Dynamic Adjustment

In this section a priority-dependent extension to dynamic ad-
justment of the serialization order is presented. In real-time
database systems, the conflict resolution should take into ac-
count the priority of the transactions. This is especially true
in the case of heterogeneous transactions. Some transactions
are more important or valuable than others. The dynamic
adjustment should be done in favor of a higher priority trans-
action. Here, we present a method, where we try to make
more room for the higher priority transaction to commit in
its timestamp interval. This offers the high priority transac-
tion better chances to commit before its deadline and meet-
ing timing constraints.

The Prioritized Dynamic Adjustment of the Serialization Or-
der (PDASO) implemented with timestamp intervals creates
a partial order between transactions based on conflicts and
priorities. Suppose we have a validating transaction 7', and
an active transaction T;(j € N). Let T'S(T,) be the final
timestamp of the validating transaction T, and T'I(T}) the
timestamp interval of the active transaction T';. Let TI(T,)
be the timestamp interval of the validating transaction and
pri(T;) be the priority of transaction T;. There are three pos-
sible types of data conflicts which are resolved using PDASO
between T, and T};:

1) RS(T,) NWS(T;) # 0 (read-write conflict)
A read-write conflict between T} and T, can be re-
solved by adjusting the timestamp interval of the ac-
tive transaction forward, e.g. T, = Tj. If the val-
idating transaction has higher priority than the active
conflicting transaction, forward adjustment is correct.
If the validating transaction has lower priority than
the active conflicting transaction, we should favor the
higher priority transaction. This is supported by reduc-
ing the timestamp interval of the validating transaction
and selecting a new final timestamp earlier in times-
tamp interval. Normally the current time or maximum

value from the timestamp interval is selected. But
now the middle point is selected. This offers greater
changes for the higher priority transaction to commit
in its timestamp interval. If the middle point cannot
be selected, the validating is restarted. This is wasted
execution, but it is required to ensure the execution of
the transaction of higher priority.

2) WS(T,) N RS(T}) # 0 (write-read conflict)
A write-read conflict between T} and T, can be re-
solved by adjusting the serialization order between T,
and T by adjusting the timestamp interval of the ac-
tive transaction backward, e.g. T; — T,. If the
validating transaction has higher priority than the ac-
tive conflicting transaction, backward adjustment is
correct. If the validating transaction has lower prior-
ity than the active conflicting transaction, then back-
ward adjustment is done if the active transaction is not
aborted in backward adjustment. Otherwise, the vali-
dating transaction is restarted. This is wasted execu-
tion, but it is required to ensure the execution of the
transaction of higher priority.

3) WS(Ty) NWS(Tj) # 0 (write-write conflict)
This case is the same as in a read-write conflict.

Thus, in backward adjustment, we cannot move the validat-
ing transaction to the future to obtain more space for the
higher priority transaction. We can only check if the times-
tamp interval of the higher priority transaction would be-
come empty. In forward ordering we can move the final
timestamp backward if there is space in the timestamp in-
terval of the validating transaction. Again, we check if the
timestamp interval of the higher priority transaction would
shut out. We have chosen to abort the validating transaction
when the timestamp interval of the higher priority transac-
tion shuts out. Thus, this algorithm favors the higher priority
transactions and might waste resources aborting near to com-
plete transactions.

ExXAMPLE 3.3 Let T'I(T1) = [100,1000], T'S(T1) = 1000,
and TI(T») = [0, 00[. Let pri(Th) < pri(T). Assume that
we have a read-write conflict between transactions. We first
make room for the active transaction 75 and then move the
active transaction forward:

TS(Ty) = (100 + 1000)/2 = 550
TI(Ty) = [0,00[N [550, 00] = [550, 00| O

4 Revised OCC-TI Algorithm

In this section a validating algorithm for extended OCC-Tl is
presented. OCC-TI is extended with a new final timestamp

selection method and priority-depended conflict resolution.
We should select the final (commit) timestamp T'S(T},) in
such a way that room is left for backward adjustment. We
propose a new validation algorithm where the commit times-
tamp is selected differently. In our revised validation algo-
rithm for OCC-TI (Figure 1) we set T'S(T,) as the valida-
tion time if it belongs to the time interval of T, or the max-
imum value from the time interval otherwise. Additionally,
the original OCC-TI is extended to use prioritized dynamic
adjustment of the serialization order. We have also used a
deferred dynamic adjustment of serialization order. In the
deferred dynamic adjustment of serialization order all adjust-
ments of timestamp interval are done to temporal variables.
The timestamp intervals of all conflicting active transactions
are adjusted after the validating transaction is guaranteed to
commit. If a validating transaction is aborted no adjustments
are done. Adjustment of the conflicting transaction would be
unnecessary since no conflict is present in the history after
abortion of the validating transaction. Unnecessary adjust-
ments may later cause unnecessary restarts.

The adjustment of timestamp intervals (7'I) iterates through
the read set (RS) and write set (WS) of the validating transac-
tion (T,). First we check that the validating transaction has
read from committed transactions. This is done by check-
ing the object’s read timestamp (RT'S) and write timestamp
(WTS). These values are fetched when the read/write op-
eration to the current object is made. Then the algorithm
iterates the set of active conflicting transactions. When ac-
cess has been made to the same objects both in the vali-
dating transaction and in the active transaction, the tempo-
ral time interval of the active transaction is adjusted. Non-
serializable execution is detected when the timestamp inter-
val of an active transaction becomes empty. If the times-
tamp interval is empty the transaction is restarted. Finally,
current read timestamps and write timestamps of accessed
objects are updated and changes to the database are com-
mitted. Figure 2 presents forward and backward adjustment
algorithms for dynamic adjustment of the serialization order
using timestamp intervals with deferred dynamic adjustment
and priorities.

Backward and Forward adjustment algorithms creates order
between conflicting transaction timestamp intervals. A final
(commit) timestamp is selected from the remaining times-
tamp interval of the validating transaction. Therefore the
final timestamps of the transactions create partial order be-
tween transactions.

Having described the basic concepts and the protocol, we
now prove the correctness of the protocol. To prove a his-
tory H produced by revised OCC-TI is serializable, we only

occti val i date(Ty) {
/* Select final (conmt) timestanmp */
if (validation_time € TI(Ty))
TS(Ty) = walidation_time;
dse TS(Ty) = maz(TI(Ty));

/* lterate read/witeset of the validat-
ing transaction */
for V D; € (RS(Ty) U WS(Ty)){

/* lterate conflicting active transactions */
for V T, € active_conflicting-transactions() {
if (D; € (RS(Ty) N WS(Ty)))
f or war d_adj ust ment (Tg, Ty, adjusted);

if (D; € (WS(Ty) N RS(Tw)))
backwar d_adj ust ment (Tg, T, adjusted);

if (D; € (WS(Ty) N WS(Tw)))
f orwar d_adj ust ment (Ty, Ty, adjusted);

}
}

/* Adjust conflicting transactions */
for (V T, € adjusted) {
TI(Ta) = adjusted.pop(T,);

if (TI(Ta) == []) restart(7Ta);

/* Update object tinmestanps */
for (Vv D; € (RS(Ty) U WS(Ty))) {
if (D; € RS(Tv))
RTS(D;) = maz(RTS(D;), TS(Ty));

if (D; € WS(Ty))
WTS(D;) = maz(WTS(D;), TS(Ty));

commt WS(T,) to database;

}

Figure 1. Revised validation algorithm for the
OCC-TI.

have to prove that the serialization graph for H, denoted by
SG(H), is acyclic [1].

Lemmal: Let T} and 75 be committed transactions in a his-
tory H produced by the revised OCC-TI algorithm. If there
isanedge Ty — T in SG(H), then T'S(T1) < TS(T>).

Proof: Since there is an edge, 71 — T» in SG(H), there
must be one or more conflicting operations whose type is
one of the following three:

1) r1[x] — we[z]: This case implies that 77 commits be-
fore T reaches its validation phase since ry[z] is not
affected by wo[z]. For wy[z], OCC-TI adjusts T'I(T»)
to follow RT'S(x) that is equal to or greater than

forwar d_adj ust ment (T, Ty, adjusted) {

}

if (Ta € adjusted)

TI = adjusted.pop(Ty);

else

TI = TI(T,);

if (priority(Ty) >= priority(T.))

TI = TI n [TS(Ty),o0];

dse {

it ((min(TI(Ty)) + TS(Tw)) / 2) € TI(Ty)) {
TS(T,) = (min(TI(T,)) + TS(Tw) / 2;

if (TS(Ty) > max(TI)) restart(Ty);
TI = TI N [TS(Ty),0];

dse {
if (TS(Ty) > max(TI)) restart(Ty);

TI = TI n [TS(Ty),o0];
}

adjusted.push({(Ta,TI)});

backwar d_adj ust ment (T, Ty, adjusted) {

2)

3)

if (Ta € adjusted)

TI = adjusted.pop(Ta);
else

TI = TI(T,);

if (priority(Ty) >= priority(Ty))
TI = TI N [0,TS(Ty) —1];
dse {
if (TS(Ty) —1 < min(TT))) restart (Ty);

TI = TI n [0,TS(Ty) —1];

}
adjusted.push({(To,TI)});

Figure 2. Backward and Forward adjustment.

TS(Ty). Thatis, TS(T1) < RTS(z) < TS(T»).
Therefore, T'S(T1) < T'S(T3).

w1 [x] = r2[z]: This case implies that the write phase
of Ty finishes before ry[z] is executed in T»’s read
phase. For ry[z], OCC-TI adjusts T'I(T>) to follow
WTS(z), which is equal to or greater than 7'S(T4).
Thatis, TS(Ty) < WT'S(z) < T'S(Tz). Therefore,
TS(Ty) < TS(Ty).

w1 [z] = wo[z]: This case implies that the write phase
of Ty finishes before wy[x] is executed in Ty’s write
phase. For ws[z], OCC-TI adjusts T'I(T5) to follow
WTS(z), which is equal to or greater than T'S(T?).
Thatis, TS(Ty) < WTS(z) < T'S(Tz). Therefore,
TS(Th) <TS(T»). O

Theorem 1. Every history generated by the revised OCC-TI

algorithm is serializable.

Proof: Let H denote any history generated by the revised
OCC-TI algorithm. Suppose, by way of contradiction, that
SG(H) containsacycleTy — T» — ... = T, — T1, where
n > 1. By Lemmal, we have TS(Ty) < TS(T») < ... <
TS(T,) < TS(Ty). This is a contradiction. Therefore no
cycle can exist in SG(H) and thus the algorithm produces
only serializable histories. O

We present here the same example history as in example 2.1,
which caused an unnecessary restart in the original OCC-
TI. Using the same example, we show here how the revised
OCC-TI produces a serializable history and avoids unneces-
sary restarting.

EXAMPLE 4.1 Let RT'S(x) and WT'S(z) be initialized as
100. Consider transactions Ty, T», and history Hy, where
pri(Th) = pri(Ts):

Ty 7 [z]w [z]vren
Ty rafz]vace
Hy: ri[z]ra[z]wi[z]v;.

In a similar way as in Example 2.1, transactions 77 and T»
are forward adjusted to [100, oo[. Transaction T starts the
validation at time 1000, and the final (commit) timestamp is
selected to be T'S(T1) = walidation_time = 1000. Be-
cause we have one write-read conflict between the validat-
ing transaction 77 and the active transaction 75, the times-
tamp interval of the active transaction must be adjusted:
TI(T,) = [100,00[N [0,999] = [100,999]. Thus the
timestamp interval is not empty, and we have avoided unnec-
essary restart. Both transactions commit successfully. His-
tory H; is acyclic, that is, serializable. Therefore the pro-
posed revised OCC-TI produces serializable histories and
avoids the unnecessary restart problem found in the origi-
nal OCC-TI algorithm O.

5 Resultsof Experiments

We have carried out a set of experiments in order to exam-
ine the feasibility of our algorithm in practice. Real-Time
Object-Oriented Database Architecture for Intelligent Net-
works (RODAIN) [8, 14, 17] is an architecture for a real-
time, object-oriented, fault-tolerant, and distributed database
management system. RODAIN consists of a main-memory
database, priority based scheduling and optimistic concur-
rency control. All experiments were executed in the RO-
DAIN prototype database running on a Pentium Pro 200MHz
with 64 MB of main memory with the Chorus/ClassiX3.1

real-time operating system. The test environment is a re-
duced subset of the RODAIN architecture.

Every test session contains 10000 transactions and is re-
peated at least 20 times. The reported values are means of the
replications. The test database represents a typical Intelligent
Network (IN) service. The size of the database is 30 000 ob-
jects. We used two different transactions named R1 and W1.
Transaction R1 is a read-only service provision transaction
that reads a few objects and commits. Transaction W1 is an
update service provision transaction that reads a few objects,
updates them and commits. New transactions are accepted
up to a respecified limit, which is the number of installed
processes. In the experiments the limit was 100. If there are
no processes available when a new transaction arrives, the
transaction is aborted. Transactions are validated atomically.
If the deadline of a transaction expires, the transaction is al-
ways aborted. The workload in a test session consists of a
variable mix of transactions. Fractions of each transaction
type is a test parameter. Other test parameters include the
arrival rate assumed to be exponentially distributed.

The experiment was run to compare the miss rates of the
original OCC-TI and our revised OCC-TI. In the experi-
ments, the arrival rate of the transactions is varied from 100
to 500 transactions per second. In Figure 3(a)—(b) the frac-
tion of write transactions is varied from 20% to 30%. In Fig-
ure 3 shows that the revised OCC-TI performs better than
OCC-TI, especially when the arrival rate is high. This is
because the revised OCC-TI does not suffer from the unnec-
essary restart problem. Figures 4(a)—(b) show the miss ratio
of transactions of high priority. This demonstrates how the
Revised OCC-TI favors transactions of high priority. Re-
vised OCC-TI clearly offers better chances for high priority
transactions to complete according to their deadlines. The
results clearly indicate that Revised OCC-TI meets the goal
of favoring transactions of high priority.

In the final experiments, we have included results from OCC-
DA and OCC-DATI protocols. The arrival rate of the trans-
actions is varied from 100 to 500 transactions per second. In
Figure 5(a) the fraction of write transactions is 20%. Perfor-
mance of the revised OCC-TI is similar to OCC-DA (Op-
timistic Concurrency Control with Dynamic Adjustment)
[10, 11] and OCC-DATI (Optimistic Concurrency Control
with Dynamic Adjustment of the Serialization Order using
Timestamp Intervals) [15].

0.12

OCC-T| —~—
Reviced OCC-TI -+
8
S
1]
2
£
c
8
3]
[
1%
=
[
=
0 L + + L - L L
100 150 200 250 300 350 400 450 500
Arrival rate trans/s
(a) write fraction 20%
0.12 T T
OCC-Tl ——,
Reviced OCC-TI -~
0.1 g
=l
[0.08
1]
)
€
5 0.06 |
51
IS
2
3 0.04 -
= boor, o
0.02 -
0

100 150 200 250 300 350 400 450 500
Arrival rate trans/s

(b) write fraction 30%

Figure 3. OCC-TI and Revised OCC-TI com-
pared.

6 Conclusion

We have provided a simple solution to this problem by
changing the way final timestamps are chosen and demon-
strated that our solution will produce a correct result. Ad-
ditionally, we proposed two extensions to the basic conflict
resolution method used in OCC-TI. Extended OCC-TI in-
cludes a new final timestamp selection method and priority-
depended conflict resolution. We have demonstrated that
the revised OCC-TI produces a correct result. Our results
from experiments showed that the revised OCC-TI outper-
forms original OCC-TI. Additionally, the revised OCC-TI
clearly offers better chances for high priority transactions to
complete according to their deadlines. The results clearly

0.004 .
CC-TI
0.0035 Reviced OCC-T}<+ |
0.003
0.0025 +
0.002 |
0.0015

0.001

Miss ratio of high priority transactions

0.0005 |

0 L + + L e L L
100 150 200 250 300 350 400 450 500
Arrival rate trans/s

(a) write fraction 20%

0.007

~ OCC-TI —=—
0.006 Reviced OCC-T| ’

0.005
0.004
0.003
0.002

0.001

Miss ratio of high priority transactions

100 150 200 250 300 350 400 450 500
Arrival rate trans/s

(b) write fraction 30%

Figure 4. Comparison with critical transac-
tions.

indicate that the revised OCC-TI meets the goal of favor-
ing transactions of high priority. Performance of the re-
vised OCC-TI is comparable even with optimistic concur-
rency control protocols OCC-DA and OCC-DATI. The most
important feature of the revised OCC-T1 is that it clearly of-
fers better chances for the high priority transactions to com-
plete before their deadlines when compared to the original
OCC-TI. Therefore the revised OCC-TI is a promising can-
didate for firm real-time database systems where transactions
are heterogeneous.

Acknowledgments

I would like to thank Tiina Niklander, Lea Kutvonen, Jaakko
Kurhila, Matti Luukkainen and Kimmo Raatikainen from the

0.12 T T

OCC-DATI ——
Revised OCC-T| -+

0.1 r

0.08 -

0.06 -

0.04 -

Transaction miss ratio

X e p

o

P " L L L

100 150 200 250 300 350 400 450 500
Arrival rate trans/s

(a) write fraction 20%

Figure 5. OCC protocols compared.

University of Helsinki for fruitful discussion during this re-
search.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

(8]

(9]

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

A. Datta and S. H. Son. A study of concurrency control in real-time
active database systems. Tech. report, Department of MIS, University
of Arizona, Tucson, 1996.

A. Datta, I. R. Viguier, S. H Son, and V. Kumar. A study of prior-
ity cognizance in conflict resolution for firm real time database sys-
tems. In Proc. of the Second International Workshop on Real-Time
Databases: |ssues and Applications, 1997.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions
of consistency and predicate locks in a database system. Communica-
tions of the ACM, 19(11):624-633, November 1976.

T. Hérder. Observations on optimistic concurrency control schemes.
Information Systems, 9(2):111-120, 1984.

J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic real-time opti-
mistic concurrency control. In Proc. of the 11th Real-Time Systems
Symposium, pages 94-103.

J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley. Ex-
perimental evaluation of real-time optimistic concurrency control
schemes. In G. M. Lohman, A. Sernadas, and R. Camps, editors,
Proceedings of the 17th VLDB Conference, pages 35-46, 1991.

J. Kiviniemi, T. Niklander, P. Porkka, and K. Raatikainen. Transaction
processing in the RODAIN real-time database system. In A. Bestavros
and V. Fay-Wolfe, editors, Real-Time Database and Information Sys-
tems, pages 355-375, 1997.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213-226, June
1981.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

K.-W. Lam, K.-Y. Lam, and S. Hung. An efficient real-time optimistic
concurrency control protocol. In Proceedings of the First Interna-
tional Workshop on Active and Real-Time Database Systems, pages
209-225, 1995.

K.-W. Lam, K.-Y. Lam, and S. Hung. Real-time optimistic concur-
rency control protocol with dynamic adjustment of serialization order.
In Proceedings of |EEE Real-Time Technology and Application Sym-
posium, pages 174-179, 1995.

J. Lee and S. H. Son. Using dynamic adjustment of serialization order
for real-time database systems. In Proceedings of the 14th | EEE Real-
Time Systems Symposium, pages 66-75, 1993.

J. Lee and S. H. Son. Performance of concurrency control algorithms
for real-time database systems. In V. Kumar, editor, Performance of
Concurrency Control Mechanisms in Centralized Database Systems,
pages 429-460, 1996.

J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen. A
distributed real-time main-memory database for telecommunication.
In Databases in Telecommunications, LNCS 1819, pages 158-173,
1999.

J. Lindstrdm and K. Raatikainen. Dynamic adjustment of serialization
order using timestamp intervals in real-time databases. In Proc. of
6th International Conference on Real-Time Computing Systems and
Applications, 1999.

D. Menasce and T. Nakanishi. Optimistic versus pessimistic concur-
rency control mechanisms in database management systems. Informa-
tion Systems, 7(1):13-27, 1982.

T. Niklander, J. Kiviniemi, and K. Raatikainen. A real-time database
for future telecommunication services. In D. Ga'ti, editor, Intelligent
Networks and Intelligence in Networks, pages 413-430, 1997.

K. Ramamritham. Real-time databases. Distributed and Parallel

Databases, 1:199-226, 1993.

P.S. Yu, K.-L. Wu, K.-J. Lin, and S. H. Son. On real-time databases:
Concurrency control and scheduling. Proceedings of the IEEE,
82(1):140-157, January 1994.

